

LIBRARY

UNIVERSITY OF CALIFORNIA

DAVIS

COHY

State of California
THE RESOURCES AGENCY

partment of Water Resources

BULLETIN No. 66-62

QUALITY OF GROUND WATERS IN CALIFORNIA 1961 and 1962

PART I NORTHERN AND CENTRAL CALIFORNIA

AUGUST 1964

HUGO FISHER

Administrator

The Resources Agency

Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

LIBRARY
LINVERSITY OF CALIFORNIA
DAVIS

State of California THE RESOURCES AGENCY

Department of Water Resources

BULLETIN No. 66-62

QUALITY OF GROUND WATERS IN CALIFORNIA 1961 and 1962

PART I NORTHERN AND CENTRAL CALIFORNIA

AUGUST 1964

HUGO FISHER

Administrator
The Resources Agency

EDMUND G. BROWN
Governor
State of California

WILLIAM E. WARNE

Director

Department of Water Resources

TABLE OF CONTENTS

		<u>P</u>	age
LETTER OF TRANSMITTAL	•	•	хi
ACKNOWLEDGMENTS		•	xii
ORGANIZATION, STATE DEPARTMENT OF WATER RESOURCES	•	•	xiv
GROUND WATER QUALITY MONITORING PROGRAM	•	•	1
Introduction	٥	•	3
Ground Water Quality Conditions	•	•	6
NORTH COASTAL REGION (NO. 1)	•		9
Smith River Plain (1-1)	•	•	13
Butte Valley (1-3)		•	15
Shasta Valley (1-4)		•	16
Scott River Valley (1-5)	•	•	18
Hayfork Valley (1-6)	0	۰	20
Mad River Valley (1-8)		•	22
Eureka Plain (1-9)	0	•	24
Eel River Valley (1-10)		•	26
Round Valley (1-11)	•	•	28
Ukiah Valley (1-15)	•	•	30
Sanel Valley (1-16)	•	•	32
Alexander Valley (1-17)	•	•	35
Santa Rosa Valley (1-18)	•	•	37

<u> P</u>	age
SAN FRANCISCO BAY REGION (NO. 2)	39
Petaluma Valley (2-1)	43
Napa-Sonoma Valley (2-2)	45
Suisun-Fairfield Valley (2-3)	48
Pittsburg Plain (2-4)	52
Clayton Valley (2-5)	55
Ygnacio Valley (2-6)	57
Santa Clara Valley (2-9)	
East Bay Area	60
South Bay Area	64
Livermore Valley (2-10)	67
CENTRAL COASTAL REGION (NO. 3)	69
Pajaro Valley (3-2)	72
Gilroy-Hollister Basin (3-3)	76
Salinas Valley (3-4)	7 8
Carmel Valley (3-7)	81
CENTRAL VALLEY REGION (NO. 5)	83
Goose Lake Valley (5-1)	89
Alturas Basin (5-2)	91
Big Valley (5-4)	93
Fall River Valley (5-5)	95
Redding Basin (5-6)	97
Lake Almanor Valley (5-7)	99
Indian Valley (5-9)	100

					Page
	LAHONTAN REC	ION (NO.	6) .	 	 . 155
Surprise Valley (6-1) .				 	 . 159
Madeline Plains (6-2) .				 	 . 161
Honey Lake Valley (6-4)				 	 . 163
South Tahoe Valley (6-5	.01)	• • • • •		 	 . 166
North Tahoe Valley (6-5	.02)	• • • •	• • •	 	 . 168
Carson Valley (6-6)				 	 . 170
Truckee Valley (6-67) .				 	 . 172
Topaz Valley (6-7)		• • • • •		 	 . 174
Bridgeport Valley (6-8)				 	 . 177
	APPENI	OIXES			
APPENDIX A				 	 . 179
Procedures and Cri	teria			 	 . 183
Location Designation	on			 	 . 184
Types of Mineral A	nalyses			 	 . 186
Laboratory Methods	and Procedur	es		 	 . 186
Water Quality Crit	eria			 	 . 189
Chemical Classific	ation of Wate	rs		 	 . 193
APPENDIX B - Ground Wat	er Quality Da	ta, 1961		 	 . 195
- Ground Wat	er Quality Da	ta, 1962		 	 . 298
APPENDIX C - Analyses f	or Radioactiv	ity		 	 . 409

PLATES (Plates are bound at the end of report)

Plate No.	
1	Monitored Areas, 1961 and 1962
2	Eel River Valley
3	Petaluma Valley
4	Napa-Sonoma Valley
5	Suisun-Fairfield Valley
6	Santa Clara Valley, East Bay
7	Santa Clara Valley, South Bay
8	Livermore Valley
9	Pajaro Valley
10	Salinas Valley
11	Lake Almanor Valley
12	Indian Valley
13	American Valley
14	Mohawk Valley

ALPHABETICAL INDEX OF MONITORED AREAS

	F	Page No.	1961	Data 1962
	±			1,02
Alexander Valley	•	35	204	
Alturas Basin	•	91	245	343
American Valley	•	102		350
Big Valley	•	93	246	344
Bridgeport Valley	•	177	296	407
Butte County (Sacramento Valley)	•	119	257	360
Butte Valley	•	15	198	300
Carmel Valley	•	81	244	341
Carson Valley	•	170	295	406
Clayton Valley	•	55	219	315
Colusa County (Sacramento Valley)		117	256	358
East Bay Area (Santa Clara Valley)	•	60	220	317
Eel River Valley	•	26	201	303
Eureka Plain	•	24	200	303
Fall River Valley	•	95	247	345
Fresno County (San Joaquin Valley)	•	144		383
Gilroy-Hollister Basin	•	76	238	334
Glenn County (Sacramento Valley)	•	115	255	355
Goose Lake Valley	•	89	245	343
Hayfork Valley	•	20	199	302
Honey Lake Valley	•	163	291	403
Indian Valley	•	100		349
Kelseyville Valley	•	110	252	353

	Page No.	1961	Data 1962
Kern County (San Joaquin Valley)		285	393
Kings County (San Joaquin Valley)		283	391
Lake Almanor Valley	• 99		349
Livermore Valley	. 67	230	328
Mad River Valley	. 22	199	302
Madeline Plains	. 161	291	402
Madera County (San Joaquin Valley)	. 142	2 7 9	380
Merced County (San Joaquin Valley)	. 140	275	376
Mohawk Valley	. 104		350
Napa-Sonoma Valley	• 45	212	309
North Tahoe Valley	. 168	294	405
Pajaro Valley	. 72	235	331
Panoche Valley	. 153	289	399
Petaluma Valley	• 43	209	307
Pittsburg Plain	• 52	218	315
Placer County (Sacramento Valley)	. 125	260	363
Redding Basin	. 97	248	346
Round Valley	. 28	201	304
Sacramento County (Sacramento Valley)	. 129	265	368
Salinas Valley	. 78	240	336
San Joaquin County (San Joaquin Valley) .	. 135	268	370
Sanel Valley	. 32	203	305
Santa Clara Valley, East Bay	. 60	220	317
Santa Clara Valley, South Bay	. 64	228	326

Page No.	1961	Data 1962
Santa Rosa Valley	205	
Scott River Valley	198	301
Shasta Valley	198	300
Sierra Valley 106	350	351
Smith River Plain	197	299
Solano County (Sacramento Valley) 131	267	369
South Bay Area (Santa Clara Valley) 64	228	326
South Tahoe Valley 166	294	405
Stanislaus County (San Joaquin Valley) 137	271	372
Suisun-Fairfield Valley 48	216	313
Surprise Valley 159	290	400
Sutter County (Sacramento Valley) 121	257	360
Tehama County (Sacramento Valley) 113	253	354
Topaz Valley 174	296	407
Truckee Valley 172	295	406
Tulare County (San Joaquin Valley) 146	281	388
Ukiah Valley 30	203	305
Upper Lake Valley 108	251	352
Ygnacio Valley 57	219	316
Yolo County (Sacramento Valley) 127	262	365
Yuba County (Sacramento Valley) 123	259	362

EPARTMENT OF WATER RESOURCES

O. BOX 388 CRAMENTO

June 19, 1964

Honorable Edmund G. Brown, Governor and Members of the Legislature of the State of California

State Water Quality Control Board

Gentlemen:

Bulletin No. 66-62 entitled, "Quality of Ground Waters in California, 1961 and 1962, Part I, Northern and Central California," presents laboratory analyses of samples collected during 1961 and 1962. The Southern California portion of this report will be published at a later date as Part II. This report considers the period from January 1961 through December 1962. It is the seventh and last of a chronological series of separate reports on monitoring the quality of the State's ground water. Beginning with samples collected in January 1963 and subsequent collections, ground water quality data will be reported in Appendix E of each annual volume of the Bulletin No. 130 series.

Ground water quality monitoring has been an active program in the Department of Water Resources since 1953 and is conducted as authorized by Section 229 of the Water Code. In 1961, 1,265 mineral analyses were made on samples of ground water from 61 monitored areas in Northern and Central California. In 1962, there were 1,381 mineral analyses from 65 monitored areas. In addition, there were 278 radiological analyses of ground water samples collected during 1961 and 1962 in Northern and Central California.

Generally, the quality of ground water in California is good and adequate for the uses made of it, although there are varied problems at many localities throughout the State. The quality of ground waters in the State in 1961 and 1962 was about the same as in previous years except for the continuing slow advance of sea water into some coastal basins.

Sincerely yours,

5 Warm

Director

ACKNOWLEDGMENTS

The extensive coverage of the ground water quality monitoring program, reported herein, is made possible through the cooperation of federal, state, and local agencies. The department wishes to express appreciation for the valuable assistance and cooperation received from the following agencies:

Federal Agencies

Department of the Interior Geological Survey Bureau of Reclamation

State Agencies

California Disaster Office, Radiological Service

County Agencies

Alameda County Flood Control and Water Conservation District Butte County Farm Advisor Colusa County Farm Advisor Del Norte County Farm Advisor Glenn County Farm Advisor Humboldt County Farm Advisor Kern County Farm Advisor Kings County Farm Advisor Madera County Farm Advisor Mendocino County Farm Advisor Monterey County Flood Control and Water Conservation District Placer County Health Department Sacramento County Farm Advisor San Joaquin County Farm Advisor Santa Clara Valley Water Conservation District Shasta County Department of Water Resources Siskiyou County Farm Advisor Sonoma County Farm Advisor Sonoma County Flood Control and Water Conservation District Stanislaus County Farm Advisor Sutter County Farm Advisor Tehama County Farm Advisor Tulare County Farm Advisor Yolo County Farm Advisor Yuba County Farm Advisor

Organized Public Agencies

Alameda County Water District Buena Vista Water Storage District Central California Irrigation District Merced Irrigation District Turlock Irrigation District

Many of the analyses presented herein were made by the United States Geological Survey, Quality of Water Branch, at its Sacramento laboratory, under provisions of a continuing cooperative agreement with the Department of Water Resources.

State of California The Resources Agency DEPARTMENT OF WATER RESOURCES

EDMUND G. BROWN, Governor, State of California HUGO FISHER, Administrator, The Resources Agency WILLIAM E. WARNE, Director, Department of Water Resources ALFRED R. GOLZE', Chief Engineer

DIVISION OF RESOURCES PLANNING

William L. Berry .	•	•	•	•		•	•	•	•	•	Division Engineer
Albert J. Dolcini	•	•	•	•	•	•	•	•	•	•	Chief, Planning Management Branch
Arthur L. Winslow,	Jı	r.	•	•	•	•	•	•	•	•	. Chief, Data Coordination Section
Robert G. Wright .	•	•	•	•	•	•	•	•	•	•	. Ground Water Quality Monitoring

This report was assembled from data supplied by the four area branches

NORTHERN BRANCH

John M. Haley	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	B	ranc	h	Chief
R. Paul Art	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	Cl	ni e	ef;	, Da	ta	Unit
Stewart L. Struchen	•	•	•	•	•	•	•	•	•	•	(Gre	our	ıd	W	ate	er	Q	ua.	Li	ty	Mon	it	oring

DELTA BRANCH

Carl A. Werner	•	•	•	•	٠	•	•	•	•	٠	•	•	•	•	•	٠			Branch	Chief
Edward E. Whisman	L	•	•	•	•	•	•	•	•	•	•	•	•	•	•	,	Chief,	Water	Quality	Unit
Arthur B. Myers	•	•	•	•	•	•	•	•	•	٠	•	•	•	•	•	•	Water	Quali	ty Monit	oring

SAN JOAQUIN VALLEY BRANCH

Carl L. Stetson	•	•	•		•	•		•	•	•	•	•	•	٠	•			•	•	•	•	Branch	Chief
Victor B. McIntyre	е		•	•	•	•		•	•	•	•	•	•	٠	•	Ch	ie	ſ,	Wa	ate	er	Quality	Unit
Jan B. Bush				•			•	•			•	•	(ire	our	nd W	at	er	Qı	ua.	Lit	ty Monit	oring

BAY AREA BRANCH

Charles A. McCullough	•	•	•	•	•	•	•	•	•	•	•	•	•				Branch	Chief
Glenn R. Peterson	•		•	•	٠	•		•	•	•	•	•	•	Chief,	Wa	ite	r Supply	y Unit
John S. Bartok	•		•		•	•	•	G:	roi	and	l V	Vat	tei	r Quali	ty	and	l Measw	rement

GROUND WATER QUALITY
MONITORING PROGRAM
1961-1962

INTRODUCTION

Bulletin No. 66-62 is the seventh in the chronological series,
"Quality of Ground Waters in California," and presents ground water quality
data collected during the two years, 1961 and 1962. This bulletin discusses
quality characteristics of ground water throughout California and describes
the monitoring program. It comments on the reliability of the data, describes procedures related to data collection and analysis, tabulates the
1961 and 1962 data, and includes plates to indicate areas of special interest. Plates are presented in this bulletin to show newly incorporated areas
and to delineate significant ground water quality conditions.

This volume, Part I, presents water quality data for Northern and Central California. The area considered in Part I comprises all of Water Pollution Control Regions Nos. 1, 2, and 5, that portion of Region No. 3 north of the San Antonio-Salinas River drainage boundary, and the portion of Region No. 6 north of the northern Mono Lake drainage boundary. Part II presents water quality data for Southern California. The portion of the State covered by this volume and individual areas discussed herein are shown on Plate I, "Monitored Areas, 1961-1962."

For convenience of discussion, the monitored areas have been grouped according to water pollution control regions which in most cases have the same boundaries as major drainage basins of the State. The discussions are presented in successive order; first a discussion of statewide conditions and then discussions of the monitored areas within each water pollution control region.

A ground water quality sample represents the integrated effect of prior conditions that control the quality of ground water. The principal factors that act to control or influence the concentration and type of

constituents that are carried in solution by ground waters are hydrology and geology, the character of the resident ground water available for mixing, and, in local cases, waste discharges resulting from human activity. The objectives of the ground water quality data program are (1) to secure continuous and reliable information on the quality of ground waters throughout the State, (2) to provide information on the prevailing mineral quality of ground waters in California, and (3) to detect significant changes and trends in the quality of ground waters, to evaluate the causes for these changes, and to identify and delineate the areas affected by such changes.

Analyses of ground water quality may include mineral, trace metal, and radiological determinations. The frequency of sampling, type of analysis, and density of the sampling network for mineral tests depend on conditions in the area being monitored. In areas where water quality problems are known to exist and where extensive use is made of ground water supplies, samples are taken one or more times each year. In areas where limited use is made of ground waters, samples are taken periodically until sufficient data are collected to determine the water quality of the basin and thereafter as frequently as land development and water use warrants. Radioassays of well waters are made at regular intervals; an alternative portion of the monitoring network is tested each year. In general, only the minimum number of wells necessary to show the areal extent of problems, if any, or evaluate ground water conditions are included in the monitoring network. The department maintains a file of available ground water quality analyses. This file is open to the public and a limited number of analyses are available upon request.

Appendix A discusses evaluation of the data, describes the location designation used, and sets forth criteria and standards applicable to uses

of the sampled water. Appendixes B, C, and D tabulate mineral and radiological data for 1961 and 1962.

When establishing ground water quality data programs, requests and suggestions from regional water pollution control boards and other interested water agencies have been considered along with requirements of programs within the department. The ground water quality data program has provided assistance and gained much support from the U. S. Geological Survey and the many cooperative local agencies. Although the program was initiated by the Department of Water Resources, the present scope of the program could not have been achieved without the valuable assistance of these other agencies.

Authorization

The ground water quality monitoring program is authorized in Section 229 of the California Water Code, which directs that:

"The department ... shall investigate conditions of the quality of all waters within the State, including saline waters, coastal and inland, as related to all sources of pollution of whatever nature and shall report thereon to the Legislature and to the appropriate regional water pollution control board annually, and may recommend any steps which might be taken to improve or protect the quality of such waters."

GROUND WATER QUALITY CONDITIONS DURING 1961 AND 1962

This issue of Bulletin No. 66 presents 1,265 chemical analyses for 1961 and 1,381 for 1962 along with 278 radiological analyses. These analyses have been collected by department personnel or by cooperative individuals and agencies as a part of the ground water quality monitoring program. The following sections discuss the monitoring programs by monitored basin or county.

Hydrologic conditions during 1961 and 1962 changed from dry to wet. 1961 was the third successive dry year in Northern and Central California and was drier than the two preceding years. Greater use of ground water was necessary and serious declines of water levels occurred in many ground water basins.

Heavy rains in the spring of 1962 broke the drought. Water conditions in 1962 were generally good and the effect of previous dry seasons was arrested. However, a large percent of runoff went to the ocean and recovery of ground water levels was not as much as might be expected. Generally, there was a small rise in ground water levels.

Geology and hydrology are the two factors that have the greatest affect on the quality of ground water. Hydrologic changes are evidenced primarily by changes in water level or piezometric head. At present, there are only crude correlations between hydrologic and quality conditions in a ground water body. The general trend in ground water quality is a slight increase in concentration of most constituents when the water table is lowering. The quality tends to improve or remain about the same in areas with large quantities of surface water and where the water table is either rising or remaining about the same.

During 1961, water levels tended to lower throughout Northern and Central California. In 1962, water levels tended to rise reflecting improved recharge due to a wet spring. Correspondingly the dissolved mineral content of ground waters tended to increase during 1961 and to decrease slightly during 1962.

Generally, the quality of ground water in California is good and adequate for the uses made of it. There are varied problems in many localities throughout the State. The quality of ground waters in the State in 1961 and 1962 was about the same as in previous years except for the continuing slow intrusion of sea water into some coastal basins.

NORTH COASTAL REGION

(No. 1)

NORTH COASTAL REGION (NO. 1)

The North Coastal Region, shown on Plate 1, comprises all of the basins draining into the Pacific Ocean from the California-Oregon state line to the northern boundary of Lagunitas Creek drainage area in Marin County. It extends approximately 270 miles from north to south, ranges in width from 180 miles at the Oregon boundary to about 30 miles in the southern portion, and encompasses an area of about 19,000 square miles.

The development and use of ground water in the North Coastal Region varies considerably. Ground water development ranges from very slight in some areas, primarily to supply domestic needs, to extensive in other areas where as much as 90 percent of water requirements are met from ground water supplies.

Of the ground water basins which have been identified in the North Coastal Region, 13 have thus far been included in the ground water quality monitoring programs. These areas, as well as the number of monitored wells in each and the sampling times, are listed in the following tabulation.

Monitored Area	Number of W	ells Sampled	Sampling Time
Smith River Plains (1-1)*	1961 1962	14 13	September-November July-September
Butte Valley (1-3)	1961	13	July-August
	1962	7	August-September
Shasta Valley (1-4)	1961	8	July-August
	1962	11	September
Scott River Valley (1-5)	1961	5	July
	1962	6	August
Hayfork Valley (1-6)	1961	5	July-August
	1962	4	June

^{*} The number in parenthesis is the basin number and is explained in Appendix A under "Location Designation."

Monitored Area	Number of We	ells Sampled	Sampling Time
Mad River Valley (1-8)	1961	11	July-August
	1962	11	August
Eureka Plain (1-9)	1961	6	August-September
	1962	4	August-September
Eel River Valley (1-10)	1961	13	July-September
	1962	9	August
Round Valley (1-11)	1961	10	August
	1962	9	September
Ukiah Valley (1-15)	1961	11	August-September
	1962	10	October
Sanel Valley (1-16)	1961	6	August-September
	1962	6	October
Alexander Valley (1-17)	1961 1962	3 0	September
Santa Rosa Valley (1-18)	1961 1962	20 0	September

Although ground water quality in the North Coastal Region remained generally good to excellent during 1961 and 1962, some significant changes were noted in individual wells in a few of the monitored areas.

A discussion of ground water quality conditions in the monitored basins is included in the following sections.

SMITH RIVER PLAIN (1-1)

Smith River Plain is located adjacent to the ocean in northwestern Del Norte County. The plain extends approximately 18 miles north to south, varies in width from about 4 to 7 miles, and contains an area of about 70 square miles. It is the largest alluvial area in the county.

Monitoring Program

The monitoring program in Smith River Plain was established in 1953 to maintain a check on ground water quality and to detect degradation which might result from sea water intrusion or from local domestic waste discharges. During August 1961, samples were collected from 16 wells in this area, and from 13 wells during July and September, 1962.

Ground Water Development

The principal source of ground water in the Crescent City area is the marine terrace deposits of the Battery formation. River terrace and flood plain deposits along the Smith River are locally important ground water sources. Aquifers of the area are believed to be interconnected and unconfined. Ground water is moderately to extensively developed. It supplies approximately one-half of the water requirements in the area. Most wells are shallow with well yields ranging from about 20 gallons per minute (gpm) in the marine formation to 340 gpm in the stream channel and flood plain deposits.

Evaluation of Ground Water Quality

Ground water is used for irrigation, municipal, domestic, and stock watering purposes. The major waste discharge in this area is the effluent from the Crescent City sewage treatment plant which is discharged

to the ocean and constitutes no threat to the quality of the ground waters. However, there exists the possibility of local contamination from individual septic tanks.

in type with magnesium generally the most abundant cation. At the present time, no serious water quality problems exist and there is no apparent sea water intrusion. Although most ground waters are of excellent mineral quality, high iron concentrations are found throughout the area. Total iron concentrations exceeded 0.5 parts per million (ppm) in five of the wells sampled in 1961. The highest iron concentration is 7.2 ppm in well 16N/1W-2Q1, located approximately 4 miles northeast of Crescent City.

Significant Water Quality Changes

Comparison of the 1961 analyses with those of 1960 showed a decrease in nitrate concentration from 49 to 20 ppm in well 16N/1W-20A2, approximately 1 mile north of Crescent City. 1961 analyses also indicate iron concentrations are less than those shown in 1960. The two most notable iron reductions occurred in wells 16N/1W-15C1, located approximately 3 miles northeast of Crescent City, and well 16N/1W-16D1, located approximately 2 miles north of Crescent City. Iron reduction in these two wells was from 4.8 to 0.01 ppm and 3.7 to 0.09, respectively.

BUTTE VALLEY (1-3)

Butte Valley lies in northeastern Siskiyou County about 30 miles south of the Oregon border and east of the Cascade Range. The valley floor is an irregularly shaped area comprising about 130 square miles.

Monitoring Programs

In 1957 a monitoring program was established in Butte Valley to provide information on ground water quality and to detect changes or trends. Samples were collected from five wells during 1961 and from seven in 1962.

Ground Water Development

extent in alluvial, fluvio-glacial and lake deposits. With a few exceptions, aquifers of this area are believed to be interconnected and unconfined. Ground water in Butte Valley is moderately to extensively developed. The fine-grained, relatively impermeable deposits do not yield large amounts of water. Along the eastern border of the valley, wells yield from 900 to 3,000 gpm. The high yields are believed to come principally from lava deposits.

Evaluation of Ground Water Quality

Ground water is used for irrigation, domestic, and stock watering purposes. Ground waters of Butte Valley are generally a sodium-magnesium bicarbonate type, with low to moderate mineral concentrations. A few wells, however, produce highly mineralized water, probably originating in buried lakebed deposits in the east side of the valley.

Significant Ground Water Changes

No significant ground water quality changes were noted.

SHASTA VALLEY (1-4)

Shasta Valley lies in central Siskiyou County, between the Klamath Mountains on the west and the Cascade Range on the east. The valley is nearly oval-shaped, has a north-south length of about 30 miles, a maximum width of about 15 miles, and comprises an area of approximately 250 square miles.

Monitoring Program

The presence of highly mineralized ground waters, known to occur in certain geologic formations in the area, prompted the establishment of a monitoring program in Shasta Valley in 1957. The monitoring program includes all but a small area in the eastern portion of the valley. During 1961, samples were collected from six wells and from eleven wells during August and September 1962.

Ground Water Development

The most prolific aquifer in Shasta Valley is the Pluto's Cave basalt which is a highly permeable, black lava flow. Lenses of gravel and sand in the Recent alluvium and lavas of the Western Cascade series are locally important sources of ground water. In general, ground water is believed to be unconfined. There is moderate to extensive development. Well yields range from 120 to 4,000 gpm and average about 1,300 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic and stock watering purposes. There are no large waste discharges in Shasta Valley. Municipal sewage originating from the communities of Yreka and Weed may be a source of limited quality impairment. Chemical analyses of ground water samples

indicate that the water is generally moderate to very hard and of a magnesium or calcium bicarbonate type. The analyses of two wells, 44N/5W-32F1 and 44N/5W-34N1, used for irrigation purposes, show a boron concentration in excess of recommended limits for Class 1 irrigation water.

Significant Water Quality Changes

Comparison of analyses of samples collected in 1961 with those of 1960 showed a significant increase of most mineral constituents in well 44N/5W-32Fl, located approximately 18 miles southeast of Yreka. The electrical conductance and boron in this well increased from 875 to 1,330 and from 0.72 to 2.1 ppm, respectively.

SCOTT RIVER VALLEY (1-5)

Scott River Valley is located in western Siskiyou County about 28 miles south of the California-Oregon boundary. The monitored portion has a north-south length of 22 miles, a maximum width of 10 miles, and comprises an area of approximately 80 square miles.

Monitoring Program

A monitoring program was established in Scott River Valley in 1957 to observe ground water quality and to detect significant changes.

During 1961, samples were collected from eight wells in this area and from eight wells during August 1962.

Ground Water Development

The only water-bearing formation of importance is the younger alluvium comprised of stream channel, flood plain, and alluvial fan deposits. The most permeable deposits are located between Fort Jones and Etna. Indications of ground water confinement are found only in the west side alluvial fans. Ground water comprises only a small portion of the total amount of water used and is moderately developed. Yields of irrigation wells located in the stream channel and flood plain deposits range from 1,250 to 2,500 gpm.

Evaluation of Ground Water Quality

Ground waters are used principally for domestic purposes and to a lesser extent for irrigation. There are no large waste discharges in Scott Valley. Sewage from the towns of Etna, Fort Jones, and other communities are minor and do not threaten the quality of ground water.

Ground water in Scott River Valley is generally moderate to very hard and of magnesium or calcium bicarbonate type.

Significant Ground Water Quality Changes

No significant water quality changes have been observed at this time.

HAYFORK VALLEY (1-6)

Hayfork Valley is located in central Trinity County. It is an irregularly-shaped intermountain valley in the western portion of the Klamath Range. From east to west, the valley measures approximately 6 miles and has a north-south width of about 3.5 miles. The monitored area extends eastward an additional 2.5 miles to include the narrow valley of Carr Creek.

Monitoring Program

A monitoring program was established in Hayfork Valley in 1959 to observe ground water quality and to detect any significant changes that might occur. Five wells were sampled in June 1961 and four in June 1962.

Ground Water Development

Ground water occurs principally in recent alluvial deposits and in minor amounts in tertiary sedimentary rocks of the Weaverville formation. The recent alluvium occurs in the central portion of the valley along the flood plains of Hayfork Creek and its tributaries and ranges in thickness up to about 35 feet. The Weaverville formation occurs in the remainder of the area and underlies the alluvial deposits. Ground water is recharged primarily by infiltration of rainfall on the valley floor and by influent seepage from streams. Because of shallow depths and small pumping facilities, well yields in the Hayfork Valley are small. It is doubtful that any large capacity wells can be developed in this area because of the limited thickness of the alluvium and the relative tightness of the Weaverville formation.

Evaluation of Ground Water Quality

Until recently, ground water furnished the only water source for the town of Hayfork. The town now derives its municipal supply from a nearby surface water reservoir. Outlying homes, and some within the town, still utilize wells for their domestic supplies. At the present time there are no major discharges which constitute a threat to ground water quality in Hayfork Valley.

Ground waters of Hayfork Valley are generally of excellent mineral quality suitable for most beneficial uses. They are slightly to moderately hard, bicarbonate type waters with calcium or magnesium being the predominant cations.

Significant Water Quality Changes

No significant water quality changes have been observed at this time.

MAD RIVER VALLEY (1-8)

Mad River Valley is located in the coastal portion of Humboldt County immediately north of Humboldt Bay. It is bounded on the north and east by the Coast Range. The monitored area is approximately rectangular in shape, is about 10 miles in length, north to south, and extends inland an average of about 3 miles.

Monitoring Program

The monitoring program in Mad River Valley was established in 1957 to detect sea water intrusion and observe the general quality of ground waters in the basin. Samples were collected from 12 wells in this area during the period from July to October 1961 and from 11 wells during August 1962.

Ground Water Development

Alluvium constitutes the major source of ground water and includes stream terrace, flood plain and estuarine deposits; other water-bearing formations include the semiconsolidated Hookton formation and dune sand. Confined ground water occurs in the Hookton formation which consists of continental and marine deposits. Ground water is slightly to moderately developed with well yields up to 100 gpm.

Evaluation of Ground Water Quality

Ground water is used for domestic, irrigation, municipal, and industrial supplies. Effluent from the City of Arcata sewage treatment plant is the only major waste discharge in this basin. It is discharged

into Humboldt Bay. Waste discharges from the various small industries in the area do not constitute a threat to ground water quality at the present time.

Ground waters in Mad River Valley are generally bicarbonate in type with calcium or magnesium the predominant cations. They are moderately to very hard but suitable for most beneficial uses. There is evidence of sea water intrusion in the coastal segment of the valley where a few wells are known to yield waters with concentrations of chloride over 100 ppm. Waters high in total iron concentrations occur throughout the valley.

Significant Water Quality Changes

Comparison of analyses of samples collected in 1961 and 1962 with those of previous years showed no significant changes in ground water quality.

EUREKA PLAIN (1-9)

Eureka Plain is located in Humboldt County adjacent to Humboldt Bay. It varies up to approximately 6 miles in width, is about 12 miles long, and includes an area of about 70 square miles. Elk River is the principal stream in the basin.

Monitoring Program

The monitoring program in Eureka Plain was established in 1958 to detect evidence of sea water intrusion and observe general ground water quality. In October 1961, samples were collected from six wells and from four wells in August and September 1962.

Ground Water Development

The principal aquifer is the Hookton formation, of continental and marine origin, in which ground water is confined. Unconfined ground water occurs in alluvium and dune sand of limited area and thickness. Ground water is slightly developed in this basin. Wells in the Hookton formation yield from 10 to 30 gpm.

Evaluation of Ground Water Quality

Ground water is used for domestic, irrigation, and livestock watering purposes. There are three major waste discharges in this area, all consisting of effluent from sewage treatment plants serving the City of Eureka. Disposal is directly into Humboldt Bay and does not constitute a threat to ground water quality.

Chemical analyses of ground waters sampled in 1961 indicate moderately hard, bicarbonate type waters with magnesium being the predominant

cation. With the exception of water from well 5N/1E-18Q1 which contains a high concentration of boron, the monitored ground waters in Eureka Plain are of good quality, suitable for most beneficial uses. Waters in the dune sand near the shore are sodium chloride in character. The waters in dune sands are affected by wind borne spray but no other significant affect of sea water has been observed.

Significant Water Quality Changes

In well 5N/1E-18Q1, boron and iron decreased from 2.1 to 1.7 ppm and 2.6 to 0.40 ppm, respectively, between August 1960 and October 1961.

In well 3N/1W-5Kl__, iron decreased from 2.7 to 0.40 ppm between August 1960 and October 1961.

EEL RIVER VALLEY (1-10)

Eel River Valley is located in the west central portion of Humboldt County. The monitored portion is about 8 miles wide at the coast, extending inland about 18 miles. The valley contains an area of about 75 square miles.

Monitoring Program

The possibility of sea water intrusion prompted the establishment of a monitoring program in the area in 1956. During the period July to September 1961, samples were collected from nine wells and from nine wells in August 1962.

Ground Water Development

The major source of ground water is alluvium. Secondary sources include dune sand and older, semiconsolidated sediments. Unconfined aquifers occur in the alluvium, while ground water in the older sediments is confined. Ground water is moderately to extensively developed. Wells in the alluvium yield more than 600 gpm, while those in the older, semiconsolidated sediments have been known to yield as high as 1,200 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic and irrigation purposes and, to a lesser extent, for municipal purposes. There are no major waste discharges in the area. Minor waste discharges consist mainly of sewage effluent from the various small towns in the area. Treated sewage from Ferndale is discharged into the Salt River, and from Rio Dell into the Eel River. Septic tanks are employed by individual householders in the remaining communities. There is no apparent threat to quality of ground waters.

Ground waters of this area are generally a magnesium-sodium bicarbonate type water of good mineral quality suitable for most uses, except
near the estuary of the Eel River, where sodium chloride water occurs in
some of the monitored wells. The degraded water in these wells probably is
due to the mixing of the saline water from the Eel River estuary and the
adjacent ground water. Plate 2 locates the monitoring wells in Eel River
Valley and plots chloride concentration to indicate the area affected by
saline waters.

Significant Water Quality Changes

Comparison of analyses of samples collected in 1961 and 1962 with those of previous years show wide fluctuations in chloride concentrations in several wells located in the tidal portion of the Eel River. Since December 1956, chlorides in wells 3N/2W-13Jl and 27Gl have increased from 312 to 4,660 ppm and from 1,340 to 6,860 ppm, respectively. The fluctuations are due to sea water intrusion in the area.

ROUND VALLEY (1-11)

Round Valley is located in the northern portion of Mendocino County approximately 30 miles north of Willets. The valley is an oval-shaped basin approximately 6 miles long and 4 miles wide and contains an area of about 23 square miles. The elevation of the valley floor ranges from 1,300 feet at the south end to 1,440 feet at the north end. The town of Covelo is located at about the center of the valley.

Monitoring Program

In 1960, the ground water monitoring program was established to provide information on ground water quality. Samples were collected from 10 wells during August 1961 and from 9 wells in September 1962.

Ground Water Development

Ground water occurs in alluvial fan, flood plain, and lake deposits. These deposits are generally coarser and more permeable along the upper edge of the valley and grade into finer and less pervious material in the central and southern parts of the valley. Indications of both confined and unconfined ground waters are found in the valley. Ground water is recharged in the alluvial fan areas, primarily along the northern and western edges of the valley, and moves downslope to points of discharge in the central and southern parts of the valley. Ground water is the source of a large portion of the total amount of water used in Round Valley.

Evaluation of Ground Water Quality

Ground water supplies all the requirements for domestic use and a major portion of the irrigation and industrial needs. There are no large

waste discharges in Round Valley. Sewage from the town of Covelo is minor and is not a threat to the quality of ground water.

Ground water in the valley is of excellent mineral quality for irrigation purposes, but the presence of high iron concentrations throughout the valley renders untreated water objectionable for domestic use.

These waters are generally calcium or magnesium bicarbonate in character.

Significant Water Quality Changes

No significant water quality changes were detected between August 1960 and 1962.

UKIAH VALLEY (1-15)

Ukiah Valley lies along the Russian River in southeastern Mendocino County. It is approximately 22 miles in length with a maximum width of 5 miles and 65 square miles in area.

Monitoring Program

The monitoring program was established in Ukiah Valley in 1953 to detect quality changes. The current program includes sampling of approximately 10 wells in the fall of each year.

Ground Water Development

The major source of ground water is alluvium, consisting of stream channel and terrace deposits. Semiconsolidated older sediments, exposed on the edges of the valley constitute a secondary source. Known aquifers in this area are unconfined. There is slight to moderate ground water development. Wells in the terrace deposits yield up to 15 gpm, and those in the alluvium yield from 50 to 200 gpm.

Evaluation of Ground Water Quality

The principal uses of ground water are domestic, industrial, and irrigation. A major waste discharge in this area is effluent from the City of Ukiah sewage treatment plant which is not considered a threat to quality of the ground water.

Ground waters in the central portion of Ukiah Valley are generally bicarbonate in type and are of good to excellent mineral quality. Calcium or magnesium are the predominant cations. Highly mineralized ground waters are found along the edges of the valley, probably from deep-seated juvenile

water rising along faults or flowing from the many springs in the area. Individual wells have produced waters with boron concentrations greater than 80 ppm, and chlorides in excess of 500 ppm.

Significant Water Quality Changes

Analyses of samples collected during the years 1961 and 1962 compared with those collected in 1960 showed no significant changes in concentration of mineral constituents.

SANEL VALLEY (1-16)

Sanel Valley lies along the Russian River in southeastern Mendocino County, about 14 miles south of Ukiah. It is an irregularly shaped area of about 11.5 square miles.

Monitoring Program

A monitoring program was established in Sanel Valley in 1956 because of the presence in the area of ground waters containing excessive concentrations of boron. Samples are collected from six wells during the fall of each year.

Ground Water Development

The principal aquifer is the unconsolidated alluvium deposited by the Russian River and its tributaries. Ground water is generally unconfined, with the exception of local pressure effects. Ground water is slightly to moderately developed. Wells located in terrace deposits yield from 5 to 50 gpm; those in coarse alluvium, from 750 to 1,250 gpm.

Evaluation of Ground Water Quality

Most domestic and municipal requirements are supplied by ground water. Irrigation requirements adjacent to the Russian River are met by direct diversion from the river. The remainder of the irrigated areas are served almost exclusively by ground water. There are no large industrial waste discharges in this area. Individual sewage disposal systems are commonly used for domestic wastes but are not considered as a threat to quality of the ground water.

Ground waters in Sanel Valley are generally magnesium-calcium bicarbonate in type and, although moderately hard, are suitable for most beneficial uses. Ground waters high in boron are known to occur in underlying geologic formations.

Significant Water Quality Changes

Comparison of 1961-62 analyses with those of 1960 showed no significant changes or trends. Fluctuations in boron concentrations vary with individual wells as indicated by the fluctuation graphs on page 34.

SANEL VALLEY

ALEXANDER VALLEY (1-17)

Alexander Valley lies along the Russian River in northern Sonoma County. The monitored portion is approximately 14 miles long, about 1.5 miles wide, and comprises an area of about 20 square miles.

Monitoring Program

A monitoring program was established in Alexander Valley in 1957. Samples were collected from six wells in September 1961. No samples were obtained in 1962.

Ground Water Development

The principal aquifers are the Recent alluvium and the Tertiary-Quaternary Glen Ellen formation. Older consolidated sediments and volcanic rocks produce only meager yields. There is moderate development for domestic purposes, but only limited development for irrigation. The alluvium yields from 200 to 500 gpm and the Glen Ellen formation yields up to 400 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic purposes. Disposal of winery waste water into unlined ponds is a potential source of degradation of ground water in the northern portion of Alexander Valley. Domestic sewage is generally disposed of by individual septic tanks.

Ground waters in Alexander Valley are generally of low mineral content and suitable for most beneficial uses; however, some of the ground waters are moderately to very hard. Ground waters containing concentrations of boron up to 2 ppm are known to occur in this valley. It is believed these boron waters come from connate or juvenile water rising along fault slip planes.

Significant Water Quality Changes

The quality of ground waters has not changed significantly since September 1960.

SANTA ROSA VALLEY (1-18)

Santa Rosa Valley lies in central Sonoma County. The monitored area includes Santa Rosa Valley, a portion of the Russian River flood plain bordering the Santa Rosa Valley on the northwest, and Bennett, Rincon, and Kenwood Valleys which lie to the east of Santa Rosa Valley. The area is about 25 miles long, 4 to 12 miles wide, and comprises approximately 150 square miles.

Monitoring Program

To maintain a record of existing ground water quality and to detect changes in quality due to high concentrations of boron and sodium which occur locally in the area, a monitoring program was established in Santa Rosa Valley in 1957. Twenty-three wells were sampled in this area during August and September 1961. No samples were obtained in 1962.

Ground Water Development

The principal aquifers are in alluvium, terrace deposits, the Sonoma volcanics, the Glen Ellen formation, and the Merced formation. Confinement occurs in all units; however, most of the water in the alluvial materials is unconfined. Ground water is extensively developed for most beneficial uses. It constitutes about 90 percent of the water used in the valley. Wells in the area yield up to 1,500 gpm.

Evaluation of Ground Water Quality

Ground water is used for domestic, municipal, industrial, irrigation, and stock watering purposes. The principal waste discharges in the
area are effluent from sewage treatment plants serving the Cities of Santa

Rosa, the largest discharger, Sabastapol, and Healdsburg. There are also several industrial waste discharges in the vicinity of Santa Rosa. After treatment, these municipal and industrial wastes are discharged into Santa Rosa Creek or Mark West Creek and thence into the Russian River and are not considered to be a threat to the quality of ground waters.

Ground waters in Santa Rosa Valley are generally bicarbonate in type with sodium the predominant cation, although sodium seldom exceeds 50 percent of the base constituents. The waters, although moderately to very hard, are generally excellent in quality and suitable for most beneficial uses. However, concentrations of boron up to 3 ppm occur locally and the sodium percentage in a few wells is in excess of the recommended limit for irrigation use.

Significant Water Quality Changes

A comparison of analyses of samples collected during 1961 with those of 1960 showed only minor changes in mineral concentrations, except for Well No. 6N/7W-17El located approximately three miles northeast of Cotati. The boron concentration in this well increased from 0.4 ppm to 2.0 ppm between September 1959 and September 1961.

SAN FRANCISCO BAY REGION

(No. 2)

SAN FRANCISCO BAY REGION (NO. 2)

The San Francisco Bay Region includes all of the basins which drain into San Francisco Bay, San Pablo Bay, and that portion of Suisun Bay below Antioch. It includes portions of Alameda, Contra Costa, Marin, Napa, Santa Clara, San Mateo, Solano, and Sonoma Counties, and all of San Francisco County. This region extends about 125 miles from north to south, averages about 45 miles in an east-west direction, and comprises an area of about 4,400 square miles (Plate 1).

an important factor in the economy of the area. In those portions of the region where surface supplies were not readily available, early development was accomplished by resorting to ground water pumping. As development of the region continued and demand for water exceeded the available supply, the major metropolitan areas undertook vast projects to import water supplies from great distances. Many of the agricultural, industrial, and domestic requirements in the outlying areas are still met by ground water pumping.

Within the boundaries of this region, ll major ground water basins have been identified. Eight of these basins are included in the monitoring program. The areas, number of wells in each area, and sampling periods are listed in the following tabulation:

Monitored Area	Number of We	ells Sampled	Sampling Time
Petaluma Valley (2-1)	1961	22	April & September
	1962	30	April & October
Napa-Sonoma Valley (2-2)	1961	31	April & September
	1962	25	April & September
Suisun-Fairfield Valley (2-3)	1961	13	May & September
	1962	12	May & September
Pittsburg Plain (2-4)	1961	3	June
	1962	3	June

Monitored Area	Number of Wel	lls Sampled	
Clayton Valley (2-5)	1961	8	June
	1962	8	July
Ygnacio Valley (2-6)	1961	6	June
	1962	7	July
Santa Clara Valley (2-9)			
East Bay Area	1961	70	March & November
	1962	65	May & September
South Bay Area	1961	22	August
	1962	19	July & August
Livermore Valley (2-10)	1961	30	April & May
	1962	30	January & September

There were no general changes observed in ground water quality in most of the San Francisco Bay Region during the years 1961-62. Individual wells in the East Bay area of Santa Clara Valley (2-9.01) had progressive increases in chlorides, especially in wells pumping from the upper aquifer. These increases are attributed to continued sea water intrusion in the area.

PETALUMA VALLEY (2-1)

Petaluma Valley is located at the north end of San Pablo Bay in Sonoma and Marin Counties. The valley extends northwestward from the bay for about 16 miles and occupies an area of approximately 45 square miles. The segment fronting the bay is reclaimed tidal marshlands.

Monitoring Program

The monitoring program in Petaluma Valley was established in 1958 to maintain a record of sea water intrusion. The current sampling program includes 26 wells. Sixteen of these wells, in an area affected by sea water intrusion, are sampled semiannually; the remaining wells are sampled annually.

Ground Water Development

Petaluma Valley is a structural depression underlain with a thick series of water bearing materials. Ground water occurs principally in alluvial deposits and the Merced formation. Meager to moderate yields are also obtained from the Sonoma volcanics and the Petaluma formation. Most of the ground water development in Petaluma Valley is in the northern portion, where wells generally yield from 150 to 300 gpm. One well, however, has a reported yield of about 650 gpm. In the southern part of the valley yields are generally less than 30 gpm.

Evaluation of Ground Water Quality

A great portion of southern Petaluma Valley (included with Novato Valley in this report) is at or below sea level, and much of this land has been reclaimed. Only in the upper portion of the valley has the ground water been developed for agricultural and urban use.

The major waste discharge consists of domestic and industrial wastes from the City of Petaluma which are discharged to Petaluma Creek after secondary treatment. Domestic wastes from Hamilton Air Force are discharged directly to San Pablo Bay after primary treatment. Neither of these wastes is a present threat to ground water quality.

The water from the younger and older alluvium and the Merced formation is generally of good quality. Water from the shallower wells is of calcium bicarbonate type with deeper wells producing sodium bicarbonate type. Salt water has intruded the aquifers beneath the tidal marshlands and produced sodium chloride type water which is highly mineralized. Some wells in the southern and central portion of the area, adjacent to Petaluma Creek, produce water high in boron which makes them unsuitable for irrigation of some crops. A few wells in the valley show iron concentrations in excess of those recommended for domestic use. It appears that sea water intrusion in Petaluma Valley is not occurring directly from the bay by subsurface inflow, but through the downward and lateral movement of surface and near-surface brackish and saline waters. The chloride line on Plate 3 indicates the area affected by saline water.

Significant Water Quality Changes

Comparison of 1961 and 1962 analyses with those of 1960 showed only minor changes in mineral concentrations. The seasonal fluctuations in wells sampled in the spring and fall are, in general, not great. There were no significant changes in the extent of sea water intrusion.

NAPA-SONOMA VALLEY (2-2)

Napa and Sonoma Valleys are north-northwest trending, adjacent, alluviated valleys located at the southern end of the northern Coast Range Mountains in Napa and Sonoma Counties. They occupy structural depressions and drain southerly into San Pablo Bay. The two valleys merge about 5 miles from the northern margin of San Pablo Bay and become marshland. The tidal marshlands along San Pablo Bay are at or near sea level. Some of the land has been reclaimed and is as much as 5 feet below sea level. Napa Valley and Sonoma Valley comprise about 85 and 35 square miles, respectively.

Monitoring Program

A ground water monitoring program was established in Napa-Sonoma Valley in 1958 to maintain a record of existing ground water quality and to detect sea water intrusion. The current program includes 30 wells sampled in the spring and fall.

Ground Water Development

The principal body of ground water in Napa and Sonoma Valleys occurs in alluvial deposits. Appreciable quantities are also pumped locally from the Sonoma volcanics and from the Huichica and Glen Ellen formations. Ground water, generally unconfined to semiconfined, moves from the margins of the valleys to the center and then southward to the bay. Local confinement is indicated by the presence of a few flowing wells. The most productive of these artesian wells is reported to flow about 97 gpm.

Ground water in Napa-Sonoma Valley is moderately to extensively developed. The ground water supply is not abundant, and in some parts of

the valleys, it is inadequate. Although the alluvium yields water freely to wells, large yields are uncommon because of limited thicknesses of the aquifers. The yields are generally in the order of 20 to 50 gpm, although a few large irrigation wells produce up to 400 gpm.

Evaluation of Ground Water Quality

Most of the ground water used is for domestic and irrigation requirements. It is also used for industrial and stock watering purposes. The major waste discharge in Napa Valley is the effluent from Napa County Sanitation District No. 1. The sewage and industrial wastes are discharged into Napa River below the City of Napa after secondary treatment. Smaller discharges are made by Napa State Hospital, the Veterans Home, and the communities of Yountville, Oakville, Rutherford, St. Helena, and Calistoga. In Sonoma Valley, Sonoma Valley Sanitary District discharges domestic wastes to Schell Slough which is interconnected with San Pablo Bay by tidal waterways. The waste discharges are not considered to be a serious threat to the quality of ground water.

Ground water in most of Napa-Sonoma Valley is satisfactory for most uses. Sodium bicarbonate and sodium chloride are the most frequently occurring types of water in these basins. Better quality water is generally extracted from the alluvium than from the older formations. Ground water in the Sonoma volcanics is generally not as desirable in quality as that contained in the alluvium. Acid water, highly mineralized connate water, and water having undesirable taste, odor, or excessive boron and iron concentrations are encountered in many of the wells drilled into the Sonoma volcanics on the east side of Napa Valley. An intrusion of brackish waters from San Pablo Bay exists in the lower end of the valleys.

Significant Water Quality Changes

There were no significant changes in concentrations of mineral constituents in samples collected in 1961 and 1962. Areas where chloride concentrations in Napa and Sonoma Valleys exceeded 100 ppm during 1961 and 1962 are shown on Plate 4.

SUISUN-FAIRFIELD VALLEY (2-3)

The monitored area is located in the southwestern portion of Solano County and includes Suisun Valley, Green Valley, and the Birds Landing-Collinsville area. The small valleys widen and merge with the tidal marshes along Suisun Bay. The monitored area is approximately 16 miles long, about 12 miles in width and covers an area of about 125 square miles.

Monitoring Program

A monitoring program was established in Suisun-Fairfield Valley in the fall of 1958 to observe sea water intrusion and detect significant changes in ground water quality. The current program includes 15 wells sampled during the spring and fall.

Ground Water Development

The water bearing units consist of younger and older alluvial deposits and the Sonoma volcanics. The thickness of the younger alluvium averages about 20 feet at the northern end of the valley and gradually increases to more than 60 feet at the southern end, the greatest thickness being along Suisun Creek. The valley floor north and northeast of Fairfield is underlain at shallow depths by consolidated rocks which are considered essentially nonwater bearing. Most of the water pumped in Suisun-Fairfield Valley is probably obtained from the older alluvial materials. The thickness of this unit varies from feather edges along the margin of the basin to about 200 feet near Fairfield.

Ground water is extensively developed in the area west of Fairfield.

Because of poor quality water, low permeability of sediments, and small yields,
the area east of Fairfield is only moderately developed. There are mainly

domestic and stock wells in this area. Silt, clay, and sand make up the younger Recent alluvium which has a low permeability and generally yields small amounts of water. Well yields range from 20 to 565 gpm and average about 200 gpm for the entire area.

Evaluation of Ground Water Quality

The beneficial uses of ground water are municipal, irrigation, industrial, domestic, and stock watering. The two major waste discharges located in this area are domestic wastes from Fairfield-Suisun Sewer District discharged to Suisun Slough after primary treatment, and domestic and industrial wastes from Travis Air Force Base discharged to Union Creek after primary treatment. These discharges are made in the lower end of the basin and to tidal waters. They are not considered a threat to the quality of ground water.

Under natural conditions, ground water moves southward from the margins of the valley towards the tidal marshes. However, in the vicinity of Fairfield a pumping depression has reversed the gradient of the ground water table. This poses a problem of potential encroachment of sea water from the bay. In addition to the sea water intrusion problem, high concentrations of boron and sodium are found in wells in the southeastern portion of the monitored area. Boron concentrations up to 9 ppm are also found in wells in the vicinity of Fairfield. Usable ground water is of calcium and sodium bicarbonate type and is generally hard and slightly alkaline.

Significant Water Quality Changes

The quality of ground water has not changed significantly in the past four years. However, the chloride concentration has increased in some

wells. The chloride concentration in well 3N/1E-22F2 near Birds Landing, increased from 111 ppm in September 1960 to 280 ppm in September 1962, as shown on the fluctuation graph on page 50. Wells in which chloride concentrations exceeded 100 ppm during 1961 and 1962 are shown on Plate 5.

SUISUN-FAIRFIELD VALLEY

PITTSBURGH PLAIN (2-4)

The Pittsburgh Plain occupies a narrow terrace fronting on the Sacramento River, New York Slough and the San Joaquin River, between Clayton Valley on the west and the Sacramento-San Joaquin Delta on the east in north-eastern Contra Costa County. The monitored area is approximately 12 miles long, 2 miles wide, and covers an area of about 24 square miles.

Monitoring Program

A monitoring program was established in the Pittsburgh Plain in 1957 to provide information on ground water quality in the area and to detect significant changes. Three wells were sampled during June of 1961 and 1962.

Ground Water Development

The available ground water occurs in a thin section of alluvium and in the older Pittsburgh formation. Well yields range from 100 to 150 gpm and are derived, largely from unconfined ground water bodies. There is only limited development of ground water in Pittsburgh Plain, due in part to the poor quality water underlying the area and to the importation of surface water by Contra Costa Canal. In the 1930's many industries in the Pittsburgh area pumped ground water. The heavy pumpage created an overdraft and resulted in the encroachment of saline waters into ground water reservoirs near the bay. Pumping has since decreased and most of the water now used is from surface sources.

Evaluation of Ground Water Quality

Ground water is presently used to a limited extent for industrial, irrigation, and domestic purposes. The municipalities and a large number of

industries are located along the waterfront and discharge their wastes into the tidal waters. Disposal of these wastes to tidal waters is not considered detrimental to the underlying ground water in this area at the present time.

Ground waters underlying Pittsburg Plain are generally poor quality sodium chloride and sodium sulfate type waters, high in mineral content and extremely hard. Unless softened, the waters are unsuitable for most domestic and industrial uses.

Significant Water Quality Changes

Well 2N/2E-20Al, two miles easterly from Antioch, continues to show a gradual increase in specific conductance, total dissolved solids, and chloride. Total dissolved solids have increased from 858 ppm in 1957 to 1,110 ppm in 1962. The trend is shown on the fluctuation graph on page 54.

PITTSBURG PLAIN

CLAYTON VALLEY (2-5)

Clayton Valley is located in north central Contra Costa County and extends from the foot of Mt. Diablo to Suisun Bay. It has a northwest-southeast trending axial length of about 10 miles, a maximum width of about 3 miles, and includes an area of approximately 20 square miles.

Monitoring Program

To observe the ground water quality and to detect significant changes, a monitoring program was established in Clayton Valley in 1957. The present program includes eight wells sampled annually in the summer.

Ground Water Development

The primary aquifer in this area is the Recent alluvium, composed of clay, sand, and gravel. A secondary aquifer consists mainly of the Pleistocene-Pittsburg formation also composed of continental clay, sand, and gravel. Terrace deposits along the south shore of Suisun Bay are considered a part of the secondary aquifer. There is only limited development of ground water in Clayton Valley. This area is served by the California Water Service Company with surface water from the Contra Costa Canal. Since surface water service was initiated, the pumpage of ground water has decreased. Well yields range from about 100 to 150 gpm.

Evaluation of Ground Water Quality

The present ground water pumping is limited to industrial use, a small amount of irrigation use, and a municipal supply pumped by California Water Service to augment its supply. An oil refinery located in the northern end of Clayton Valley which discharges its wastes into Suisun Bay

is the only significant source of wastes in the area. These wastes are not considered to be a threat to ground water quality.

With the exception of boron concentrations up to 2 ppm in some of the wells, the ground waters in Clayton Valley are generally of good to excellent mineral quality and are suitable for irrigation purposes. The waters are primarily bicarbonate type with sodium or magnesium the predominant cations. Excessive hardness make the water undesirable for domestic and some industrial uses, unless softened.

Significant Water Quality Changes

Analyses of sixteen samples collected in 1961 and 1962 showed only a few changes in mineral quality from analyses of samples collected previously. The chloride concentration in well 1N/1W-4Rl, three miles southeast from Walnut Creek, increased from 115 ppm in September 1960 to 173 ppm in July 1962. There was a similar increase in total dissolved minerals.

YGNACIO VALLEY (2-6)

Ygnacio Valley is located in northern Contra Costa County and is contiguous with Clayton Valley. The two ground water basins are separated by the Concord fault which acts as a hydrologic barrier between the basins. The monitored area is about 10 miles long, varies in width from 1 to 6 miles and encompasses an area of approximately 20 square miles.

Monitoring Program

A monitoring program in Ygnacio Valley was established in 1957 to maintain a record of the ground water quality and to detect significant changes. The present program includes seven wells sampled annually in the fall.

Ground Water Development

Chief sources of ground water are the Recent alluvium and the Pittsburgh formation underlying Clayton Valley. Several pressure zones probably existed, but deepening of wells and increased pumping draft apparently resulted in pressure relief, causing the ground water reservoir to function as an unconfined aquifer.

There is only moderate development of ground water in Ygnacio Vally. This area is also served with surface water from the Contra Costa Canal and by California Water Service Company. The many industries located in the Pittsburgh area in the 1930's pumped ground water extensively, creating an overdraft which permitted saline water from the bay to intrude into the nearby ground water reservoirs. Pumping has since decreased and the majority of water now used is surface water. The larger wells yield up to 500 gpm, with the average withdrawal capacity being about 200 gpm.

Evaluation of Ground Water Quality

Present ground water pumping is limited to some industrial uses, small irrigation requirements and domestic supplies. Two major waste discharges are located in Ygnacio Valley. Central Contra Costa Sanitary District discharges domestic and seasonal cannery wastes to Grayson Creek. The City of Concord discharges to Walnut Creek. Because it is possible for water in these creeks to percolate to ground water, these wastes are considered a potential source of degradation.

In the vicinity of Pacheco, sodium chloride water is found which may be due to sea water intrusion. Boron in excess of 0.5 ppm is present throughout the valley. Some wells had concentrations of sulfates and nitrates which are far above the limits recommended in drinking water standards. Ground waters in this basin are also extremely hard.

Significant Water Quality Changes

Analyses of samples collected in Ygnacio Valley during 1961 and 1962 show few significant changes in concentrations of mineral constituents. No significant increases in chloride concentrations in Ygnacio Valley were observed.

The highest nitrate concentration found in Ygnacio Valley was 136 ppm in well 2N/2W-36El, located in Concord. As shown on the fluctuation graph on page 59, nitrate concentration in this well decreased from a high of 12l ppm in 1957 to a low 76 ppm in 1960 and then increased to 136 ppm in 1962.

YGNACIO VALLEY

SANTA CLARA VALLEY, EAST BAY AREA (2-9)

The East Bay area of Santa Clara Valley is located in Alameda County between the base of the western slope of the Diablo Range and San Francisco Bay. It extends from the vicinity of the City of Albany on the north to the Alameda-Santa Clara County line on the south, and comprises an area of about 140 square miles.

Monitoring Program

A ground water monitoring program was established in the East

Bay area in 1953 primarily to maintain surveillance on quality of ground

water in areas subject to sea water intrusion. The current sampling program includes 70 wells. About one-half are sampled semiannually and the

remaining are sampled annually. Two additional wells are sampled quarterly.

Ground Water Development

Water bearing formations include unconsolidated alluvial deposits of Quaternary age and older, and semiconsolidated sediments of Tertiary-Quaternary age. These units consist of layers and lenses of sand and gravel separated by thick layers of silt and clay. This interlayering of the thick, extensive, relatively impermeable clays and the permeable alluvial sands and gravels has resulted in the formation of confined aquifers beneath the greater part of the East Bay area.

The confined ground water portion of the Niles cone contains at least three fairly well-defined aquifers. They are thick, relatively continuous, and separated by blue clay layers. The "Newark aquifer" capped by a clay layer approximately 40 feet in thickness, extends to a maximum depth of approximately 175 feet; the "Centerville aquifer" occurs between 190 and

240 feet below the surface; and the "Fremont aquifer" between approximately 250 and 300 feet. All of these aquifers and their confining clay layers extend westward beneath San Francisco Bay. The "Newark aquifer" is essentially open to infiltration of salt water from the bay. Aquifers that are probably equivalent to, but discontinuous with, those in the Niles cone occur beneath the surface of the San Leandro and San Lorenzo cones. However, these aquifers are much thinner and less extensive.

The greater portion of the water requirement in the southern part of the area is met by pumping from the alluvial deposits of the Niles cone. Draft on ground water resources within this cone has increased to such an extent that ground water levels remain perennially below sea level throughout a large portion of the area. Yields of wells drawing from the various aquifers are highly variable. Limited data indicate that yields from the "Newark aquifer" range from 100 to more than 1,000 gpm, while yields from the deeper aquifers range from 250 to 1,800 gpm.

Evaluation of Ground Water Quality

In the northern portion of the East Bay area, ground water is used in small amounts by private individuals and industries. In the central and southern portion ground water is used extensively for irrigated agriculture and, to a lesser extent, for urban and industrial requirements.

The major waste discharges are sewage or industrial effluent from the Cities of Hayward and San Leandro, Oro Loma Sanitary District, Union Sanitary District, Holly Sugar Company, and West Vaco Chemical Division. Disposal is to tidal waters of San Francisco Bay and is not considered a threat to the quality of ground water.

Native ground waters of this area are calcium-magnesium bicarbonate in type, of good mineral quality and suitable for most uses. Waters from the forebay area contain low to moderate amounts of dissolved solids, chlorides, and boron. Boron concentrations up to 5 ppm, are present in water from wells in the vicinity of Newark and the Mission fault. The fault is located east of Niles and probably allows deep, poor quality water to move upward and degrade ground water. Sea water intrusion in this area was first detected by the presence of high chloride concentrations in the "Newark aquifer" of the Niles cone near the bay. The "Centerville aquifer" in the vicinity of Centerville also shows high chloride concentrations.

Significant Water Quality Changes

Significant quality changes in the East Bay area of Santa Clara Valley occurred only in the area of sea water intrusion in the confined ground waters of the Niles cone. Sea water intrusion in the "Newark aquifer" is shown by the 350 ppm chloride line on Plate 6. The degree of degradation ranges up to 1,750 ppm chloride in well 4S/IW-28E3 located near Centerville, as illustrated by the fluctuation graph on page 63.

Increasing chloride concentrations in some wells pumping from the "Fremont aquifer" during 1961 and 1962 indicate the continuation of localized degradation in this aquifer. Chloride concentration in well 45/1W-30C2, also located near Centerville, increased from 776 ppm in 1960 to 1,740 ppm in 1962 as illustrated by the fluctuation graph. The source of such localized degradation is believed to be leakage of poor quality water from the "Newark aquifer" through improperly constructed or abandoned wells, or through localized discontinuities or variations in permeability of the confining clay layer.

Over 40 wells have been sealed since 1957 in an attempt to arrest this degradation.

SANTA CLARA VALLEY, SOUTH BAY AREA (2-9)

The monitored portion of the South Bay area of Santa Clara Valley consists of that portion of north Santa Clara Valley lying within Santa Clara County and extending from San Francisco Bay southerly to San Jose. The area is bounded on the east by the Diablo Range and on the west by the Santa Cruz Mountains. The monitored area extends about 15 miles east to west, about 16 miles north to south, and comprises about 150 square miles.

Monitoring Program

A monitoring program was established in 1953 to observe sea water intrusion and significant quality changes in the South Bay area of Santa Clara Valley. The program includes a fall sampling of 20 wells which pump mainly from the lower confined aquifers. Adequate sampling to maintain surveillance of sea water intrusion in the upper aquifer was not accomplished. Special studies currently underway will provide additional data in the near future.

Ground Water Development

The main source of ground water in Santa Clara Valley is the Quaternary alluvial deposits. The Tertiary-Quaternary Santa Clara formation is a water bearing unit of secondary importance. Water-bearing sediments occupy the floor of the valley proper and some adjacent upland areas. The principal aquifers in the monitored area exhibit pressure characteristics and are separated from the free ground water zone by relatively impervious strata which prevent hydraulic continuity with overlying water-bearing deposits. Ground water occurs in both confined and unconfined conditions.

Ground water supplies about 95 percent of the water requirements of this area and is extensively developed. Artificial recharge is practiced by the Santa Clara Valley Water Conservation District. Stored surface water is released to permeable stream channels and to percolation ponds on the valley floor to infiltrate and replenish the ground water body. Well yields range from a few gallons per minute to over 1,700 gpm. Most wells produce over 500 gpm.

Evaluation of Ground Water Quality

Ground water is used principally for irrigation, public supply, and industry. There are five major waste discharges in this area consisting of municipal sewage from the Cities of San Jose, Sunnyvale, Mountain View, Palo Alto, and the Milpitas Sanitary District. The wastes are discharged to water courses adjacent to San Francisco Bay and pose no immediate threat to ground water quality.

Ground waters in this area are generally a bicarbonate type with sodium and calcium the predominant cations. Although moderately to very hard, the waters are of good to excellent quality and suitable for most uses. In parts of the eastern portion of this area, ground water is of questionable quality for irrigation due to high concentrations of boron, particularly in the Penitencia Creek cone area. Sea water intrusion into the upper aquifer along the bay had been detected as early as 1920 and extended approximately two miles inland in 1939. Prolonged overdraft of the lower confined aquifers poses a threat of additional sea water intrusion. Plate 7 shows the area affected by sea water intrusion.

Significant Water Quality Changes

Analyses of samples collected in Santa Clara Valley-South Bay area during 1961 and 1962, show few significant changes in concentration of mineral constituents. Localized high chloride concentrations in the lower aquifer near Guadalupe River and Palo Alto are shown by several wells. The chloride concentration in well 6S/1W-16Al, near Guadalupe River, fluctuated from 156 ppm in 1960 to 647 ppm in 1961 and 631 ppm in 1962. Wells 5S/3W-35Gl and 6S/3W-1Bl, both in the Palo Alto area, continued to show chloride concentrations of over 150 ppm.

LIVERMORE VALLEY (2-10)

Livermore Valley is located in the eastern portion of Alameda County with a minor portion extending into Contra Costa County. The valley has an east-west length of about 14 miles, varies from 3 to 6 miles in width, and includes an area of about 50 square miles.

Monitoring Program

Due to the dependence of the area on ground water supplies and the presence in the ground water of excessive quantities of boron and nitrates, a monitoring program was established in Livermore Valley in 1953. The current monitoring program samples 30 wells each summer.

Ground Water Development

Sources of ground water include alluvial deposits of Recent age, as well as the Livermore gravels which is an older, semiconsolidated deposit. Quaternary alluvial deposits comprise the chief aquifers and contain unconfined ground water, except in the western and northwestern part of the valley where lake bed clays confine permeable beds. The Livermore gravels exhibit both confined and unconfined ground water characteristics.

Ground water is moderately to extensively developed and supplies almost all of the water requirements. Well yields are low near the perimeter of the valley, increase toward the center, and range from less than 10 to about 2,000 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for irrigation and domestic purposes. The largest waste discharge in this area consists of effluent from the City of Livermore sewage treatment plant. This effluent is discharged to percolation and evaporation ponds, although some overflow reaches Arroyo

Los Positos during periods of heavy rainfall. Smaller waste discharges come from the City of Pleasanton, and from military and industrial installations. These discharges percolate to ground water and are a potential source of quality degradation.

Although ground waters of Livermore Valley are generally of good mineral quality and are suitable for irrigation purposes, they are extremely hard for domestic use. Water high in boron is found in the northern and eastern portion of the valley and water high in nitrates occurs in localized areas. Water with chloride concentrations up to 13,000 ppm may be found in a confined area 1.5 miles southeast of Dublin. These conditions appear to be related to waters derived from underlying and adjacent marine formations, the presence of faults allowing the upward migration of poor quality water, and the limited amounts of recharge afforded by a small catchment area with meager rainfall. The high nitrate content may also result from infiltrating waters which have been deteriorated by waste discharges or fertilizers. The extent and concentration of boron in ground water is shown on Plate 8.

Significant Water Quality Changes

Analyses of samples collected in Livermore Valley during the years 1961 and 1962 show no significant changes in concentrations of mineral constituents when compared with prior information.

CENTRAL COASTAL REGION

(No. 3)

CENTRAL COASTAL REGION (NO. 3)

The Central Coastal Region includes all of the coastal drainage areas from the southern boundary of Pescadero Creek Basin in San Mateo County to the northeastern boundary of Rincon Creek Basin in Ventura County. It extends inland an average of about 50 miles to the crest of the coastal mountain ranges, and encompasses an area of approximately 11,000 square miles. The region is characterized by narrow coastal strips and coastal valleys sloping toward the ocean and backed by mountain ranges paralleling the coast.

Valley areas in this region depend largely on ground water as a source of supply and approximately 90 percent of water requirements are met by ground water pumping. Nineteen ground water basins have been identified in the region with eighteen utilized intensively to supply irrigation water. Six ground water basins have been included in the statewide ground water monitoring program. The areas, the number of monitor wells in each, and the sampling times are listed in the following tabulation:

Monitored Area	Number of Wel	ls Sampled	Sampling Time
Pajaro Valley (3-2)	1961	30	May-September
	1962	42	May-September
Gilroy-Hollister Basin (3-3)	1961	25	June
	1962	25	June
Salinas Valley (3-4)	1961	65	July-August
	1962	20	July-August
Carmel Valley (3-7)	1961	5	July
	1962	9	July-August
Santa Maria River Valley (3-12)*			(Southern District)
Cuyama Valley (3-13)*			(Southern District)

^{*} Ground water basins are located in Southern California and will be discussed in Part II of this bulletin.

Ground water quality in the four valleys and basins covered by this report did not change significantly during 1961-1962.

PAJARO VALLEY (3-2)

Pajaro Valley comprises an irregularly shaped area of about 75 square miles in the Pajaro River drainage area below Pajaro Gap. It extends from Elkhorn Slough on the south to the Santa Cruz Mountains on the north and east. The area occupies the northern extremity of Monterey County, a small part of the northwestern corner of San Benito County, and the southern portion of Santa Cruz County.

Monitoring Program

Sea water intrusion into ground water adjacent to Monterey Bay prompted the inclusion of Pajaro Valley in the monitoring program in 1953. The current program includes 30 wells sampled each summer.

Ground Water Development

Ground water occurs principally in Quaternary alluvial deposits with lesser quantities being available in Pleistocene terrace deposits and the Aromas Sands. The Pliocene Purisima formation produces ground water only in very localized areas. In the valley floor area of the basin ground water occurs in three distinct zones, designated the shallow, intermediate, and deep zones. The shallow zone which is of minor importance is unconfined and extends from land surface to a depth of about 50 feet. The intermediate zone, which is largely confined, lies below the shallow zone, extending to a depth of about 200 to 300 feet. The deep zone underlies this intermediate zone and extends to a maximum depth of about 800 feet below land surface. At least two of these zones are in hydraulic continuity with the forebay in the vicinity of the City of Watsonville. The forebay area is underlain by permeable deposits and is the principal source of ground water replenishment to the intermediate zone.

There is extensive development of ground water in the valley.

Nearly all water for irrigation, and a portion of the municipal supply for the City of Watsonville is pumped from the confined ground water bodies.

The yield of wells in Pajaro Valley ranges from small capacity domestic wells to large irrigation wells yielding more than 500 gpm.

Evaluation of Ground Water Quality

Ground water is the source of more than 95 percent of irrigation supplies in Pajaro Valley. A few industries concerned with the processing and packing of agricultural products also depend on ground water as do domestic users in outlying areas. Most urban domestic supplies are obtained from surface waters but supplemental supplies are obtained from ground water.

The principal waste discharge in Pajaro Valley is the sewage and industrial waste effluent from the City of Watsonville. This discharge includes sewage from Freedom Sewer Maintenance District and Pajaro Sanitation District. The wastes are discharged to Monterey Bay by a submarine outfall after primary treatment and chlorination.

Ground water in the shallow zone is often of poor mineral quality and is used infrequently. In the intermediate zone, ground water is generally of good to excellent mineral quality and suitable for most purposes. Intermediate zone ground water is predominantly a calcium-magnesium bicarbonate type with low to moderate total dissolved solids, chlorides, and boron. The water is moderately to very hard, which limits its use for domestic and industrial purposes. Only limited data are available on ground water quality of the deep zone. These data indicate the water to be of excellent mineral quality.

Sea water intrusion has occurred along the bay where the aquifers are open to the ocean. Wells pumping from the intermediate zone near Monterey Bay produce some high chloride waters due to sea water intrusion. In a few wells located near the bay, nitrate concentrations exceed recommended limits for domestic use.

Significant Water Quality Changes

Analyses of samples collected in Pajaro Valley in 1961 and 1962 show few significant changes in mineral concentration. The advance of sea water intrusion is indicated by the 100 ppm isochlor lines on Plate 9. The chloride concentration in well 12S/2E-19Ml increased from 23 ppm in 1960 to 101 ppm in 1962 and in well 12S/2E-30El increased from 1,540 ppm in 1960 to 5,452 ppm in 1962.

No significant changes or trends in nitrate concentrations occurred during 1961 and 1962. High concentrations and fluctuations are illustrated by the graphs on page 75 for wells 12S/2E-30Nl and 12S/2E-32Kl located near the bay.

FLUCTUATIONS OF CONSTITUENTS IN SELECTED WELLS PAJARO VALLEY

GILROY-HOLLISTER BASIN (3-3)

Seven small valleys make up the Gilroy-Hollister Basin, which includes South Santa Clara Valley, Hollister Valley, San Benito Valley, and four other small, contiguous valleys. The monitored area extends a distance of about 25 miles from the topographic divide near Morgan Hill, Santa Clara County, southeasterly to Tres Pinos at the head of Hollister Valley in San Benito County. The area varies from 3 to 10 miles in width and comprises about 150 square miles. Drainage from the area is to the Pajaro Valley.

Monitoring Program

An annual monitoring program was established in this basin in 1958 to maintain a record of ground water quality conditions and trends. Twenty-five wells in the basin are sampled each summer.

Ground Water Development

Water-bearing units are the alluvial sediments of Quaternary age, the San Benito gravels of Pliocene-Pleistocene age and portions of the Purisima formation of Pliocene age. Alluvial sediments include stream channel, stream terrace, and flood plain deposits. The alluvium in the Hollister area attains a maximum thickness of approximately 250 feet. Confined ground water conditions exist in large areas adjacent to the Pajaro River with free or partially confined ground water occurring in the remaining areas.

There is extensive development of ground water for irrigation and domestic needs, and moderate development for industrial and stock watering uses. The yield of wells is about 350 gpm in South Santa Clara Valley and averages about 500 gpm in the Hollister area. Some wells in the Hollister area are reported to yield up to 1,700 gpm.

Evaluation of Ground Water Quality

This area is largely agricultural and major water use is for irrigation and domestic purposes. Smaller amounts are used for stock watering, and for the processing of agricultural products. Pumping for irrigation constitutes about 75 percent of the total ground water withdrawal.

Waste discharges in the area include domestic sewage and wastes from food processing plants. The largest discharge is domestic and industrial sewage from the City of Gilroy which is discharged to Llagas Creek after primary treatment. Smaller amounts are discharged by the Cities of Hollister and San Juan Bautista, and by food processing plants in the vicinity. The majority of liquid wastes can percolate and reach the underlying ground waters. No evidence is available as yet to indicate that these wastes are degrading the ground water supply.

Ground water in the Gilroy vicinity, while moderately to very hard, is generally of good mineral quality and suitable for most beneficial uses. The water is typically calcium-magnesium or magnesium-calcium bicarbonate type. Ground water in the vicinity of Hollister are of poor quality, high in total dissolved solids content, and contain boron. These waters also contain high concentrations of chlorides, sulfates, and nitrates.

Significant Water Quality Changes

Analyses of samples collected during 1961 and 1962 showed no significant changes in concentration of mineral constituents from 1960 samples. Well 12S/6E-19E2, located about 5.5 miles northeast of Hollister in the Fairview district, contained the highest boron concentration (19 ppm in 1961) found in Gilroy-Hollister Basin. The source of the boron is probably poor quality water migrating upward along the Hayward fault.

SALINAS VALLEY (3-4)

Salinas Valley is a narrow, elongated, northwest-southeast trending valley located mostly in Monterey County. The monitored portion of the
valley varies from 2 to 10 miles in width, is approximately 40 miles in length,
and comprises about 300 square miles of highly productive irrigated and dry
farmed land. The valley is bordered on the northeast by the Gabilan Range
and on the southwest by the Santa Lucia Range and the Sierra de Salinas.

Monitoring Program

A monitoring program was established in this valley in 1953 to observe and report the status of sea water intrusion and maintain a record of ground water quality conditions and trends. Seventy wells are included in the current program and are sampled each summer.

Ground Water Development

Ground waters in Salinas Valley occur principally in three aquifers. These consist of an upper, unconfined aquifer and two lower, confined
aquifers. Water from the upper zone is not used in significant amounts due
to its poor mineral quality. In lower Salinas Valley, the principal aquifers
are confined. They have been designated as the 180-foot and 400-foot aquifers
due to the average depth of the water-bearing materials below ground surface.
The confined aquifers are recharged by subsurface inflow from a forebay area
south of Gonzales. Supplemental recharge to the forebay area is accomplished
by controlled releases of stored surface waters from Nacimiento Dam.

Lower Salinas Valley is devoted to the production of irrigated crops.

Ground water is extensively developed for irrigation and for rural domestic

uses. Yield of wells ranges from low capacity domestic wells to irrigation wells yielding from 200 gpm to more than 3,000 gpm.

Evaluation of Ground Water Quality

Ground water is principally used for irrigation. Other uses are municipal, industrial, and stock watering. There are three major waste discharges in lower Salinas Valley. They are treated sewage and industrial wastes from the City of Salinas and Alisal Sanitary District. These wastes are discharged to Salinas River near Spreckels. A third discharge consists of untreated industrial wastes from Spreckels Sugar Company, which are discharged to percolation ponds on lands adjacent to the Salinas River. Waste discharges are not considered a serious threat to the quality of ground water.

Ground waters of Salinas Valley are quite variable in mineral quality. In the coastal segment, between the bay and a line approximately 2 miles inland, the water in the upper perched zone is not used in significant amounts due to its poor quality. Ground water in the 180-foot aquifer in the coastal segment is degraded by sea water and is a sodium chloride or sodium bicarbonate type. In this same area ground water in the 400-foot aquifer is sodium bicarbonate in type, and is degraded by sea water to a limited extent.

About one mile west of Salinas, poor quality ground water occurs in the 180-foot aquifer. This poor quality water is sodium chloride in type. The water in the 400-foot aquifer in this area is generally of good mineral quality.

Analyses of ground water from the area near Greenfield showed a mixed calcium-magnesium-sodium sulfate type.

Significant Water Quality Changes

Significant changes in mineral concentrations in Salinas Valley during 1961 and 1962 were limited primarily to slight inland movements of sea water intrusion along the coastal segment as shown by the 100 ppm isochlor lines on Plate 10. Well 13S/2E-16El pumps from the 180-foot aquifer and showed increases in chloride concentrations from 174 ppm in 1960 to 223 ppm in 1962; well 13S/2E-20Cl pumps from the 400-foot aquifer and showed increases of chloride concentrations from 181 ppm in 1960 to 264 ppm in 1962.

The localized area of poor quality water occurring in the 180-foot aquifer about 1 mile west of Salineas continued to show slight increases in chloride concentration. Well 14S/3E-30Fl, located in this area, showed an increase of chloride concentration from 232 ppm in 1960 to 257 ppm in 1962.

CARMEL VALLEY (3-7)

Carmel Valley, located in northern Monterey County, is a long, alluvium-filled valley extending easterly from the coast a distance of 23 miles. The valley floor ranges from about one mile wide to about one-fourth mile wide. It is drained by the Carmel River which flows to the ocean.

Monitoring Program

A monitoring program was established in this area in 1953 to detect evidence of sea water intrusion and to maintain a record of ground water quality conditions and trends. The current program includes nine wells which are sampled annually in the summer.

Ground Water Development

Ground water occurs in the unconsolidated Recent alluvium underlying the valley and in isolated stream terrace deposits. Water-bearing deposits are comprised mainly of sand and gravel with small amounts of silt and clay. The Recent alluvium is about 125 feet thick near the coast and feathers out along the valley margin. The seaward extension of the aquifer is open to the ocean. Ground water in the valley is probably unconfined.

The lower portion of the valley is utilized for truck crops and pastures. The central and upper portions of the valley are rapidly becoming urbanized and agricultural use of ground water will decrease accordingly. Local domestic and irrigation requirements are supplied by numerous wells in the valley. Well yields range from small amounts for domestic use up to 600 gpm for irrigation needs.

Evaluation of Ground Water Quality

Ground water is used for irrigation and local domestic needs. The major waste is sewage effluent from Carmel Sanitary District which is discharged into Carmel Bay after primary treatment.

Ground waters in the monitored portion of Carmel Valley are generally of calcium-sodium bicarbonate type, usually require softening for domestic use, and contain moderate total dissolved solids.

Significant Water Quality Changes

In general, the analyses of samples collected from nine wells in Carmel Valley during 1962 showed only minor variations in mineral quality from previous samples. Analyses of samples collected from the current network of stations indicate no identifiable sea water intrusion

CENTRAL VALLEY REGION

(No. 5)

CENTRAL VALLEY REGION (NO. 5)

The Central Valley Region extends from the California-Oregon state line southward to the Tehachapi Mountains, and from the Coast Range on the west to the Sierra Nevada on the east as shown on Plate 1. It averages about 120 miles in width and is more than 500 miles long. The region comprises a drainage area of approximately 59,000 square miles, and includes nearly 44 percent of the valley and mesa lands of the State.

Ground water has been an important source of water supply in the development of the Central Valley Region. Ground water is used principally for irrigation purposes but also supplies many communities and is used for domestic and industrial purposes. Some of the most extensive irrigated areas in the region derive their water supplies entirely from ground water sources.

Twenty-nine ground water basins have been identified in the Central Valley Region, 15 of which have thus far been included in the monitoring program. These areas, as well as the number of monitored wells in each and the sampling times, are listed in the following tabulation. Discussions and data are presented for each of the basins presently included in the monitoring program. The Sacramento and San Joaquin Valleys have been further subdivided into counties for discussion and data presentation purposes.

Monitoring Area	Number of	Wells Sampled	Sampling Time
Goose Lake Valley (5-1)	1961	11	August
	1962	10	August
Alturas Basin (5-2)	1961	13	August
	1962	9	August
Big Valley (5-4)	1961	14	September
	1962	15	August

Monitoring Area	Number of	Wells Sampled	Sampling Time
Fall River Valley (5-5)	1961	11	September
	1962	10	August
Redding Basin (5-6)	1961	21	August-November
	1962	26	June
Lake Almanor Valley (5-7)	1961 1962	0 7	August
Indian Valley (5-9)	1961 1962	0 9	August
American Valley (5-10)	1961 1962	0 10	August
Mohawk Valley (5-11)	1961 1962	0 4	August
Sierra Valley (5-12)	1961	19	September
	1962	18	August
Upper Lake Valley (5-13)	1961	13	June
	1962	12	June
Kelseyville Valley (5-15)	1961	12	June
	1962	11	June
Sacramento Valley (5-21)			
Tehama County	1961	25	January-June
	1962	23	June-July
Glenn County	1961	23	August
	1962	24	July
Colusa County	1961	10	June-July
	1962	19	July-August
Butte County	1961	9	September
	1962	9	July-September
Sutter County	1961	31	June
	1962	31	June-September
Yuba County	^1961	14	September
	1962	16	August
Placer County	1961	18	August
	1962	18	August
Yolo County	1961	46	July-August
	1962	46	July

Monitoring Area	Number of Wel	ls Sampled	Sampling Time
Sacramento County	1961	32	July-October
	1962	17	August
Solano County	1961	10	May-June
	1962	9	May
San Joaquin Valley (5-22)			
San Joaquin County	1961	32	July-August
	1962	30	July
Stanislaus County	1961 1962	48 .49	July-September July-September
Merced County	1961 1962	48 5 1	June-September June-September
Madera County	1961	29	July
	1962	31	June-September
Fresno County	1961 1962	0 70	April, June-October
Tulare County	1961	33	April-August
	1962	35	June-September
Kings County	1961	22	August
	1962	26	August
Kern County	1961	56	June-August
	1962	71	June-September
Panoche Valley (5-23)	1961	4	July
	1962	6	July

There were no extensive changes in quality of ground waters in the Central Valley Region during 1961 and 1962. There were, however, significant changes in specific constituents in individual wells and in groups of wells in certain areas.

In the Sacramento Valley, boron increased substantially in one well in Tehama County, while most of the monitoring wells in Glenn County showed slight decreases in boron. There were also notable decreases in boron concentration in wells in Colusa and Yolo Counties.

Ground water quality in the San Joaquin Valley remained essentially the same as that of the previous year.

GOOSE LAKE VALLEY (5-1)

Goose Lake Valley is located in northeastern California and south-eastern Oregon. That portion of the valley considered in this report is 27 miles long, approximately 8 miles wide, and is located entirely in Modoc County, California. The portion of the valley pertinent to this report encompasses an area of approximately 200 square miles, with 120 square miles periodically inundated by Goose Lake.

Monitoring Program

To maintain a check on existing ground water quality and to detect possible changes in quality, a monitoring program was established in Goose Lake Valley in 1959. During August 1961 samples were collected from 11 wells in this area and from 10 wells during August 1962.

Ground Water Development

Water-bearing formations in the California portion of Goose Lake Valley are comprised of alluvial and lake deposits, and fractured volcanic formations. Unconfined water is found throughout the valley with some confined water occurring in the northern end. Ground water is moderately developed.

Evaluation of Ground Water Quality

Ground water is used as the primary domestic source throughout the entire valley. Except for several ranches near the community of Davis Creek that use ground water as a primary irrigation source, ground water is used only as a supplemental irrigation source. There are no major waste discharges in the area. Minor waste discharges consist of industrial

effluent from a sporadically operated lumber mill located at Willow Creek.

Sewage disposal is largely by individual septic tanks. Waste discharges

are not considered to be a threat to the quality of ground water.

Ground waters of this area are soft to very hard bicarbonate type waters with calcium or sodium being the predominant cation, and are suitable for most beneficial uses. Waters from well 47N/14E-2H1, located 3.5 miles south of the community of New Pine Creek, and well 48N/14E-35A2, located 2.3 miles south of New Pine Creek, have concentrations of fluoride and boron in excess of recommended limits for either domestic or irrigation use. Both aforementioned wells also contain very high percent sodium concentrations.

Significant Water Quality Changes

Comparison of chemical analyses of samples collected in 1961 and 1962 with those collected in 1960 indicate no basin-wide changes in ground water quality. Analysis of well 47N/14E-2Hl showed an increase in boron of 0.30 ppm to 3.4 ppm and a decrease in fluoride from 4.6 ppm to 3.5 ppm.

ALTURAS BASIN (5-2)

Alturas Basin is located in the south-central portion of Modoc County, has a north-south length of 25 miles, is approximately 21 miles wide, encompasses an area of about 135 square miles, and lies at an elevation of about 4,400 feet above sea level.

Monitoring Program

An annual ground water monitoring program was established in the Alturas Basin in 1959. In August 1961, 13 samples were collected from wells in this area and from 9 wells during August 1962.

Ground Water Development

Aquifers in Alturas Basin are mainly alluvial deposits consisting of gravel, sand, silt, and clay laid down as stream deposits or lake sediments. These alluvial deposits are underlain by fractured volcanics. There has been a moderate development of ground water in Alturas Basin.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic and municipal purposes and, to a lesser extent, for irrigation. The only waste discharge consists of effluent from a secondary sewage treatment plant located about one mile southwest of Alturas. Effluent from this plant is discharged into the Pit River. Waste discharges in other smaller communities and outlying residences in the basin are by individual septic tanks. Waste discharges are not considered a threat to the quality of ground water.

Chemical analyses of ground water samples, collected in 1961 and 1962, indicate soft to very hard sodium bicarbonate type water suitable for

domestic purposes. Eight of the 13 monitored wells yielded water with sodium percentages of 60 or greater which places them in class 2 or 3 for irrigation purposes. Only one of these wells is presently being used for irrigation purposes. Most of the high percent sodium wells are located in the western portion of Alturas Basin.

Significant Water Quality Changes

The only significant water quality change occurred in well 41N/10E-2N2. Electrical conductance and sulfate increased from 714 to 833 micromhos and from 172 to 239 ppm, respectively, between July 1960 and August 1961.

BIG VALLEY (5-4)

Big Valley is located in northeastern California and encompasses an area of approximately 180 square miles in northwestern Lassen and southwestern Modoc Counties. The valley has a north-south length of approximately 13 miles and is about 15 miles wide.

Monitoring Program

An annual ground water monitoring program was established in 1960. Samples were collected from 14 wells during September 1961 and from 15 wells in March and August 1962.

Ground Water Development

The water-bearing formations in Big Valley are comprised of old lake sediments, stream deposits, and fractured volcanic formations. Unconfined water is found in these deposits throughout the valley with some confined water occurring locally. Ground water in Big Valley is only slightly developed. The retarded development of ground water in this area is related to the sparse population and relatively complete use of surface water for irrigation.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic purposes. At the present time there is no appreciable utilization of ground water for irrigation purposes. There is no major waste discharge in the area. Disposal of municipal wastes is handled by individual septic tanks and cesspools and presents no major water quality problem at this time.

Ground water in Big Valley is generally of excellent quality, suitable for most beneficial uses. Bicarbonate is generally the predominant

anion and calcium or sodium seem to be the predominant cations. Wells that yield a calcium-magnesium type water are found at several locations in the valley.

Significant Water Quality Changes

Comparison of analyses of samples collected in 1961 with those of the previous year showed fluctuations in nitrate concentrations in three wells and boron and fluoride fluctuations in one well. Wells 39N/7E-14Rl and 39N/8E-26Jl decrease in nitrate concentrations from 62 to 43 ppm and from 112 to 73 ppm, respectively. Well 38N/8E-30Rl increased in nitrate concentrations from 75 to 137 ppm. Well 38N/8E-14Pl showed a decrease in fluoride and an increase in boron of 2.8 to 1.9 ppm and from 3.3 to 5.4 ppm, respectively. The aforementioned wells are all used for domestic purposes and, with the exception of well 39N/7E-14Rl, fail to meet recommended or mandatory drinking water standards set by the U. S. Public Health Service.

FALL RIVER VALLEY (5-5)

Fall River Valley is one of the smaller valley fill areas in the northeastern counties. Located in northeastern Shasta and northwestern Lassen counties, Fall River Valley has an east-west length of 13 miles, encompasses an area of approximately 100 square miles, and lies at an elevation of about 3,300 feet above sea level.

Monitoring Program

The monitoring program in Fall River Valley was established in 1959 to detect any possible degradation of ground water quality. During August 1961, samples were collected from 11 wells in this area and from 10 wells during August 1962.

Ground Water Development

Ground water reservoirs in Fall River Valley are comprised of lake and alluvial deposits, underlain by and interbedded with fractured water-bearing volcanics. The sedimentary lake and alluvial deposits range in thickness from several feet to depths in excess of 700 feet. Unconfined water is found throughout the valley with some confined water occurring locally in the underlying volcanics. Ground water has, so far, undergone only limited development. Yields of wells drilled into lake sediments are low, generally less than 300 gallons per minute (gpm). However, wells drilled through the lake sediments into the underlying volcanic rocks produce from 200 to 1,000 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic purposes and in some instances as a supplemental irrigation source. There are no waste discharges

that constitute a threat to the present quality of ground waters in the valley.

Ground waters in Fall River Valley are generally bicarbonate in type with either sodium or calcium being the predominant cation. Quality of these waters are generally excellent throughout the valley with only scattered wells yielding poor quality water. Water from one domestic well shows a nitrate concentration in excess of the 45 ppm recommended limit set by the U. S. Public Health Service for domestic water.

Significant Water Quality Changes

A comparison of analyses of 1960 with those of 1961 indicate that there are no significant basin-wide water quality changes. One well, 37N/4E-1Kl, used for domestic purposes showed an increase in nitrate concentration from 52 ppm in July 1960 to 83 ppm in August 1961.

REDDING BASIN (5-6)

Redding Basin is located in the south central portion of Shasta County. The monitored area includes primarily the Cow Creek, Stillwater, Anderson, and Cottonwood Valleys. The area is approximately 21 miles north to south and has a maximum east-west dimension of about 22 miles. It comprises an area of about 280 square miles.

Monitoring Program

An annual monitoring program was established in Redding Basin in 1957 to maintain a check on ground water quality and to detect significant changes. During the period from August to November 1961, samples were collected from 22 wells and from 26 wells during June 1962.

Ground Water Development

Ground water occurs chiefly in formations of alluvial or volcanic origin, ranging from Pliocene to Recent in age. The water-bearing formations, in order of decreasing age, are the Tuscan and Tehama formations, the Red Bluff Gravels, and the Quaternary alluvium. Unconfined ground water occurs in the Quaternary alluvium. Confined to partially confined conditions occur in the Tuscan and Tehama formations. Ground water is moderately developed. Wells west of Cottonwood yield 500 to 800 gpm; those in the southeastern portion of the basin yield 1,000 to 2,000 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic, municipal, and industrial requirements. Irrigation water is supplied mainly from surface sources. The only large waste discharge in Redding Basin consists of sewage effluent

from the City of Redding, discharged into the Sacramento River and not a threat to the quality of ground water.

Ground waters of Redding Basin are generally magnesium-calcium or magnesium-sodium bicarbonate in type and are, in most cases, of excellent mineral quality suitable for most beneficial uses. Total dissolved solids seldom exceed 300 ppm and the percent sodium is generally below 60. However, previous analyses indicate several wells in the area have iron concentrations in excess of U. S. Public Health Service recommended limits for domestic purposes.

Significant Water Quality Changes

Analyses of samples collected from monitored wells in 1961 showed only a few changes in mineral concentrations from those of the previous year.

A known source of degraded ground waters occurring in the northern and northwestern portion of the Redding Basin derive their origin from saline waters of the Chico formation. Well 30N/4W-1El, located approximately 3 miles northeast of Anderson, had a decrease in electrical conductance and total dissolved solids of 152 to 58 micromhos and 118 ppm to 80 ppm, respectively. Well 32N/3W-35Cl, located approximately 3 miles north of Millville, had a decrease in electrical conductance, chloride, and total dissolved solids of 440 to 203 micromhos, 74 ppm to 3.1 ppm, and 290 ppm to 177 ppm, respectively.

LAKE ALMANOR VALLEY (5-7)

Lake Almanor Valley is located in northwest Plumas County. Most of the basin is occupied by Lake Almanor although discontinuous segments of alluvium along the shore are estimated to cover 7 square miles.

Monitoring Program

The monitoring program was initiated in 1962 to determine the quality of ground water in the area and to detect significant changes. During August 1962, seven ground water samples were collected. Plate 11 shows the area monitored and the location of monitored wells.

Ground Water Development

The largest alluviated area in the basin is located at the north-west end of the lake and is the site of the Town of Chester. The water bearing series in this area includes volcanic rocks and ash which are interbedded with varying proportions of gravel, sand, silt, and clay. Specific yield of the formation is estimated to average about 5 percent. Ground water storage capacity in the upper 200 feet of alluvium is estimated to be about 45,000 acre-feet. Ground water in this area has not been intensively developed although domestic needs appear to be satisfied exclusively by small individually owned wells.

Evaluation of Ground Water Quality

Ground water is used for domestic purposes. Chester Sanitation

District is the major discharger in the area. Treated effluent from the

plant is discharged to percolation ponds adjacent to Lake Almanor and has no

apparent affect on ground water quality. Analyses of samples indicate the waters

are calcium bicarbonate, are low in dissolved solids, and are of excellent

mineral quality.

Significant Water Quality Changes

No significant changes have been observed at this time.

INDIAN VALLEY (5-9)

Indian Valley is located in north central Plumas County. The maximum width of the valley is little more than 2 miles, yet the valley extends about 9 miles from Taylorsville northwest to Greenville and approximately 8 miles from the outlet near Crescent Mills northeast to the upper end of North Arm. The area of the valley floor is estimated to be 20 square miles.

Monitoring Program

A monitoring program was initiated in 1962 to determine the quality of ground water being used. During August 1962, nine ground water samples were collected. The monitored area and location of samples wells is shown on Plate 12.

Ground Water Development

Water bearing sediments in the valley include unconsolidated, interbedded, and intermixed deposits of gravels, sends, silts, and clays. The gravels and sands were deposited by streams while silts and clays, which are abundant, were deposited during the periods when an ancient lake occupied the valley. Thermal springs located in the northwest portion of the valley appear to be the result of faulting which occurred in conjunction with the deposition of the alluviated material.

Well logs indicate relatively low permeability and consequently low specific yield for the bulk of the sediments. Higher specific yields are encountered in the area of North Arm and along Indian Creek above Taylorsville. Ground water storage capacity is estimated to be over 100,000 acre-feet in the top 200 feet of alluvium. Ground water comprises only a small portion of the total amount of water used in the valley since most of the domestic water is supplied by individual wells and springs.

Evaluation of Ground Water Quality

The primary use of ground water in Indian Valley is for domestic purposes. The Greenville Sanitation District plant appears to be the only major discharger of domestic waste water although a number of lumber mills discharge industrial wastes to settling ponds. Most of the dwellings in the valley, exclusive of the area covered by the sanitation district, are equipped with septic tank disposal systems. Waste discharges have no apparent affect on the quality of ground water.

Results of chemical analyses indicate the majority of waters are calcium bicarbonate in type; however, in some wells sodium replaced calcium as the dominant cation, and in one instance chloride replaced bicarbonate as the dominant anion. Total dissolved solids were low (152 ppm average) and with the exception of some moderately hard waters were of excellent mineral quality.

Significant Water Quality Changes

No significant changes have been observed at this time.

AMERICAN VALLEY (5-10)

American Valley is an irregularly shaped valley located in central Plumas County. The valley's maximum length is approximately 8 miles and the maximum width 3 miles. The alluviated area is estimated to cover 7 square miles.

Monitoring Program

The monitoring program was initiated in 1962 to determine the quality of the ground water. In August, 10 ground water samples were collected. The monitored area and location of monitoring wells is shown on Plate 13.

Ground Water Development

Water bearing materials in this basin consist of unconsolidated gravels, sand, and silts deposited by streams on the valley floor. Interbedded in the gravels, sand, and silts are clays deposited in an ancient lake that periodically filled the valley from the time of its structural origin.

The permeability of the sediments displays wide variation with maximum specific yields occurring adjacent to Spanish Creek. Ground water storage capacity of the valley is estimated to be 50,000 acre-feet within the top 200 feet of alluvium.

Evaluation of Ground Water Quality

The primary use of ground water is for domestic purposes. Quincy Sanitary District is the major discharger of domestic waste water while saw mills contribute most of the industrial wastes. Treated domestic waste water is discharged to Spanish Creek during periods of high flows but is confined to percolation ponds and used for irrigating pasture when flows in the creek are too low for adequate dilution. Saw mill wastes are usually ponded for percolation. Waste discharges have no apparent affect on quality of ground water.

Chemical analyses of samples indicate the principal cations are calcium and magnesium while bicarbonate is the dominant anion. Concentrations of dissolved solids are low and with the exception of some samples displaying hardness, the water appears to be suitable for most beneficial uses.

Significant Water Quality Changes

No significant changes in ground water quality are apparent at this time.

MOHAWK VALLEY (5-11)

Mohawk Valley is an irregularly shaped alluviated area located in south central Plumas County. The Middle Fork of the Feather River flows through this valley which is approximately 10 miles in length and varies in width from 1/2 to 2 1/2 miles. The valley encompasses an area of 20 square miles.

Monitoring Program

Collection of ground water samples was initiated in 1962 to determine the quality of ground water used and to detect water quality changes.

Four samples were collected in August. Plate 14 shows the area and the location of wells monitored.

Ground Water Development

Mohawk Valley was created by faulting; however, the long narrow graben originally created has been modified by the addition of lake deposits and glacial outwash. This alluvium consists of unconsolidated to consolidated silt, sand, and gravel, and the availability of water depends upon the degree of consolidation and size of particles. Ground water development has been confined to small domestic wells.

Evaluation of Ground Water Quality

Ground water is used exclusively for domestic purposes. There are no major waste discharges in the valley. Domestic waste disposal is by septic tanks and leach fields.

Bicarbonate is the dominant anion while sodium, calcium, and a combination of calcium and magnesium are the dominant cations. Concentrations of dissolved solids are low and the waters are moderately hard. Moderate hardness was observed (100 ppm), however, this would not detract from present beneficial uses.

Significant Water Quality Changes

No significant water quality changes have been observed at this time.

SIERRA VALLEY (5-12)

Sierra Valley is located in southeastern Plumas and northeastern Sierra Counties. The irregularly shaped valley has a north-south length of about 18 miles and is approximately 12 miles in width. The alluviated area contains an estimated 165 square miles.

Monitoring Program

A monitoring program in Sierra Valley was begun in 1960 to observe ground water quality and to detect changes which might result from migration of poor quality waters present in the area. Samples were collected from 19 wells during September 1961 and from 18 wells in August 1962.

Ground Water Development

The basin is a structural depression formed by faulting, although volcanic activity appears to have contributed to the formation. All of the water-bearing sediments that now fill the basin are lacustrine in origin except for a thin veneer of stream deposited material on the surface of the valley floor. Some of the sediments are 2,500 feet in depth. Ground water is confined under thick sediments and flows under artesian pressure from many deep wells located in various areas of the valley. Ground water also appears in the form of mineralized thermal springs which apparently originate along the many fault zones. Ground water is moderately developed; however, yields are small.

Evaluation of Ground Water Quality

Ground water is used extensively for domestic and stock purposes.

In some sections of the valley where soil conditions permit, ground water is

also used for irrigation. Disposal of domestic wastes occurs on an individual basis except for small municipal systems which are few in number. Industrial waste discharges at present are confined to overflows from mill ponds but appear to offer no serious problems to the ground waters at this time.

Ground waters in Sierra Valley display a wide variation in chemical quality. Around the periphery of the valley the water is usually of excellent mineral quality being calcium-magnesium bicarbonate in type and suitable for most beneficial uses. Two types of degraded waters (sodium bicarbonate and sodium chloride) occur in the west-central portion of the valley. The composition of the water indicates a magnatic origin and it is rising along fault zones known to exist in the valley. Various degrees of mixing between waters of good quality and degraded waters are in evidence around areas of thermal activity with several wells yielding water containing concentrations of iron, fluoride, and nitrate in excess of the criteria for domestic use.

The major water quality problem is the mingling of good quality waters with highly mineralized waters. This appears to be a local problem at the present but the situation could be aggravated by overdraft on the good quality ground waters.

Significant Water Quality Changes

Analyses from well 23N/14E-25Gl indicated a reduction in nitrates from 82 ppm in 1955 to 44 ppm in 1961 and 58 ppm in 1962. In 1961 well 22N/15E-12Bl contained 50 ppm nitrates as compared to 2.4 ppm the previous year and no nitrates found in 1962.

UPPER LAKE VALLEY (5-13)

Upper Lake Valley borders on the north shore of Clear Lake in Lake County. It extends about 7 miles north from the shore line and includes an area of about 16 square miles.

Monitoring Program

High concentrations of boron known to occur in ground waters in the western and southern portions of the valley prompted the establishment of a monitoring program in the area in 1953. Samples were collected from 13 wells during June 1961 and 12 during June 1962.

Ground Water Development

The principal aquifers in the area consist of alluvium and unconsolidated to poorly consolidated sediments deposited in the lake as it existed during Quaternary time. Ground water occurs in strata and lenticular beds of sand and gravel. Fine-grained lake sediments confine the aquifers in the lower portion of the valley. Ground water is moderately developed. Wells in areas of unconfined ground water have an average yield of about 350 gpm while those in the confined area yield about 230 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for irrigation, domestic, and stock watering purposes. There are no large waste discharges in the area. Several small domestic and industrial wastes, near the town of Upper Lake, are discharged into Scotts Creek or Middle Creek which flow into Clear Lake but have no apparent effect on the quality of ground water.

Ground waters in Upper Lake Valleys are generally calcium or magnesium bicarbonate in type, and with the exception of some moderately to very hard waters, are of good to excellent mineral quality.

Boron concentrations do not exceed the limits for Class 1 irrigation water, with the exception of a few scattered wells. Well 15N/10W-10El has shown boron in quantities as high as 70 ppm. Although this well produces water which is not representative of that now being found in the alluvium, it is included in the monitoring program because these poor quality waters constitute a threat to ground water quality in the area.

Significant Water Quality Changes

In 1961 and 1962 no significant changes from prior sampling were noted.

KELSEYVILLE VALLEY (5-15)

Kelseyville Valley is a gently rolling plain in Lake County. It is bordered by Clear Lake on the north, extends about 7 miles south from the shore line, and encompasses an area of approximately 30 square miles.

Monitoring Program

In order to detect any degradation of ground water by migration of waters containing higher concentrations of boron which occur in the area, a monitoring program was established in Kelseyville Valley in 1953. Samples were collected from 12 wells during the month of June 1961 and 11 wells in June 1962.

Ground Water Development

The principal aquifers are alluvium and unconsolidated to poorly consolidated lake sediments which were deposited during Quaternary time.

Volcanic detritus also comprises a notable portion of the water-bearing sediments. Confinement occurs in aquifers beneath Clear Lake and extends about 1 mile beneath Kelseyville Valley. Ground water is extensively developed in the area. Well yields average approximately 450 gpm. Yields in the confined area are slightly higher than in the unconfined area.

Evaluation of Ground Water Quality

Ground water is used extensively for irrigation, domestic, and stock watering purposes. There are no large waste discharges in Kelseyville Valley. Communities are small and sewage disposal is largely by septic tanks and leach fields.

Ground waters in Kelseyville Valley are magnesium bicarbonate in type, and with the exception of high boron concentrations at some locations,

are of good to excellent mineral quality. Waters from most of the monitoring wells range from moderately to very hard.

Significant Water Quality Changes

Well 13N/9W-8N2 showed an increase in boron from 0.46 to 2.7 ppm since the 1961 sampling. Wells 13N/9W-8Cl and 13N/9W-16D2 exhibited significant increases in most constituents. Although water quality in these two wells is within acceptable limits, the results of future sampling will be carefully evaluated to determine if this trend is continuing.

SACRAMENTO VALLEY (5-21)

The Sacramento Valley area comprises about 5,000 square miles of valley floor land which extends northerly from the Consumnes River to the vicinity of the City of Red Bluff. It is bordered on the east by the Sierra Nevada and on the west by the Coast Range. Its ground water storage capacity, between the depths of 20 and 200 feet, is approximately 30,000,000 acre-feet.

Almost all of the Sacramento Valley is included in the ground water quality monitoring program. During 1961 and 1962 samples were collected primarily during the summer irrigation season. Ground waters are generally of excellent mineral quality and suitable for most beneficial uses. Quality problems are local. High concentrations of boron are found in Tehama, Colusa, Placer, and Yolo Counties. High concentrations of chlorides occur in southern Sutter County and in a few individual wells in Yuba and Placer Counties. The following sections discuss quality conditions in the Sacramento Valley by counties.

TEHAMA COUNTY

The monitored area in Tehama County extends from the Glenn and Butte County lines on the south to the vicinity of Red Bluff on the north. It is approximately 30 miles long, north to south, and varies in width from about 6 to 18 miles.

Monitoring Program

Tehama County was included in the monitoring program in 1957 to provide data, ground water quality conditions, and to detect any migration of waters containing high boron which are known to be present in the area. Samples were collected from 24 wells in the area during June 1961. and from 23 wells during June and July 1962.

Ground Water Development

Ground water occurs chiefly in formations of alluvial and/or volcanic origin, ranging from Pliocene to Recent age. The water-bearing formations, in order of decreasing age, are the Tuscan and Tehama formations, the Red Bluff gravels, and the Quaternary alluvium. Ground water is unconfined in the Quaternary alluvium; confined to partially confined in the Tehama and Tuscan formations and is moderately to extensively developed. Irrigation wells produce an average of 470 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for irrigation and domestic purposes. The only large waste discharges in Tehama County consist of effluent from the City of Red Bluff sewage treatment plant, and industrial waste from Diamond National Company both discharging into the Sacramento River. There is no apparent affect on the quality of ground waters.

quality. They are soft to hard bicarbonate type waters with either calcium or magnesium the predominant cation, although each is rarely present in concentrations greater than 50 percent of the total cations. Irrigation well 25N/2W-2lQl, located 1 mile south of Los Molinos, has percent sodium in excess of recommended limits for class 1 irrigation water. Previous chemical analyses indicate iron concentrations that exceed the U. S. Public Health Service recommended limits for domestic purposes are present in some of the monitored ground water sources. There is evidence of high boron concentrations in ground waters to the north and east of the monitored area. Possible migration of these waters into areas of good water quality poses the most important threat to ground water quality in this area.

Significant Water Quality Changes

No significant water quality changes were detected in the 1961 and 1962 monitoring programs.

GLENN COUNTY

The monitored portion of Glenn County includes the valley floor area which lies, generally between the Sacramento River on the east and the Coast Range on the west. It is bounded on the north by Tehama County and on the south by Colusa County. It extends about 25 miles north to south and 15 miles east to west.

Monitoring Program

A monitoring program was established in this area in 1957 because of the importance of ground water to the economy of Glenn County. The 1961 monitoring program consisted of 23 wells which were sampled during August and of 24 wells sampled in July 1962.

Ground Water Development

The chief aquifers in this area are Quaternary alluvium and, in the northern portion, the Tehama formation. Recent alluvium, in turn, overlies the Tehama formation. The Stony Creek-Willow Creek alluvial plain and fan produces the largest quantities of ground water in the area. For the most part, ground water is unconfined although some confinement occurs in the Willows area.

Approximately 60 percent of the irrigation and virtually all of the municipal, industrial, and domestic water needs are met by ground water. Well yields range from only a few gpm in shallow domestic wells to 750 gpm in deep irrigation wells.

Evaluation of Ground Water Quality

Ground water is used for irrigation, municipal, industrial, and domestic purposes.

The largest waste discharges in Glenn County consist of effluent from sewage treatment plants serving the Cities of Orland and Willows.

Other waste discharges come from various industrial establishments in the country. Final disposal is accomplished by discharge into streams, percolation ponds or in some instances, by reuse for irrigation purposes. Ord Bend Gas Field discharges about 2 gpm of highly saline water (13,700 to 15,400 ppm dissolved solids) directly to land surface. These waste discharges have no apparent affect on ground water quality.

Monitored ground waters of Glenn County are generally of excellent mineral quality. They are slightly hard to very hard, bicarbonate type waters with calcium or magnesium generally the predominant cation, although either is rarely in excess of 50 percent of the total cations. Previous analyses indicate iron concentrations are present in almost all monitored waters, with some concentrations in excess of U. S. Public Health Service recommended limits for domestic purposes.

Significant Water Quality Changes

Comparisons of the 1961 and 1962 analyses with those of 1960 indicated no significant basin-wide water quality changes. The 1961 chemical analysis of domestic well 18N/4W-2F1, located approximately 7 miles southwest of Willows, indicates a decreasing nitrate concentration.

COLUSA COUNTY

The monitored portion of Colusa County lies within the valley floor area. It is bounded on the east by Butte Creek and the Sacramento River and on the west by the Coast Range. The area extends from Glenn County on the north to Yolo County on the south, a distance of about 32 miles, and varies in width from 15 to 20 miles.

Monitoring Program

Due to the increasing utilization of ground water in Colusa County, a monitoring program was established in 1957. During 1961, samples were collected from 10 wells during the months of June and July and from 19 wells during July and August 1962.

Ground Water Development

The principal water-bearing formations in Colusa County are the Quaternary alluvium and the underlying Plio-Pleistocene Tehama formation. The Quaternary alluvium consists of Recent alluvium to a depth of 100 feet underlain by Pleistocene alluvium to a depth of 200 feet. Ground water in this area is generally unconfined or partially confined and is extensively developed, supplying nearly all water requirements. Large irrigation wells produce over 500 gpm.

Evaluation of Ground Water Quality

Ground water is used for domestic, municipal, and irrigation supplies. Waste discharges in Colusa County primarily are effluent from sewage treatment plants serving the cities or communities of Colusa,

Maxwell, Williams, and Arbuckle. Minor waste discharges emanate from small industries such as dairies and slaughter houses. Final disposal of these wastes is accomplished by discharge into canals or creeks and thence into the Sacramento River. They have no apparent affect on quality of the ground water.

Analyses of ground waters in Colusa County indicate they are soft to very hard bicarbonate type waters with sodium generally the predominant cation and mineral quality varying from good to poor. There are several areas in the county that contain degraded ground waters. High percent sodium is found generally in the vicinity of the Sacramento River near the City of Colusa. High boron concentrations are found near the City of Arbuckle. High boron, combined with high electrical conductance and high chlorides are found in the vicinity of College City. Waters containing high iron concentrations are found in both the northern and southern portions of the monitored area.

Significant Water Quality Changes

From June 1960 to June 1961, chemical analyses of samples from two wells, located south of Arbuckle, showed significant changes in boron concentrations. Well 13N/2W-10Gl decreased in boron from 2.8 to 2.2 ppm, and well 13N/2W-10Ml increased in boron from 0.9 to 1.2 ppm. During the same period, chemical analyses of well 14N/1W-2Dl, located approximately 3.5 miles northwest of Grimes, indicate electrical conductance, total dissolved solids, and chlorides increased from 746 to 1,380, 451 to 820 ppm, and 87 to 230 ppm, respectively.

BUTTE COUNTY

The monitored portion of Butte County extends from Tehama County on the north to Sutter County on the south, and from the Sacramento River and Butte Creek on the west to the foothills of the Sierra Nevada on the east. The north to south length of the area is approximately 40 miles and width varies from about 10 to 20 miles.

Monitoring Program

Due to the importance of ground water in the economy of Butte County, a monitoring program was established in the area in 1957, to establish the general quality conditions of ground water in the area. Samples were collected from nine wells during August and September, 1961 and during the summer of 1962.

Ground Water Development

Ground water occurs chiefly in Quaternary alluvium and in the Tuscan formation. The alluvium is composed of Recent and Pleistocene gravels,
sands, and clays in variable mixtures. The Tuscan formation is of volcanic
origin and dips westerly beneath the alluvium at a low angle. Although
generally considered to be unconfined, there is evidence of local partial
confinement in the area. Ground water is moderately developed in Butte County.
Large irrigation wells located in the central portion of the monitored area
produce up to 1,000 gpm. Wells located along the Sacramento River produce
about 400 gpm.

Evaluation of Ground Water Quality

The ground waters of Butte County are used for most beneficial purposes, of which irrigation is the largest. The major waste discharges

in Butte County consist of effluent from sewage treatment plants located near the Cities of Oroville, Chico, and Gridley. The plants located in the Oroville and Gridley areas discharge the treated waste waters to the Feather River. The waste water from the plant in Chico is reused for irrigation or discharged to percolation ponds. There is no apparent affect on ground water quality.

Ground waters of Butte County are generally a slightly to moderately hard bicarbonate type with the predominant cation being magnesium or a combination of magnesium and calcium in nearly equal proportions. The sodium percentage is uniformly low, generally less than 30 percent, and total dissolved solids are usually below 400 ppm. In general, the mineral quality is excellent throughout the monitored area, with the exception of well 18N/4E-28M. Water from this well is a sodium sulfate type with high total dissolved solids, 1,430 ppm, boron 5.6 ppm, sulfates 555 ppm, and sodium percentage 90.

Significant Water Quality Changes

1962 analyses revealed 72 ppm nitrate in well 22N/1E-9M1, compared to 15 ppm reported in 1961.

SUTTER COUNTY

Almost all of Sutter County is included in the ground water quality monitoring program. The county, bounded generally by the Feather River on the east and the Sacramento River on the west, is situated entirely within the Sacramento Valley and is, for the most part, underlain by water-bearing deposits.

Monitoring Program

High chloride concentrations in local areas prompted the inclusion of Sutter County in the monitoring program in 1953. During 1961 samples were collected from 31 wells during June and July, and 31 in June and September of 1962.

Ground Water Development

The principal source of ground water is alluvium which was deposited during Pleistocene to Recent times. In the eastern portion of the area Pliocene volcanic sands and gravels comprise the main producing aquifer for deep wells. In general, the aquifers are unconfined although partial confinement occurs in some area.

Ground water is extensively developed, which has resulted in an over-draft of the ground water supply. Wells west of the Feather River yield an average of about 800 gpm. Wells, south of the Bear River, yield about 950 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for irrigation and domestic purposes.

The principal waste discharge in Sutter County consists of effluent from the Yuba City sewage treatment plant. This waste is discharged into the Feather

River during the winter, when the river is at high stage, and into percolation-evaporation ponds during the summer. There is no apparent affect on the quality of ground water.

with magnesium the predominant cation. High concentrations of sodium and chloride are found in an area south of Yuba City and also in the vicinity of Robbins. In these same areas boron concentrations in excess of 0.5 ppm occur. The source of this mineralization is probably entrapped evaporatives or rising conate brines. Ground waters in the remainder of the monitored area are of good to excellent mineral quality, although waters in the majority of the monitored wells were very hard.

Significant Water Quality Changes

Water examined in 1961 from well 15N/2E-26D2 indicated an increase in most constituents. Between June 1960 and June 1961, specific conductance increased from 688 to 1,040 micromhos, nitrates from 29 to 73 ppm in 1961 and 86 ppm in 1962, and total hardness from 294 to 444 ppm. Well 15N/3E-4C2 also produced water with high nitrates, 51 ppm, although nitrates of 63 ppm were observed in 1958, this well displayed significant increases in most constituents, total dissolved solids increased from 516 ppm in 1961 to 913 ppm in 1962.

YUBA COUNTY

The portion of Yuba County included in the monitoring program is located in the east central portion of the Sacramento Valley. It is bounded by Sutter County on the west and the foothills of the Sierra Nevada on the east. This valley floor portion of the county varies between 8 and 12 miles in width and has a maximum length of about 25 miles.

Monitoring Program

The monitoring program in Yuba County was begun in 1958 to maintain a check on ground water quality and detect significant changes in quality which might result from migration of saline waters known to underlie the area at depth. Samples were collected from 14 wells in this area during September 1961 and 16 in August of 1962.

Ground Water Development

The principal sources of ground water include unconsolidated Quaternary alluvium underlain by a late Tertiary formation composed of volcanic ash and water-laid volcanics. Pleistocene alluvium, exposed toward the foothills, is an important local source of ground water. The larger and deeper wells of the area derive water from both the alluvium and the volcanics. Saline waters occur beneath the fresh waters. Ground water is confined only in the deeper zones and in local areas. Ground water in Yuba County is extensively developed. The average yield of wells is about 850 gpm, with a few wells producing up to 2,000 gpm.

Evaluation of Ground Water Quality

Ground water is used primarily for irrigation, domestic, and municipal supplies. The principal waste discharges in Yuba County consist of effluent

from sewage treatment plants serving Marysville and Linda. The waste from the Marysville plants is discharged into evaporation-percolation ponds; effluent from the Linda plant is discharged into the Feather River. Waste discharges have no apparent affect on the quality of ground water.

Ground waters of Yuba County are generally bicarbonate in type, with low mineral concentrations. Analyses of the water from well 13N/5E-4B, the municipal water supply for the City of Wheatland, indicate a very hard water with concentrations of chloride up to 300 ppm. A possible source of the chlorides is the saline water body which underlies the fresh water at depth. Ground waters in the remainder of the monitored area are of good to excellent mineral quality, although ranging slightly hard to very hard.

Significant Water Quality Changes

No significant changes in ground water quality occurred during this period.

PLACER COUNTY

The monitoring program in Placer County comprises most of the valley floor portion of the county. The area is about 13 miles in width and extends approximately 20 miles north to south.

Monitoring Program

A monitoring program was initiated in 1957 because of the importance of ground water to Placer County and due to the presence in the area of highly mineralized waters. Samples were collected from 18 wells in July 1961 and in August 1962.

Ground Water Development

The main water-bearing formation in Placer County is the older alluvium, composed mostly of silt, clay, sand, sandstone, and smaller amounts of gravel. Alluvium of slightly younger age but of similar composition overlies the old alluvium to a maximum thickness of about 50 feet. Volcanic detritus as well as breccias and tuffs underlie the alluvium. A few wells southwest of Lincoln obtain water from the Ione formation, a marine deposit of Eocene age.

Ground water is extensively developed in Placer County. Wells located near the western boundary of the county which are drilled in the old alluvium, yield as high as 1,800 gpm. Wells penetrating the volcanic rock yield up to 1,200 gpm, and those in the Ione formation produce about 100 gpm.

Evaluation of Ground Water Quality

Ground water in Placer County is used primarily for irrigation.

Other uses are domestic and industrial. The principal waste discharges consist of effluent from sewage treatment plants serving the Cities of Roseville

and Auburn. Minor quantities of waste emanate from various mining operations.

All major sources of waste are discharged into streams and do not presently threaten ground water quality.

Ground waters in Placer County are generally bicarbonate in type with sodium the predominant cation. With the exception of local areas in the vicinity of Lincoln and Sheridan, the water is of excellent mineral quality, slightly hard, generally with less than 300 ppm total dissolved solids. Waters in the Lincoln and Sheridan areas are derived from connate waters of the Ione formation and as a result contain up to 1,010 ppm total dissolved solids, including high concentrations of chlorides, boron, and sodium.

Significant Water Quality Changes

A comparison of values for samples collected in 1961 and 1962 show that in wells 12N/6E-16D2 and 13N/6E-33C1, significant decreases in boron content occurred from 1.3 to 0.1 ppm and 2.5 to 0.2 ppm, respectively. Well 13N/6E-33C1 also showed significant decreases in total dissolved solids and chloride content.

YOLO CCUNTY

The monitored area in Yolo County in addition to that portion of the Sacramento Valley floor area in Yolo County, includes the Capay Valley which extends along Cache Creek from the town of Capay northwesterly to Rumsey in the western portion of the county. The area covers mainly the eastern half of Yolo County and is situated in the southwestern portion of the Sacramento Valley. The total monitored area comprises about 650 square miles.

Monitoring Program

Due to the presence of boron in the area, a monitoring program was established in Capay Valley in 1953. During 1957, the program was expanded to include the present monitored area, which is highly developed agriculturally. During July 1961 and in 1962 samples were collected from 46 wells.

Ground Water Development

The principal sources of ground water are the stream channel and terrace deposits composed of unconsolidated silt, sand, and gravel of Recent age. The Tehama formation, of Plio-Pleistocene age and continental origin, is a secondary aquifer. Ground water in the alluvial deposits is unconfined and the Tehama formation is locally confined. In Capay Valley only the Recent stream channel and terrace deposits are important as ground water sources. Ground water in Yolo County is moderately developed. Wells in the Sacramento Valley portion of the area yield up to 3,000 gpm. In Capay Valley the wells are primarily shallow, domestic wells producing up to 60 gpm.

Evaluation of Ground Water Quality

Ground water is used for irrigation, domestic, and stock watering purposes. The principal waste discharges in Yolo County consist of effluent from sewage treatment plants at Woodland, Davis, and West Sacramento. Disposal of these waste waters is by discharge to surface water and to percolation ponds, however, a portion of the treated waste water from the Woodland plant is used for irrigation.

Ground waters of Yolo County are predominantly bicarbonate in type, with magnesium and/or sodium the principal cations. The ground waters are generally very hard, with total hardness ranging up to 1,125 ppm.

The most serious quality problem throughout the county is the presence of boron in concentrations considered injurious to crops. The waters are generally class 2 or 3 for irrigation, mainly due to boron content. These high boron concentrations are believed to be derived from Cache Creek, which is known to contain high boron. High concentrations of chloride, ranging up to 700 ppm occurred adjacent to the Sacramento River and in other local areas.

Significant Water Quality Changes

Boron content in well 10N/1W-36K2 has increased from 2.62 ppm in 1960 to 7.9 ppm in 1962. Boron concentrations varied throughout the county, in 1961 boron concentrations were slightly higher and in 1962 about the same as in 1960.

SACRAMENTO COUNTY

Most of Sacramento County is included in the monitoring program.

Excluded is a small area in the Sacramento-San Joaquin Delta where little ground water is used, also an area along the eastern boundary which is underlain by geologic formations that yield negligible quantities of ground water. The total monitored area includes approximately 450 square miles.

Monitoring Program

A monitoring program was established in Sacramento County in 1955 to record ground water quality and to detect changes in quality that might result from ground water overdraft or from industrial wastes which occur in the eastern portion of the county. Samples were taken from 32 wells in the area during July-September 1961 and 17 during August 1962.

Ground Water Development

Recent alluvium and semiconsolidated Plio-Pleistocene continental sediments comprise the principal aquifers. Tertiary volcanics are of local importance in the eastern portion of the county. The aquifers generally are unconfined, although perched water formations occur locally. Ground waters in Sacramento County are moderately developed except in areas adjacent to the Sacramento River where ground water development is minimized by the availability of surface water. The average yield from wells in Sacramento County is approximately 400 gpm.

Evaluation of Ground Water Quality

Ground waters in Sacramento County are used primarily for irrigation, domestic, municipal, and industrial purposes. The principal waste

discharges consist of effluent from the City of Sacramento, Mather and McClellan Air Force Bases, Aerojet-General Corporation, and Libby, McNeill & Libby plant. Wastes from the City of Sacramento and the Air Force bases are discharged to surface waters while wastes from Aerojet-General and Libby are discharged to dredger tailings in the eastern portions of the county. Analyses of ground water samples near the waste discharges have included tests for perchlorate and ammonium in addition to the usual mineral analyses.

Ground waters in Sacramento County are primarily calcium-magnesium bicarbonate in type and, although slightly to moderately hard, are of excellent mineral quality. Total dissolved solids are relatively low, seldom exceeding 350 ppm. Boron, chlorides, and nitrates are uniformly low and well within recommended limits.

Significant Water Quality Changes

No significant changes in ground water quality were observed during this period.

SCLANO COUNTY

This area comprises all of the northern and eastern portions of Solano County which lie in the Sacramento Valley. It extends from Putah Creek on the north to the Sacramento River on the south, and includes an area of approximately 400 square miles. The remainder of Solano County lies in Region 2 and was discussed previously in this report as Suisun-Fairfield Valley.

Monitoring Program

The monitoring program in Solano County was begun in 1958 to observe the ground water quality and to detect changes which might result from migration of poor quality waters known to be present in the area. Samples were collected from ten wells during September of 1961 and nine wells in May of 1962.

Ground Water Development

Water-bearing formations in this area include younger alluvium, consisting of stream channel and flood plain deposits; older alluvium, comprised of fine-grained sediments enclosing lenses and bodies of coarse materials; the Tehama formation; and Tertiary volcanic sedimentary rocks. The Tehama formation extends to a depth of 1,500 to 2,500 feet. The volcanics, comprised of a sequence of shale, sandstone, and conglomerate underlie the Tehama formation. Ground water is partially confined, the degree of confinement increasing with depth. Ground waters in Solano County are moderately to extensively developed. Well yields range from less than 100 to approximately 1,000 gpm.

Evaluation of Ground Water Quality

Ground water is used for irrigation, domestic, and other purposes. The principal waste discharges in this area consist of sewage effluent from Vacaville which is discharged into Alamo Creek, and from Rio Vista which is discharged into the Sacramento River. They have no apparent affect on ground water quality.

Ground waters in the monitored area are generally a very hard bicarbonate type with calcium and magnesium the predominant cations. Sodium is prevalent in the southern portion. The waters are generally class 2 for irrigation, due to conductivity and boron concentrations. Moderately high dissolved solids and boron concentrations occur in the northern and western portions of the monitored area.

Significant Water Quality Changes

There has been a noticeable fluctuation of percent sodium in well 5N/2E-25K since 1958. Nitrates increased from 15 to 54 ppm in well 6N/1E-19L2 in 1962.

SAN JOAQUIN VALLEY (5-22)

The San Joaquin Valley floor comprises about 10,000 square miles of irrigable lands and extends from the Tehachapi Mountains northward to the vicinity of the Cosumnes River. Underlying this valley is the largest ground water reservoir in the State. The storage capacity of this great reservoir, to a depth of 200 feet below land surface, has been estimated to be 100,000,000 acre-feet. A bed of diatomaceous clay, generally known as the Corcoran clay, continuous throughout most of the San Joaquin Valley, separates this reservoir into upper and lower ground water zones. This clay bed is about 40 to 50 feet thick and lies generally between 300 to 350 feet below the land surface. Wells in the western portion of the valley draw water principally from the lower zone, bypassing the poor quality of most upper zone waters in that area. Wells in the remainder of the valley produce good quality waters from both zones. Most of the San Joaquin Valley has been included in the monitoring program and is reported herein by counties.

SAN JOAQUIN COUNTY

The area of San Joaquin County included in the monitoring program comprises most of the valley floor portion of the county. The monitored area extends from the Sacramento County line on the north to the Stanislaus County line on the south, and varies in width from about 14 to 30 miles.

Monitoring Program

In 1953 a monitoring program was established in San Joaquin County to detect degradation of ground waters by migration of poor quality waters, which are located primarily in the western part of the county. During July and August 1961, water samples were collected from 32 wells and from 30 wells during July 1962.

Ground Water Development

The principal sources of ground water are unconsolidated Recent alluvium and semiconsolidated Tertiary and Quaternary continental sediments. In the eastern portion of the county the Mehrten formation is also an important aquifer. Ground water is generally unconfined, except in the vicinity of Tracy, where a deep zone is confined by the Corcoran clay. The general movement of ground water is from east to west, except across the Delta, where it is impeded by fine-grained deposits. Ground water is moderately to extensively developed. Wells in the Mehrten formation are reported to produce up to 1,300 gpm, while those in the alluvial sediments produce about 3,000 gpm.

Evaluation of Ground Water Quality

Approximately 70 percent of the water pumped is used for irrigation.

The remaining portion is used mainly for industrial and domestic purposes. The principal waste discharges in San Joaquin County consist of effluent from sewage

treatment plants at or near the Cities of Escalon, Stockton, Lodi, Manteca, Tracy, and Lincoln Village. All of the sewage treatment plants dispose of their waste waters to nearby surface waters except for the plant at Escalon which uses percolation ponds for disposal. Waste discharges have no apparent effect on quality of ground waters.

Ground water in the San Joaquin County varies in type and mineral quality depending upon location and depth. Wells less than 1,000 feet deep, located east of Stockton, generally yield water suitable for both domestic and agricultural purposes. The water is bicarbonate in type with calcium the predominant cation. Chloride and boron are usually well within the limits for class 1 irrigation waters.

Saline water apparently underlies most of the county at varying depths. The saline water body is very deep along the eastern edge of the area, about 2,000 feet beneath the ground surface in the vicinity of Linden, becoming shallower toward the west, reaching a depth of about 1,000 feet in the Stockton area. Poor quality water underlies the central Delta portion of the county at a depth of less than 100 feet. Impediment of ground water movement due to fine-grained Delta deposits appears to have effectively prevented movement of poor water into the fresh water underlying the eastern portion of the county.

Significant Water Quality Changes

Boron concentration showed an increase in wells 1N/4E-3N1 and 1S/6E-4A1 from 0.13 to 1.2 ppm and 0.16 ppm respectively while a decrease in boron content from 1.9 to 0.2 ppm was noted in well 2N/6E-27L1.

STANISLAUS COUNTY

The monitored portion of Stanislaus County includes most of the valley floor lands in the county, and comprises an area of about 1,000 square miles. It extends approximately 50 miles from north to south and approximately 40 miles from east to west and covers the eastern three-fourths of the county.

Monitoring Program

Stanislaus County was included in the monitoring program in 1957 due to the presence of ground waters containing high concentrations of total dissolved solids and boron. During the period July-September 1961, samples were collected from 48 wells and for the same period in 1962 samples were collected from 49 wells.

Ground Water Development

Principal water bearing units in Stanislaus County consist of alluvial deposits laid down by the Stanislaus, Tuolumne, and San Joaquin Rivers. These deposits are composed predominantly of unconsolidated silt, sand, and gravel. Older formations, of continental origin, are locally important aquifers in and near the eastern foothills. The western portion of the monitored area is underlain by the Corcoran clay which separates the ground water reservoir into two water-bearing zones. Movement of ground water in the county is toward the San Joaquin River.

Evaluation of Ground Water Quality

Ground water in Stanislaus County supplies water for most beneficial uses. Major waste discharges in Stanislaus County consist of effluent from

sewage treatment plants in Modesto, Oakdale, Newman, Patterson, Riverbank, and Turlock, along with wastes from Beard Land and Investment Company (Modesto), and Turlock Cooperative Growers Cannery. At Modesto and Beard Land Company, wastes are discharged to infiltration ponds with overflow to the Tuolumne River. Oakdale and Riverbank discharge wastes to infiltration ponds with overflow to the Stanislaus River during the peak of the cannery season. Patterson and Turlock Cooperative Cannery use infiltration ponds for disposal while discharges from Newman and Turlock flow into the San Joaquin River.

Ground water in the monitored area east of the San Joaquin River is predominantly calcium and sodium bicarbonate in type and is of good mineral quality. Gas wells east of Modesto discharge a very saline water, indicating the character of the underlying water body. West of the San Joaquin River, from Patterson to the San Joaquin County boundary, ground water is sodium chloride in type and is of poor quality. Along with chlorides, high sulfate and boron concentrations are prevalent in this area. South of Patterson, ground water generally is very high in sulfates and is of poor quality, with the exception of the area around Newman where ground water is principally calcium bicarbonate type and of good mineral quality. Ground water in the county ranges from soft to slightly hard in the eastern portion of the monitored area to very hard in the western portion.

Significant Water Quality Changes

The quality of ground water in well 4S/7E-16E1, located approximately 10 miles west of Modesto, deteriorated considerably between 1960 and 1961. In this well, boron increased from 2.4 to 4.1 ppm with substantial increases being noted in specific conductance, total dissolved solids, and

chlorides. Well 55/8E-8Gl, located approximately 4 miles north of Patterson, has shown a steady improvement in quality since 1958. Sulfates in this well decreased from 377 ppm in 1960 to 295 ppm in 1961. Well 55/8E-1Rl showed a marked improvement in quality between 1960 and 1961 with substantial reductions being noted in specific conductance, chlorides, and boron.

MERCED COUNTY

The monitored area of Merced County includes that portion of the county lying on the valley floor between the foothills of the Sierra Nevada and the base of the Diablo Range. It extends approximately 50 miles from north to south and approximately 60 miles from east to west and encompasses a total area of about 1,250 square miles.

Monitoring Program

The ground water quality monitoring program was established in Merced County in 1957 for surveillance of water quality conditions and to detect possible migration of highly mineralized ground waters which occur near the trough of the valley. Samples were collected from 48 wells during the period June-September 1961 and from 51 wells during the same period in 1962.

Ground Water Development

The principal source of ground water in Merced County is alluvium consisting of unconsolidated silt, sand, and gravel, underlain by formations of continental origin. The Corcoran clay underlies the central portion of the county and divides the ground water reservoir into an upper and a lower water bearing zone. In general, soil underlying Merced County is slightly permeable resulting in poor drainage. Movement of ground water generally follows the slope of the land surface toward the San Joaquin River. Ground water is only moderately developed in Merced County. In general, the portion of the area lying east of the San Joaquin River obtains a larger proportion of its needs from ground water than the area west of the river.

Evaluation of Ground Water Quality

Ground water is used extensively for municipal and industrial purposes and to a lesser extent for irrigation and domestic needs. Principal waste discharges in Merced County consist of effluent from sewage treatment plants at Merced, Atwater, Gustine, Los Banos, and at Castle Air Force Base. Effluent from the Merced plant is discharged into Miles Creek. The plants at Atwater, Gustine, and Los Banos dispose of their wastes to infiltration ponds while the Castle Air Force Base plant discharges to Canal Creek.

East of the San Joaquin River, ground water is predominantly calcium and sodium bicarbonate in type and generally of good mineral quality; however, nitrate concentrations up to 40 ppm exist locally. In the trough of the valley, adjacent to the San Joaquin River, ground water is sodium chloride and sodium sulfate in type and is generally of poor mineral quality. In the western portion of the monitored area, ground water is principally a calcium-sodium bicarbonate type with the quality ranging from fair to good. Total hardness throughout the monitored area varies from soft to very hard with the hard water being prevalent west of the San Joaquin River.

Significant Water Quality Changes

Well 6S/10E-28Kl, located approximately eight miles west of Livingston, has steadily improved in quality since 1957. Specific conductance in this well changed from 742 to 566 micromhos between 1960 and 1961. Nitrate concentrations increased in well 6S/11E-9Cl, near Delhi, from 26 to 47 ppm, and in well 6S/12E-6Ll, located four miles north of Livingston, from 28 to 57 ppm between 1960 and 1961.

MADERA COUNTY

The western third of Madera County which includes all of the valley floor area, comprises the monitored area. It extends approximately 30 miles from north to south, about 40 miles from east to west, and covers about 950 square miles.

Monitoring Program

Madera County was included in the monitoring program in 1957, due to high concentrations of chloride and high sodium percentages in the extreme western portion of the county. During July 1961, 29 wells were sampled and 31 during the period June-August 1962.

Ground Water Development

Principal water bearing units in Madera County are alluvial deposits laid down by the San Joaquin and Chowchilla Rivers. Generally, soils throughout the county are highly permeable. The Corcoran clay underlies approximately the western two-thirds of the monitored area and separates the ground water reservoir into an upper and a lower zone, with most of the monitored wells drawing from the upper zone. Movement of ground water in the county is generally in a southwesterly direction toward the valley trough. Ground water is extensively developed for irrigation in areas where surface water is not readily available.

Evaluation of Ground Water Quality

Ground water is used beneficially for domestic, municipal, industrial, and irrigation supplies. Major waste discharges in Madera County

consist of effluent from sewage treatment plants located at the Cities of Chowchilla and Madera. The sewage treatment plant at Chowchilla disposes of waste water by means of infiltration ponds and irrigation. Waste water from the treatment plant at Madera is reused for irrigation.

Ground water in Madera County is predominantly calcium-sodium bicarbonate in type and is generally of excellent mineral quality with the exception of the area between the San Joaquin River and Lone Willow Slough. Of the four monitored wells in this area, three are very high in percent sodium and the fourth is extremely high in chlorides, total dissolved solids, and specific conductance. Throughout the monitored area, ground water generally is slightly to medium hard with very hard water being found in a few of the wells on the west side.

Significant Water Quality Changes

In well 115/14E-1A1, located 13 miles southwest of Chowchilla, bicarbonate doubled from 170 to 340 ppm with substantial increases in specific conductance and total dissolved solids. In wells 105/15E-31A1, 115/14E-5B1, and 115/14E-16A1, the quality has been steadily deteriorating since 1957 but not to the extent of rendering it unsatisfactory for required uses.

FRESNO COUNTY

Most of the valley floor area in Fresno County is included in the monitoring program. This area extends from the foothills of the Sierra Nevada on the east to the base of the Diablo Range on the west, and from the San Joaquin River on the north to the Kings County line on the south. The total area is approximately 2,500 square miles.

Monitoring Program

The monitoring program was established in Fresno County in 1953 due to the presence of mineralized ground water in the western portion of the county. No samples were collected in 1961, but during the period April-Cctober 1962 samples were collected from 70 wells.

Ground Water Development

Ground waters on the east side of Fresno County occur in coalescing alluvial fan and plain deposits derived from the Sierra Nevada. These fan deposits are coarse-grained where the streams enter the valley and grade to finer sediments downslope. Wells tapping these deposits generally yield good quality water. The Corcoran clay underlies the western side of the county and separates the ground water reservoir into an upper and a lower zone. The upper zone consists of alluvial fan and plain deposits that interfinger with lake deposits while the lower zone consists of lenticular beds of clay, silt, and sand. Most of the monitored wells in the western area are drawing from the lower zone. Saline waters underlie the west side area at depths ranging from about 1,000 to 3,000 feet. Ground water in Fresno County is extensively developed, resulting in lowering of the water table in areas of inadequate surface water supply. Wells in both the upper and lower zones yield about 1,300 gpm.

Evaluation of Ground Water Quality

Ground water is used for irrigation, industrial, domestic, and stock watering purposes. Major waste discharges consist of effluent from sewage treatment plants in Fresno, Reedley, Clovis, Kingsburg, Sanger, and Selma, and from the valley Nitrogen Products Company near Helm. Discharges from plants at Fresno and Reedley are partially used for irrigation with the remainder going to percolation ponds. Effluent from plants in Clovis, Kingsburg, and Sanger is discharged into percolation ponds; Selma's waste discharge is used for irrigation. Waste discharge from the Valley Nitrogen Products Company is disposed to ponds with cooling water discharge going into Wheaton Slough. Oil field wastes at Raisin City are injected into the underlying saline water body at a depth of more than 1,500 feet.

Ground water in the eastern portion of the monitored area is principally calcium bicarbonate in type and of excellent mineral quality. In the central and western portions, ground water in the upper zone contains high concentrations of calcium and magnesium sulfate and is unsuitable for most uses. Lower zone water in this area is primarily sodium sulfate in type of good quality; however, there is apparently some degradation of lower zone water due to upper zone water being admitted through improperly constructed wells or discontinuities in the separating Corcoran clay layer.

Significant Water Quality Changes

No significant changes in trends or characteristics were observed when comparing 1962 samples with the prior record.

TULARE COUNTY

The monitored portion of Tulare County includes the valley floor area lying between the foothills of the Sierra Nevada and the Kings County line, and comprises an area of about 1,400 square miles. It extends approximately 60 miles from north to south and approximately 30 miles from east to west and covers the western one-third of the county.

Monitoring Program

Tulare County was included in the monitoring program in 1957 to maintain surveillance on ground water quality and to detect significant changes. During the period April-August 1961, samples were collected from 33 wells and from 35 wells during the period June-September 1962.

Ground Water Development

Most of the monitored area in Tulare County consists of low alluvial plains and fans with the exception of the southwest corner which is part of the overflow lands surrounding the Tulare Lake bed. Soils covering these overflow lands contain a high percentage of clay and silt and are slightly permeable and highly alkaline. Ground water in the remaining area occurs in a series of poorly connected beds and lenses of sand and gravel, locally confined by silt and clay with the notable exception of the Corcoran clay. This clay underlies the western sector of the monitored area and separates the ground water reservoir into two water bearing zones. Ground waters below the Corcoran clay are considered to be confined while those above the clay layer are unconfined or only locally confined. Ground water is extensively developed for irrigation in Tulare County, however, there is a plentiful supply of surface water and in some areas both are used.

Evaluation of Ground Water Quality

Ground water is used beneficially for irrigation, industrial, municipal, and domestic purposes. Major waste discharges in Tulare County consist of effluent from sewage treatment plants in Visalia, Tulare, Porterville, Dinuba, Lindsay, and Exeter. These plants dispose of waste water by infiltration and irrigation.

North of Porterville, ground water is principally calcium-sodium bicarbonate in type and is generally of good mineral quality. However, in the southern part of the county, particularly the southwest, ground water is very high in percent sodium and is generally of poor mineral quality. High nitrates were found in three monitored wells located on the east side of the monitored area. Well 18S/26E-10N, located approximately nine miles northwest of Visalia, had a nitrate concentration of 78 ppm. Ground water north of Visalia is generally very hard; while south of Visalia, total hardness ranges from soft to medium hard.

Significant Water Quality Changes

Well 17S/23E-8H1, located one mile north of Traver, has been steadily deteriorating in quality since 1958. Total dissolved solids in well 20S/26E-5R1, located six miles west of Lindsay, have increased from 376 to 529 ppm with specific conductance and chlorides also showing substantial increases. In well 21S/27E-15P2, located 5 miles north of Porter-ville, sodium increased considerably resulting in a change in percent sodium from 25 to 71 between 1960 and 1961. Nitrate in this well also showed a large increase from 13 to 52 ppm during this same period.

KINGS COUNTY

All of Kings County, 1,395 square miles in area, is included in the monitored area. Most of Kings County consists of low lying lands in the trough of the valley and includes the Tulare Lake bed.

Monitoring Program

Kings County was included in the monitoring program in 1958 due to high concentrations of mineral constituents in the ground water. Twenty-two samples were collected during August 1961 and 26 during August 1962.

Ground Water Development

Principal water bearing units in Kings County consist of alluvial deposits washed into the valley from the coastal ranges and from the Sierra Nevada. In the Tulare Lake area, such deposits are predominantly heavy and impervious; whereas, in the remaining portion of the county, they are generally quite permeable and well drained. The Corcoran clay underlies most of the monitored area and separates the ground water reservoir into an upper and a lower water bearing zone. Ground water in Kings County is extensively developed.

Evaluation of Ground Water Quality

Ground water in Kings County is used for irrigation, industrial, municipal, and domestic purposes. Major waste discharges in Kings County include effluents from sewage treatment plants in Hanford, Corcoran, Lemoore, and Lemoore Naval Air Station. Waste discharges from the Hanford, Corcoran, and Lemoore plants are reclaimed for irrigation or discharged to infiltration ponds. Lemoore Naval Air Station discharges its waste, after treatment, into the South Fork of the Kings River.

Ground water quality throughout Kings County is generally poor with the exception of the northeast corner where it is principally calcium bicarbonate in type and its quality is generally good. On the western side of the county, ground water is predominantly sodium sulfate in type and is of poor quality. Sulfates, in this area, are very high. Throughout the central and eastern portions of the county, ground water is sodium bicarbonate and sodium chloride in type and is generally very high in percent sodium. Total hardness varies from soft to slightly hard in the northern half of the county to very hard in the southern half.

Significant Water Quality Changes

In well 20S/21E-12Al, near Guernsey, specific conductance increased from 853 to 1,000 micromhos at 25°C between 1960 and 1961, with chlorides and total dissolved solids also showing substantial increases. Chlorides in well 22S/19E-20N, near Kettleman City, increased from 124 to 204 ppm between 1960 and 1961 with specific conductance and total dissolved solids increasing proportionately.

KERN COUNTY

The monitored area of Kern County includes that portion of the county within the San Joaquin Valley. It extends approximately 60 miles from north to south and approximately 35 miles from east to west and covers an area of about 2,200 square miles.

Monitoring Program

A monitoring program was established in 1953 to maintain surveillance on the effects of waste water from Edison and Devils Den oil fields,
with the remaining portion added to the program in 1957. During the period
June-August 1961, samples were collected from 57 wells and from June-September
1962, 71 samples were collected.

Ground Water Development

Principal water bearing formations in Kern County are poorlysorted alluvial deposits, and fine-grained lake sediments in the overflow
lands of Goose, Buena Vista, and Kern Lake beds. Soils throughout the monitored area are generally highly permeable with the exception of these overflow lands. The Corcoran clay separates the ground water reservoir into an
upper and a lower zone. Movement of ground water north of Bakersfield is
generally in a northwesterly direction, while ground water in the southern
portion moves principally in a southwesterly direction toward Buena Vista
and Kern Lake beds.

Kern County has the second largest area of irrigation lands of any county in the State, with a large portion of this supply being drawn from

ground water. In areas where surface water is not readily available, ground water is being used to such an extent that the ground water table has fallen consistently.

Evaluation of Ground Water Quality

Ground water is being used beneficially for irrigation, industrial, municipal, and domestic purposes. Principal waste discharges consist of effluent from sewage treatment plants at Bakersfield, Wasco, Oildale, McFarland, Delano, Taft, and Arvin. These discharges are used almost entirely for irrigation.

Ground water quality throughout the monitored portion of Kern County varies widely. On the western side of the monitored area, ground waters are saline and poor in quality. High boron concentrations are present in several of the west-side monitored wells while lithium concentrations up to 1 ppm have also been detected in selected wells on the west side. In the eastern portion of the monitored area, ground water is principally calcium-sodium-bicarbonate type and is generally good in quality; however, high chloride and sulfate concentrations are present locally throughout this area. The apparent source of these high concentrations are deep-lying bodies of connate water. Very high sulfate concentrations occur in wells in the extreme southern part of the monitored area. Wells 29S/28E-36J1, 30S/29E-5D2, and 30S/29E-27J1, located near Edison, have extremely high nitrate concentrations of 138, 151, and 105 ppm, respectively. Ground water throughout the monitored area is generally very hard with the exception of the northeastern corner of the county, where total hardness ranges from soft to slightly hard.

Significant Water Quality Changes

Well 25S/24E-27R1, located seven miles southwest of Delano, has shown a sharp improvement in quality between 1960 and 1961. Water quality in well 26S/27E-9G1, nine miles east of McFarland, is very poor and has been steadily deteriorating since 1957. Nitrates in well 27S/20E-34G1, located eight miles southwest of Lost Hills, increased from 13 to 4C ppm between 1960 and 1961. Well 27S/26E-27R1, nine miles east of Wasco, has exhibited a steady deterioration in quality since 1957; while well 27S/27E-29J1, in the same general area, has been improving in quality during the same period of time. Chlorides in well 30S/29E-5D2, near Edison changed from 436 to 177 ppm between 1960 and 1961 with specific conductance and total dissolved solids also decreasing substantially.

PANOCHE VALLEY, SAN BENITO COUNTY (5-23)

Panoche Valley lies in the eastern portion of San Benito County in the Mt. Diablo Range. It extends approximately eight miles from north to south and approximately 10 miles from east to west and covers a total area of about 30 square miles.

Monitoring Program

Panoche Valley was included in the monitoring program in 1959 for surveillance and to detect significant changes of ground water quality. During July 1961, samples were collected from four wells and from six wells during July 1962.

Ground Water Development

Panoche Valley is a synclinal basin geologically similar to the other small valleys in the Mt. Diablo Range. Ground water is obtained from alluvial deposits, apparently as unconfined ground water; however, deeper wells in the valley may be drawing from confined zones. Recharge of the ground water reservoir is from Panoche Creek and other minor streams. Water requirements in the valley are met by ground water due to the lack of surface water.

Evaluation of Ground Water Quality

Ground water is used beneficially for irrigation, domestic, and stock-watering purposes. There are no significant waste discharges. Ground water in Panoche Valley is sodium sulfate and sodium bicarbonate in type with very high sulfate concentrations being prevalent. Total dissolved solids,

boron, and specific conductance are all moderately high throughout the valley, while total hardness is in the very hard range.

Significant Water Quality Changes

No significant changes in the quality of ground water have been observed at this time.

LAHONTAN REGION

(No. 6)

(North)

LAHONTAN REGION (NO. 6) (NORTH)

The Lahontan Region includes inland basins along the easterly boundary of California. The area is on the lee side of the major mountain systems of the State and is characterized by an arid climate and desert type cultural development. The portion of the region covered by this report and shown on Plate 1 lies along the eastern flank of the Sierra Nevada and Cascade Ranges and extends northerly from the Mono divide to the Oregon border. There are ten major drainage basins with a gross area of 5,550 square miles within this area.

Water supply is dependent on winter rains and drainage from the eastern slopes of adjacent mountain ranges. Generally, there is limited development of ground water. Known problems are of a localized nature, however, mineralized spring waters throughout most of the area indicate potential hazards.

Nine ground water basins in this portion of the region have been included in the ground water monitoring program. The names of the monitored areas, the number of monitored wells in each basin, and the time of sampling are listed in the following tabulation.

Monitored Area	Number of W	ells Sampled	Sampling Time
Surprise Valley (6-1)	1961	30	August
	1962	17	July
Madeline Plains (6-2)	1961	0	August
	1962	9	July
Honey Lake Valley (6-4)	1961	25	August
	1962	22	August
South Tahoe Valley (6-5.01)	1961	5	September
	1962	7	September

Monitored Area N	umber	of Wells Sampled	Sampling Time
North Tahoe Valley (6-5.02)	1961	4	October
	1962	12	September
Carson Valley (6-6)	1961	4	September
	1962	4	September
Truckee Valley (6-67)	1961	6	October
11401100 142100 (1 0),	1962	6	September
Topaz Valley (6-7)	1961	8	September
Topaz Valley (0-7)	1962	8	September
	- 0/-		
Bridgeport Valley (6-8)	1961 1962	7 6	September September
	1,02	Ŭ	September
Lower Mojave River Valley			
(6-40) Barstow to Yermo*			

^{*}Ground water basin is located in Southern California and will be discussed in Part II of this bulletin.

SURPRISE VALLEY (6-1)

Surprise Valley is located in northeastern Modoc County and is bounded by the Warner Mountains on the west and the Nevada border on the east. The valley extends about 50 miles in a north-south direction, ranges up to 12 miles in width, and lies at an elevation of nearly 5,000 feet.

Much of the center of the valley is occupied by three playa lakes.

Monitoring Program

A network of 28 monitoring wells was established in 1959 to provide information on ground water quality in the area. During August 1961, samples were collected from 19 wells and from 17 wells in July 1962.

Ground Water Development

Ground water is contained principally in alluvial fan, stream channel, and lake deposits. The most prolific aquifers are found in the alluvial fan deposits. Both confined and unconfined ground water exists in the area. The upper portions of alluvial fans, lava flows, deltaic, and beach deposits act as forebays for ground water recharge along the edge of the valley. There is no large scale development of ground water.

Evaluation of Ground Water Quality

Ground waters are used principally for domestic and stock matering purposes. Almost all irrigation requirements are met from surface water sources. Ground waters are used for very minor supplemental irrigation purposes. There are no major waste discharges in this valley. Septic tanks are used for most domestic wastes.

Chemical analyses of ground water in Surprise Valley generally vary from a soft to moderately hard sodium bicarbonate or calcium bicarbonate

type water. All sodium bicarbonate type waters indicate a percent sodium in excess of that recommended for class 1, irrigation waters. Aside from the high percent sodium, water from several wells also contain concentrations of fluoride or boron that render them unsuitable for either domestic or irrigation use. The calcium bicarbonate type waters, in almost all instances, are of excellent mineral quality suitable for most beneficial uses.

Significant Water Quality Changes

Comparison of the 1960 ground water analyses with those for 1961 and 1962 indicate no basin-wide quality changes at this time. Well 46N/16E-25R2, located approximately 6 miles southeast of Fort Bidwell, showed a boron decrease from 0.85 to 0.45 ppm.

MADELINE PLAINS (6-2)

Madeline Plains basin is one of the larger valley-fill areas in the northeastern counties. Located in northeastern Lassen County, Madeline Plains extends 18 miles in a north-south direction and 30 miles east to west, and encompasses an area of approximately 215 square miles.

Monitoring Program

To detect possible quality changes, a monitoring program was established in Madeline Plains in 1960. Samples were collected from 11 wells during August 1961 and from 9 wells in July 1962.

Ground Water Development

The main sources of ground water are lake deposits and interbedded lava flows. Minor amounts of water occur in thin stream channel and alluvial fan deposits. Both confined and unconfined water may occur in the area. The major forebays for ground water recharge are coarse lake deposits and lava flows along the edge of the valley. Because there is no perennial surface water supply to the Madeline Plains area, ground water is relied on as the major water supply required by residences of the area.

Evaluation of Ground Water Quality

There is very little agricultural development in the area. Ground water sources are principally used for domestic and stock watering purposes. There are no major waste discharges in the area. Minor waste discharges consist mainly of sewage effluent from several small communities and isolated ranches located in the area.

Ground waters in Madeline Plains are generally either a magnesiumcalcium bicarbonate or sodium bicarbonate type water. They are soft to very hard and, in most cases, suitable for their present uses.

Significant Water Quality Changes

Comparison of the 1960 ground water analyses with those of 1961 and 1962 indicate no basin-wide quality change. Analysis of well 37N/13E-20Ql, located approximately 2 miles south of Madeline, showed a decrease in electrical conductance, sulfate, chloride, and total dissolved solids.

HONEY LAKE VALLEY (6-4)

Honey Lake Valley is located in northeastern California and north-western Nevada. The California portion of Honey Lake Valley is located in southeastern Lassen County, has a length of 45 miles in a northwesterly direction, is about 15 miles wide, encompasses an area of approximately 400 square miles, and lies at an elevation of about 4,100 feet above sea level.

Monitoring Program

The monitoring program in Honey Lake Valley was established in 1959 to maintain a check on existing ground water quality to detect any quality changes. During August 1961, samples were collected from 25 wells in this area and from 22 wells during August 1962.

Ground Water Development

deposits which underlie most of the valley. Locally, alluvial fans and lava flows interbedded with the lake deposits contribute significant quantities of ground water. All of the above deposits contain both confined and unconfined water. Extensive underlying pre-Lahontan Lake deposits are a source of highly mineralized water to deep wells. Ground water recharge occurs by infiltration of surface water into: (1) extensive lava flows north of the valley; (2) coarse lake deposits; (3) apexes of alluvial fans; and (4) minor stream channel deposits along the edge of the valley floor. Numerous wells have been drilled throughout this valley, but to date there has been only minor utilization of ground waters in Honey Lake Valley.

Evaluation of Ground Water Quality

Ground water is used primarily as a domestic source, and to a lesser extent for irrigation and industrial purposes. Effluent from the City of Susanville sewage treatment plant, discharged into the Susan River, is the only major waste discharge in the valley. The other smaller communities have individual septic tanks or cesspools. Present waste discharges are not a threat to the quality of ground water in this area.

Ground waters in Honey Lake Valley are generally classified as fair to good, but are variable in mineral composition. Dispersed throughout the valley are ground water sources yielding high concentrations of one or a combination of the following constituents: boron, fluoride, chloride, nitrate, and sulfate. However, only in a few instances do these mineral concentrations exceed mandatory or recommended criteria. Chemical analyses indicate at least 13 different chemical classifications of ground water. Ground waters are predominantly sodium bicarbonate type in the northern part of the valley, but are calcium bicarbonate in character in the western portion south of the Susan River. Along the southwestern edge of the valley, ground waters generally have bicarbonate as the predominant anion, with calcium and sodium combinations constituting the most abundant cations. Several sampled sources, scattered throughout the valley, yield a sodium bicarbonate-sulfate type water. The only valley-wide problem is high percent sodium.

Scattered throughout the valley are ground water sources containing high concentrations of boron, and in some instances, these waters are further degraded by high concentrations of fluoride. Two wells located on the Sierra Ordnance Depot, and one hot spring, located several miles

north of the Sierra Ordnance Depot, contain high electrical conductance and high concentrations of sulfate. Two wells, located in the vicinity of Lake Leavitt, discharge waters containing high concentrations of nitrate.

Significant Water Quality Changes

Comparison of chemical analyses of samples collected in 1961 and 1962 with those collected in 1960 indicate quality changes occurred in four wells scattered throughout the valley. Well 27N/16E-11E1, located on the Sierra Ordnance Depot, had reductions in electrical conductance, chloride, and total dissolved solids, concentrations of 1,946 to 880 micromhos, 433 to 44 ppm, and 1,067 to 595 ppm, respectively. Well 27N/16E-36Q2, also located on the Sierra Ordnance Depot had an increase in sulfate concentration from 271 ppm to 343 ppm. Well 29N/13E-34Nl, located approximately 2 miles north of Janesville had an increase in nitrate concentration from 54 ppm to 88 ppm. Well 29N/14E-18Rl, located approximately 1 mile west of Standish had an increase in fluoride and boron concentrations of 0.85 ppm to 1.6 ppm, and 0.68 ppm to 1.1 ppm, respectively.

SOUTH TAHOE VALLEY (6-5.01)

South Tahoe Valley borders the south shore of Lake Tahoe and extends southward along the Upper Truckee River for an estimated ten miles. The valley encompasses approximately 40 square miles.

Monitoring Program

The monitoring program was established in 1958 to provide information on ground water quality in the area and to detect significant changes. During September 1961, samples were collected from five wells and from seven wells during September 1962.

Ground Water Development

Ground water in the valley is drawn from interbedded layers of clay and sand which occasionally contain lenses of gravel. These formations are lake and stream deposits, however, because of their continuity over a wide area, it would appear that the majority of the valley fill is lacustrine in origin. Most of the deeper wells in the area have penetrated three separate aquifers. Ground water in South Tahoe Valley has been moderately developed.

Evaluation of Ground Water Quality

The majority of the wells are for domestic use in individual dwellings and while the yields are small, quantities are adequate for the seasonal demands. Municipal water supplies, primarily originating from surface sources, are augmented by ground water during periods of low flow. Only one major disposal system exists in South Tahoe Valley. This installation, operated by the South Tahoe Public Utility District, disposes of its treated effluent by sprinkling on a forested percolation area south of the lake.

Ground waters in Tahoe Valley are predominantly calcium bicarbonate in type, low in total dissolved solids, and are of excellent mineral quality.

Significant Water Quality Changes

No significant changes have been observed at this time.

NORTH TAHOE VALLEY (6-5.02)

North Tahoe Valley is located on the north and west sides of Lake
Tahoe in eastern Placer and El Dorado Counties. Included in this alluviated
system are a number of small valleys adjacent to the Truckee River. Squaw
Valley is the largest of the valleys.

Monitoring Program

The monitoring program was established in 1961 to provide information on the ground water quality in the area and to detect significant changes. During October 1961, 14 wells; and in September 1962, 12 wells were sampled.

Ground Water Development

The ground water is contained in sand and gravel lenses which were formed and modified by a number of geological processes. Old lake deposits and glacial morain material contribute most of the water although the presence of thermal springs would indicate volcanic or faulting activity both of which are known to have occurred in the area.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic purposes. Major discharges in the area are treated domestic wastes from the North Tahoe Public Utility District and the Tahoe City Public Utility District. Disposal is by percolation and evaporation.

Ground waters of the North Tahoe area are soft to slightly hard, predominantly calcium bicarbonate in type, and of excellent mineral quality, however, exceptions were noted. Thermal springs near Brockway produce waters which are sodium chloride in type and contain high concentrations of arsenic, boron, and fluorides.

Significant Water Quality Changes

No significant water quality changes have been observed at this time.

CARSON VALLEY (6-6)

Carson Valley is located in northern Alpine County and is bordered on the north by the California-Nevada state line. The monitored portion has a north-south length of approximately 9 miles, and includes an area of about 25 square miles.

Monitoring Program

A monitoring program was established in Carson Valley in 1958 to observe ground water quality and to detect significant changes. During September 1961, samples were collected from four wells, and in September 1962 from four wells.

Ground Water Development

Ground water in Carson Valley occurs mainly in flood plain and alluvial fan material. Though most of the valley floor is of an apparent coarse-grained nature, there is only limited development of ground water in the valley.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic and stock-watering purposes. There are no major waste discharges in Carson Valley. Individual septic tanks apparently pose no threat to ground water quality in this sparsely populated area.

Ground waters of Carson Valley are a soft to slightly hard calcium bicarbonate type with excellent mineral qualities and are suitable for all uses. There are no apparent ground water quality problems in the monitored area.

Significant Water Quality Changes

No significant water quality changes have been observed at this time.

TRUCKEE VALLEY (6-67)

Truckee is an alluviated area located in southeastern Nevada and northeastern Placer Counties and consists of several irregularly shaped ground water basins.

Monitoring Program

The monitoring program was established in 1961 to provide information on ground water quality in the area and to detect significant changes.

During October 1961 and September 1962 samples were collected from six wells.

Ground Water Development

Ground water in Truckee Valley is derived from many clay and gravel lenses which were deposited by water. The deeper water bearing lenses appear to be lacustrine in origin while much of the surface material is glacial outwash and moraines which are the result of past glacial activity. Because of the relatively low population, water demands have not required intensive development. Established springs and water from recently drilled wells furnish water to the Truckee Public Utility District which is the chief purveyor of domestic supplies in the area. Requirements in adjacent areas are usually satisfied by small individual wells.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic purposes. Domestic wastes from the town of Truckee constitute the only major discharge in the area. These wastes are treated and discharged to percolation ponds.

Samples of ground water indicate a predominantly calcium bicarbonate type, relatively soft, and low in total dissolved solids. These waters are of excellent mineral quality and suitable for all existing beneficial uses.

Significant Water Quality Changes

No significant water quality changes have been observed at this time.

TOPAZ VALLEY (6-7)

Topaz Valley is bordered on the north by the State of Nevada. The California portion of Topaz Valley is in Mono County, and extends about 11 miles south from the state line and includes an area of about 36 square miles.

Monitoring Program

A monitoring program was established in Topaz Valley in 1958 to provide information on ground water quality in the area and to detect significant changes. Eight wells were sampled during September 1961 and September 1962.

Ground Water Development

Topaz Valley is bounded on the east and west by faults along which movement of great magnitude have occurred. The valley has been depressed along these faults and is a typical basin-range graben, or down-dropped block. The valley fill consists of alluvial fan, flood plain, and river channel deposits. Ground water occurs in two separate zones, the unconfined or free ground water zone, and the deeper confined or artesian zone. Ground water comprises only a small portion of the total amount of water used.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic and stock watering purposes. There are no large waste discharges in this area. Individual septic tanks are commonly used throughout this area.

Ground waters in Topaz Valley are a soft to moderately hard bicarbonate type with calcium and sodium the predominant cations. Three wells dispersed through the area yield high concentrations of fluoride and high percentages of sodium. The fluoride content is in excess of the mandatory limiting

concentrations for drinking water standards, although it is presently being used for domestic and stock-watering purposes. This poor quality water possibly originates from a series of faults running through the valley. The remaining monitored wells are of excellent mineral quality and suitable for most beneficial uses.

Significant Water Quality Changes

On page 176 a graph of fluoride in well 9N/23E-32A1 shows the increase in fluoride concentrations for the period of record.

FLUCTUATIONS OF CONSTITUENTS IN SELECTED WELLS
TOPAZ VALLEY

BRIDGEPORT_VALLEY (6-8)

Bridgeport Valley is located in the northern portion of Mono County.

This irregularly shaped valley extends from the northern end of Bridgeport

Reservoir southward for approximately 20 miles, and encompasses an area of about 45 square miles.

Monitoring Program

High concentrations of boron known to occur in some ground water in the valley prompted the establishment of a monitoring program in 1959. Samples were collected from seven wells during September 1961 and from six wells in September 1962.

Ground Water Development

Bridgeport Valley is a structural basin sharply defined by normal faults on both the eastern and western margins. The southern end of the valley floor is poorly defined because of the encroachment of glacial moraines and outwash. The glacial deposits serve as a source of recharge for the valley fill. The valley fill at depth is probably lacustrine in origin and is overlain by a series of flood plain and river channel deposits. Alluvial fill which overlies the lake sediments of Bridgeport Valley is mostly of a fine-grained nature, being composed chiefly of flood plain deposits. A high water table is present over much of the valley floor and is maintained in part by percolation from Bridgeport Reservoir in the northern end of the valley. There is limited development of ground water in the valley.

Evaluation of Ground Water Quality

Ground water is used primarily for domestic purposes. The town of Bridgeport is the only municipal user of ground water in the valley. There

are no large waste discharges in Bridgeport Valley. Septic tanks, used by individual householders, could pose a quality problem to ground water due to the high water table in the valley.

Ground waters in Bridgeport Valley are generally calcium or sodium bicarbonate in type. Although soft to very hard, the waters are generally of good to excellent quality and suitable for most uses. Water from well 4N/25E-4FI, located approximately 1.3 miles south of Bridgeport, contains high concentrations of boron, sulfate, fluoride, and sodium, which is probably caused by nearby mineralized hot springs.

Significant Water Quality Changes

No significant water quality changes have been observed at this time.

APPENDIX A
PROCEDURES AND CRITERIA

APPENDIX A

PROCEDURES AND CRITERIA

	Page
Evaluation of Data	183
Location Designation	184
Types of Mineral Analyses	186
Laboratory Methods and Procedures	186
Water Quality Criteria	189
Domestic and Municipal Supply	189
Mineral Concentrations	190
Fluoride Concentrations	192
Hardness	192
Radioactivity	192
Industrial Water Supply	192
Irrigation Water	193
Chemical Classification of Waters	193

PROCEDURES AND CRITERIA

Ground water quality data is gathered to provide monitoring so that the quality of ground water can be protected and to provide information that will be used by ground water planning programs. Adequate procedures to fulfill these aims must result in representative, reliable, and sufficient data.

Evaluation of Data

Data are useful only to the extent that they are evaluated and applied. The department maintains a chronological record of observations to note changes in individual wells and is studying areal relationships. The selection of individual wells is governed, to a large extent, by the availability of well logs. Sufficient information such as depth, aquifers encountered, and depths of perforations for each well is necessary so that the occurrence of different sources of ground water may be identified. Wells are selected for the sampling network to define the areal extent of quality characteristics, to define the quality of water within separate aquifers, and to monitor areas where significant changes occur. Also, the selection is based on the need for information in the area, on prior knowledge of the occurrence of constituents throughout an area, or to anticipate ground water quality data requirements of planning projects.

There has been discussion as to what a sample represents, a sample of a ground water body in place in its aquifer or a sample limited to the water available for use at the surface of the ground. At present, the sampling program achieves the latter alternative. Evaluation of the data is aimed at the general case since this would provide for the limited

case, also. The present sampling program is sufficient to represent general areal conditions. Current evaluations and program adjustments will improve knowledge of existing conditions. Data for individual wells are representative over a limited time period.

Location Designation

The region and basin numbers in this report are based on a decimal system in the form 0-00.00. The number to the left of the dash refers to the water pollution control region. To the right of the dash, the first digit or digits refer to the basin, valley, or area. Digits to the right of the decimal, if any, refer to the subbasin number as shown below.

These numbers are used to identify the monitored areas in the text, in the data tables, and on Plate I. A "monitored area" is defined as that portion of a ground water basin which lies generally within the limits of an established network of monitored wells. It does not necessarily include the entire ground water basin.

Wells selected for inclusion in the ground water quality monitoring network are assigned numbers by township, range, and section, based upon their location. The numbering system is the same as that utilized by the United States Geological Survey. Under this system each section is divided into 40-acre plots, which are lettered as follows:

D	С	В	A
E	F	G	Н
М	L	K	J
N	P	R	R

Wells are numbered within each of these 40-acre plots according to the order in which they are selected for monitoring. For example, a well having a number 3N/6E-24A2 is located in Township 3 North, Range 6 East, and in Section 24. It is further identified as the second well selected in the 40-acre plot lettered A.

Types of Mineral Analyses

The following tabulation indicates the tests made, and the properties and constituents usually analyzed for, in the various types of mineral analyses performed as a part of the Ground Water Quality Monitoring Program.

Constituents and	:_	. Analysis				
properties	:	Standard	:	Partial	:	Heavy
Properties	:	mineral	:	mineral	<u>:</u>	metals
Specific conductance		x		x		
oH		x		x		
otal dissolved solic	ds	x		Α.		
Percent sodium		x				
lardness		x		x		
'emperature		x		x		
Calcium		х				
Magnesium		x				
Sodium		x		x		
otassium		x				
Carbonate		x				
Bicarbonate		x				
Sulphate		х				
Chloride		x		x		
litrate		х				
Tuoride		x				
Boron		x		x		
Silica		x				
luminum						x
ron						х
langanese						х
hromium						х
Copper						х
lead						х
Zinc						x
rsenic						x

Laboratory Methods and Procedures

Analytical methods used in determination of the various constituents reported conform, in general, to those presented in "Standard Methods for the

Examination of Water and Waste Water," a joint publication of the American Public Health Association, the American Water Works Association, and the Water Pollution Control Federation, 11th edition, 1960. For certain specific analyses, methods described in "Methods for Collection and Analysis of Water Samples," United States Geological Survey Water Supply Paper 1454, 1960, have been used.

Mineral analyses of the water samples were performed at the laboratories of the United States Geological Survey, Quality of Water Branch, and the Department of Water Resources, both located in Sacramento, or by the Terminal Testing Laboratories located in Los Angeles.

Radiological

Radioassays of samples were performed at the Radiological Laboratory of the California Disaster Office in Sacramento. The methods and procedures for sample preparation and determination of radioactivity in ground waters are as follows:

- 1. Sample preparation
 - a. Samples are collected in one-half gallon jugs by the

 Department of Water Resources and delivered to the

 Radiological Laboratory of the California Disaster Office

 for radioassay.
 - b. Each sample is mixed by agitating the jug, and 250 ml are removed.
 - c. The sample is placed in a 250 ml volumetric flask and one drop of aerosol solution added. The flask is then inverted and the mouth placed in a 2 x $\frac{1}{4}$ inch aluminum culture dish that has been treated with Desicote. The flask is supported

by a ring stand and the water level adjusted to the lip of the dish in a "chicken-feeder type" arrangement. The dish rests on a hotplate, regulated so that the specimen is taken to dryness at a temperature well below the boiling point to prevent spattering.

d. The specimen is now ready to be measured for radioactivity.

2. Counting techniques

- a. A gross beta-gamma determination is made for each specimen.
- b. Beta-gamma activity is determined with an internal gas
 flow counter operating in the proportional region, using
 argon-methane mixture as a flow gas. Background determinations are made before the first specimen count each day,
 and subsequently after each four specimen counts throughout
 the day. Determinations of counter efficiency are made
 with a reference standard (Thallium 204). Each determination of specimen and background count rate is made for a
 total of 1,024 counts. Average time required for each
 specimen is from 30 to 40 minutes.

3. Calculations

- a. Results are expressed as micromicrocuries per liter (uuc/1).

 One micromicrocurie is equivalent to 2.22 disintegrations

 per minute.
- b. Sample counts are corrected for background and geometric efficiency.
- O.9 error. The final result is expressed (symbolically)

as x + y uuc/l. This means that in a series of determinations on the same sample, the value of x should fall between x - y and x + y, 90 percent of the time.

Water Quality Criteria

criteria presented in the following sections can be utilized in evaluating the quality of water relative to existing or anticipated beneficial uses. It should be noted that these criteria are merely guides to the appraisal of water quality. Except for those constituents which are considered toxic to human beings, these criteria should be considered as suggested limiting values. A water which exceeds one or more of these limiting values need not be eliminated from consideration as a source of supply, but other sources of better quality water should be investigated.

Domestic and Municipal Water Supply

In general, water that is used for drinking or culinary purposes should be clear, colorless, odorless, pleasant to the taste, and free from toxic compounds, should not contain excessive quantities of dissolved minerals, and must be free from pathogenic organisms.

Chapter 7 of the California Health and Safety Code contains provisions which relate to water supplies used for domestic purposes throughout the State. One of these provisions covers standards for quality of domestic water supplies. In essence, this section (No. 4010.5) refers to the drinking water standards promulgated by the United States Public Health Service for water used on interstate carriers as of March 1946.

Recently the United States Public Health Service revised its drinking water standards. Portions of these new standards are presented herein. The complete standards, which cover definition of terms, bacteriological quality, physical characteristics, chemical characteristics, radioactivity, and recommended analytical methods, are contained in the March 6, 1962 issue of the Federal Register under Rules and Regulations.

Mineral Concentrations

The following tabulation gives the limiting concentrations of chemical constituents for drinking water, as prescribed by the United States Public Health Service.

UNITED STATES PUBLIC HEALTH SERVICE DRINKING WATER STANDARDS 1962

Constituents Arsenic (As) Barium (Ba) Cadmium (Cd) Hexavalent chr Cyanide (CN) Lead (Pb) Selenium (Se) Silver (Ag)	romium (Cr+ ⁶)	Mandatory limit in ppm 0.05 1.0 0.01 0.05 0.2 0.05 0.01 0.05
Arsenic (As) Carbon chlorof	nic chemicals)	Nonmandatory, but recommended limit in ppm 0.5 0.01 0.2 250 1.0 0.01 0.3 See following page 0.05
Nitrate (NO ₃) Phenols Sulphate (SO ₄) Total dissolve Zinc (Zn)		45 0.001 250 500 5

Interim standards for the upper limits of certain mineral constituents were adopted by the California State Board of Public Health in December

1959. Based on these standards, temporary permits may be issued for drinking water failing to meet the United States Public Health Service Drinking Water Standards provided the mineral constituents in the following tabulation are not exceeded.

UPPER LIMITS OF TOTAL SOLIDS AND SELECTED MINERALS IN DRINKING WATER AS DELIVERED TO THE CONSUMER (parts per million)

	<u>Permit</u>	Temporary Permit
Total solids Sulfates (SO4) Chlorides (C1) Magnesium (Mg)	500 (1000)* 250 (500)* 250 (500)* 125 (125)*	1500 600 600 150

Fluoride Concentration. The California State Board of Public

Health has defined the maximum safe amounts of fluoride ion in drinking water

in relation to mean annual temperature.

Mean annual temperature	Mean monthly fluoride ion concentration (ppm)
50° F	1.5
60° F	1.0
70° F - above	0.7

Hardness. Even though hardness of water is not included in the drinking water standards, it is of importance in domestic and industrial uses. Excessive hardness in water used for domestic purposes causes increased consumption of soap and formation of scale in pipes and fixtures. The following tabulation for degrees of hardness is suggested.

Range of hardness expressed as CaCO3, in ppm	Relative classification
0 - 100	Soft
101 - 200	Moderately hard
Greater than 200	Very hard

^{*} Numbers in parentheses are maximum permissible to be used only where no other more suitable waters are available in sufficient quantity for use in the system.

Radioactivity. As part of its new drinking water standards, the United States Public Health Service recently announced limits on concentrations of radioactivity in drinking waters. These limits are as follows:

Radionuclide	Recommended maximum limits micromicrocuries per liter
Radium 226	3
Strontium 90	10
Gross beta activity	1,000*

According to the International Commission on Radiological Protection 1/2, tentatively concurred in by the National Committee on Radiation Protection 2/2, if the Radium-226 and Radium-228 activity in water is substantially less than 10 uuc/1, the maximum permissible concentration of otherwise unidentified radionuclides in water for individuals in the population at large may be considered to be 100 uuc/1.

Industrial Water Supply

Water quality criteria for industrial waters are as varied and diversified as industry itself. Food processing, beverage production, pulp, and paper manufacturing, and textile industries have exacting requirements. However, many cooling or metallurgical operations permit the use of poor quality waters. In general, where a water supply meets drinking water standards, it is satisfactory for industrial use, either directly or following a limited amount of polishing treatment by the industry.

^{*} In the known absence of strontium-90 and alpha emitters.

^{1/ &}quot;Report on Decisions of the 1959 Meeting of the International Committee on Radiological Protection (ICRP)." Radiology, Vol. 74, No. 1, January 1960, pp. 116-119.

^{2/ &}quot;Somatic Radiation Dose for the General Population, Ad Hoc Committee of the National Committee on Radiation Protection and Measurements." Science, Vol. 131, No. 3399, February 19, 1960, pp. 482-486.

Irrigation Water

Criteria for mineral quality of irrigation water have been developed by the Regional Salinity Laboratories of the United States Department of Agriculture in cooperation with the University of California. Because of diverse climatological conditions and the variation in crops and soils in California, only general limits of quality for irrigation waters can be suggested.

QUALITATIVE CLASSIFICATION OF IRRIGATION WATERS

	: Class l	: Class 2	: Class 3
Chemical properties	: Excellent	: Good to	: Injurious to
	: to good	: injurious	: unsatisfactory
Total dissolved solids, in ppm	Less than 700	700 - 2000	More than 2000
Conductance, in micromhos at 25° C	Less than 1000	1000 - 3000	More than 3000
Chlorides in ppm	Less than 175	175 - 350	More than 350
Sodium in percent of base constituents	Less than 60	60 - 75	More than 75
Boron in ppm	Less than 0.5	0.5 - 2.0	More than 2.0

These criteria have limitations in actual practice. In many instances a water may be wholly unsuitable for irrigation under certain conditions of use, and yet be completely satisfactory under other circumstances. Consideration also should be given to soil permeability, drainage, temperature, humidity, rainfall, and other conditions that can alter the response of a crop to a particular quality of water.

Chemical Classification of Waters

Waters are classified, with respect to mineral composition, in terms of the predominant ions. Specifically, the name of an ion is used

where it constitutes at least half of its ionic group, expressed in equivalents per million (epm). Where no one ion fulfills the requirement, a hyphenated combination of the two most abundant constituents is used. Thus a calcium bicarbonate water denotes that calcium constitutes at least half of the cations and bicarbonate represents at least half of the anions. Where calcium, though predominant, is less than half of the total cations with sodium next in abundance, and where bicarbonates are more than half of the total anions, the name is modified to calcium-sodium bicarbonate.

APPENDIX B

GROUND WATER QUALITY DATA

1961 and 1962

	State well			Specific					Minera	Mineral constituents	fuents in		parts per million equivalents per million	parts per million valents per mill	on Illion			Total	à	Hardn	35	
Owner and	number and other number	Sampled	Temp in °F	ance (micro- mhos at 25° C)	¥	Calcium Ma (Ca)	Magne - Soc sium (Mg)	Sodium Pot (Na)	Potas-Carbon- sium ate (K) (CO ₃)	Carbon Bicar- ate bonate (CO ₃) (HCO ₃)		Sul - fote (SO ₄) (CI)	rrate (NO ₃)	e constant	Boron (8)		Silica Other constituented	solved solids in ppm	E SE	Total N.C.		Analyzed by c
	IIB & M				žI	NORTH COA	COASTAL, REG	REGION (NO.	급	-SPATTER RIT	RIVER PLAIN	H (2-1)										
A. Short, domestic	16N/14-2Q1	8-29-61		232	7.1 16	80 0.98	26 16 0.70		0.4 0.00	127 30 2.08	3 0.01	0.31	1.2	0.0	0.06	3	Fe(total)7.2, Zn 0.02	159		68		DAR
L. Cadra, domeatic	-7F	8-30-61		308	8.1 31	55 1.03	03 0.70		0.02 0.00	2.46	0.8	26 0.73	0.02	0.00	0.04	19	Al 0.01 Fe (total) 2.1, Zn 0.06	181	ิส	129	9	EWR.
L. D. Barly, domestic	-15a	8-29-61		152 6	6.3 5.4 0.27	27 0.17	77 0.40		0.4 0	2 2 2	1.6	0.39	0.29	000	0.02	25	Al 0.01, cu 0.02 Fe (total) 0.01 27 0.05	102	88	22	16	TAVE
Mue Grove School, domestic	_16m	8-29-61		189	7.5 6.9	34 1.06	00 90		0.0	00 1.20	0.03	25 0 (12	2.3	0.0	0.03	128	Al 0.01 Fe (to-tal) 0.09, Zn 0.45	120	₹Z	<u>۔ ۔ ۔ </u>	01	TAME
S. R. Mattson, domestic	-17KG	861		208	7.7 6.7	33 1.23	23 0.43		0.0	5 <u>1</u> 3	3.3	0.70	5.5	000	0.03	81	Al 0.01, Fe (total) 0.06, Zn 0.02	132	53	<u></u>	138	HWI
A. Pullen, domestic	-20 A2	8-29-61		197	6.4 4.3	3 8.4 21 0.69	14 20 59 0.87		0.6 0.00	37 0.61	2.0	0.00	27 0.1 1	000	0.07	81	Cu 0.02, Fe (total) 0.18	128	64	45	35	TAN I
W. Story, domestic	-20m	8-29-61		167 7	r.2 5.0	0 25 0.75	1 13 75 0.56		0.6 0.00	0.74 0.74	6.7 † 0.14	1.7 0.43	0.24	0.0	90.00	17	Fe (total) 0.59	106	35	20	13	EWG.
H. C. Kirkland, domeatic	-2601	8-31-61		304	7.7 8.0	13	30		0.0000	54 00	0.02	1.18	35	0.0	8	<u>35</u>		175	Z+	72 g	28	DWR
E. Mellow, irrigation	17N/1V-2G1	8-30-61		107 6	6.9 4.8	24 6.3 24 0.51	51 6.8		0.00	1,77 00 0.77	7 0.02	0.22	4.2 0.0	0.00	0.03	18	Al 0.01, Fe (total) 0.02, Zh 0.12	72	58	38	0	DWR
R. H. Emmerson, 1rr1gation	-9A1	8-29-61		250 7	0.32	32 2.22	14.8 22 0.21		0.00	2.44	0.0	0.23	2.0	0.0	0.04	3t	Al 0.01, Fe (total) 0.02, Zh 0.06	157		127	2	DAVR.
Redwood School, domestic	-1401	861		364	3.1 22	1.28	35 28 1.52		2.5 0.05 0.00	3.20	0.29	15	0.02	0.1	0.18	22	Al 0.02, Pb0.01 Fe (total) 0.03 Zh 0.22	224	<u></u>	о <u>е</u> п		DAR.
R. W. Struebing, domestic	18N/1W-5G1	8-30-61		174 5	5.9 8.8 0.44	5.1 0.42	1 16 42 0.70		0.7 0	00 0.20	0.03	0.90	21 0.34	00	0.05	위	Cu 0.09, Pb0.03, Fe(total) 0.18, Zn 0.11	, 104	#	14.3	33 1	N-MCI
M. J. Sierka, domestic	-1781	861		213	0.70 0.50	20 0.54	3 18 54 0.78	g 0.5	5 01 0.00	100	0.02	0.37	4.0	0.0	0.09	35	Cu 0.05, Pb 0.03 Fe (total) 3.5, Zn 0.11	146	35	72 0		IWR
M. J. Sierks, domestic	-17R2	861		211	1.20	2.9 0.24	9 18 24 0.78	0.5 0.01	01 0.00	109 1.79	0.03	0.37	0.02	0.0	0.00	**	Cu 0.05, Pb 0.02 Fe(total)3.9	149	35	72 O		DWR
o. Determined by addition of constituents.	of constituents.																					

e. Determined by addition of constituents.
b. Grovimetric determination.
C. Andyska by U.S. Soedagled's Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
C. Andyska by U.S. Soedagled's Survey, Quality of Water Browness (D.W.R.) as indicated.
C. Andyska by U.S. Soedagled's Survey State Department of Water Resources (D.W.R.) as indicated.
C. Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Mangoness (Mn), Zinc (Zn), reported here as \$\frac{0.0}{0.00} \text{except as shown}.

QUALITY OF GROUND WATERS IN CALIFORNIA ANALYSES OF GROUND WATER

Г	Pez	,																	
_	Analyzed	ĥ		TAUR.	DWD	DWR	DWR	TAME:	DWR	EMI	DAYR	DWR	DWR	INT	IMB	IMB	I.W.R	FIATE	DARR
	Hardness as CaCO ₃	N.C.		12	6	-	0	0	0	0	0	0	0	0	н	0	-	4	54
L		Total		2,0	191	100	145.	101	7	12	814	196	384	262	191	39	5 [#] 6	8	282
-	4 S			문	-#	16	49	56	99	87	99	∞	145	29	15	8	r.	7,	m
L	Tatal dis-			02	122	174	525	175	320	135	173	C4j	767	011	221	77.4	Ш2	22	덊
		Other constituents ^d		cu 0.05, Fb 0.03, Fe (tatal) 0.03, Zn 0.07	Pb 0.02, Fe(total)														
		(SiO ₂)		阳	의	প্র	54	56	27	ଷ୍ଟା	었	31	23	99	ଷ୍ଟା	티	ह्य	133	92
	<u></u>	Boran (8)		0.00	0.07	0.07	0.26	90.0	0.35	0,30	0.20	0.08	2.1	0.57	0.11	9.0	0.04	0.05	17:0
millio	E	P		0.0	0.0	0.0	0.03	0.0	0.02	0.0	0.0	0.0	0.3	4.0 0.02	0.02	2.1	0.00	000	0.0
ports per millian	equivolents per million	trate (NO ₃)	(i)	26 0.42	5.3 0.08	10 0.16	4.2 0.07	0.06	0.7	2.7 0.0	0.7	3.7	1.5	10 0.16	10	0.3	10	6.6	16 0.26
ľ	Bying	ride (CI)	(1-1)(CONT.)	0.25	5.8	0.3	13 0.37	3,3	7.4	5.2	2.5	2.2 0.0 0.0	193	24 0.08	10	28 0.79	(1-5) 2.5 0.07	2.4	2.2
.5	. ;	fate (SO ₄)	PLAIN	1.6	0.00	13 0.28	8.6	0.00	18	0.02	EY (1-1)	0.25	10 0.21	7.7	6.4	000	VALLEY 6.1 0.13	0.00	0.33
constituents		banate (HCO ₃)	1)-SMITH RIVER	10 0.16	3.64		26°-1	176 2.88	278	1.88	STA VALA 124 2.03	240 3.93	504	388	3.20	535 8.77	291 1.77	32	315
Mineral Co		(CO ₃)	-SMI	00.0		00.0	12	00.00	00.00	0.00	-SHA8	000	00.0	00.0	000	17 0.57	0.00	0000	0.00
Z.		Sium Sium (K)	(NO. L	0.0	0.02	2.6 0.07	15	8.6	0.33	1.6	2.1	1.3	0.11	6.15	0.00	1.7	0.0	0.3	0.03
	- (Sadium (Na)	NORTH COASTAL REGION	6.3 0.27	3.8	8.7	133 5.73	18 0.78	3.44	16.1	17.0	0.35	145	2.22	13	9.57	6.4	2.4	0.18
		sium sium (Mg)	OASTAL	3.8	37 3 3.07 0	12 0.95 0	1.50	1.22	10 7	0.8 0.07	11 1	21.72 0	5.57 5	34 2.79 2	1.12	5.1	27 2.23 6	1.7	36 2.94
	H	En (ORTH C																
		Calcrum (Ca)	Ž.	0.27	15	1.05	28	0.80	12	3.4	0.50	144	42 2.10	2.1	42 2.10	7.2	54 2.69	9.2	54 2.69
J	<u>+</u>		_	6.1	1.6	7.6	8.5	8.0	8.1	7.6	7.6	7.7	8.1	7.5	7.5	8.5	8.0	7.2	8.0
Specifi	conduct-	mhas at 25°C)		101	356	232	±67	276	£⊳†	203	236	393	1,330	929	32,0	8	455	72	51.8
L	Temp	5				55	26				99	09					55		82
	Dote	Pej dilips		8-30-61	8-30-61	19-61-01	7-21-61	3-59-61	ŀ	ŧ	19-51-01	10-12-01	7-23-61	10-10-01	3-27-61	3-29-61	10-18-61	3-28-61	10-18-61
	State wall	ather number	HP 8 M	18n/1w-26m 8	01	HEN/EW-1P1	4611/14-6Pl	47N/2W-2001	4.N/1E-30F1	48N/1W-28F1		143N/ow-21R1	domestic 44N/5W-32F1 7	-34EI	44N/4W-22KD 3	45N/5W-6EL	4211/9W-2G1	-27K	431/5W-2G1
	0	987		A. Samuelson, irrigation	Jepson, domestic & stock	D. Mills, irrigation	Frnum Pros., irrig tion	Spring School, donestic	J. Idskey, Irrigation	J. Liskey	Pig Springs Irrigation 43N/5W-201 Dist.,irrigation	Dougherty & Sons, irrication	S. D. Nelson, domestic irri, scion	H. Silvs, irrigation	C. Ston., domestic	Sishimu County, industrial	C. W. Dlack, irrigation	W. H. Landen, domestic	Dunamulr Water Idst., municipal

a. Determined by addition of constituents.

b. Growinstric determination.

c. Analysis by U.S. Gadiogloal Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Cansultants (P.C.C.),

c. Analysis by U.S. Gadiogloal Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Cassing Loborology (T.T.L.) or State Deportment of Water Resources (D.W.R.) as indicated.

d. Iron (Fe), Aluminum (Al), Arsanic (As), Capper (Cu), Lead (PD), Wanganese (Mn), Zinc (Zn), reported here as \$\overline{G}\

	Analyzed by c	DWR	DWR	IWR	IWR	DA'R	IAIR	TWIR	IWR	IWR	DAR	TWR.	DWR	DWR	DWR	IWR	EMI
=		A	<u> </u>	<u> </u>	E)	<u> </u>			n ——		<u> </u>		<u> </u>	A			
10rdne	os CaCO ₃ Total N.C. ppm	0	<u>ت</u>	9	c.		0	0	0	0	0	0	0	0	0	0	0
	sod Ium To	110	1 158	204	253	35	14 23	50	37	13 54	121 21	15 12	16 105	19 129	32 141	88	1.3 206
Total	eolved selicition of the colored selicition	141 3	300	238 5	202 3	53	39 1	6 94	75	84 1	165 1	122 1	153 1	190 1		197 3	252 1
-		-	-				,	7								2	
	Silco (SiO ₂) Other constituents ^d														Cu 1.3, Fe (total) C.11, Fb 0.01, Zn 0.08	Fe(total) 2.4 Fb 0.02, An 0.	Fe (totel) 14, Po 0.01, Mn 0.74 Zn 0.20
		18	†27 172	38	켔	14	15	15	77	83	25	72	31	23	118	8	81
Tion	Boron (B)	0.10	0.02	0.10	0.12	0.02	0.05	0.02	0.0	0.08	0.02	0.03	0.14	0.04	11:0	0.0	0.13
r millio per mi	Fluo- ride (F)	0,1	0.00	0.00	0.00	0.0	0.00	0.00	0.0	0.0	0000	0.0	0.0	0.00	0.0	0.0	0.2
parts per mittlan equivalents per mittion	Ní- trote (NO ₃)	cent.) 15 0.24	5.4	8.2	9.3	1.1	0.0	0.0	000	0.0	0.01	2.6	2.1	0.03	0.02	0.0	0.02
Paul	Chlo- ride (CI)	2,4 2,4 0.07	0.3	2.2	0.00	0.00	0.0	1.9	0.0	.6) 1.1 0.03	4.2	3.1	5.1	12 0.34	27 0.70	1.8	0.70
nts in	Sul – fote (SQ ₄)	1.6 0.03	3.4	5.9	6.1	1.8	0.0	0.0	1.0	0.02 0.02	7.6	5.1	2.0	12	VALLEY 2.1	0.03	0.03
Mineral constituents	Bicor- bonote (HCO ₃)	SCORT RIVER 0 123 1 0.00 2.02	3.28	3.95	208	42 0.69	28 0.46	35	46 0.75	74 74 1.21	155	105	139 2.28	2.59	207 3.39	160	249
neral c	Carbon- ate (CO ₃)	00.0 00.0	0.00	00.00	0000	00.00	0.01	0.00	00.00	0.00	0.00	00.0	00.00	0.0	2 0.07	0.00	000
Z	Potas- sium (K)	(NO.1	0.0	0.6	0.0	0.7	0.5	10.0	0.5	1.0	0.2	0.9	0.2	2.6	3.8	0.04	0.06
	Sodium (No)	AL REGION 4.6	8.8 0.38	5.0	0.19	1.7 0.07	1.8	1.t 0.00	1.7	3.8	0.33	7.0	9.3 0.40	14 0.61	31 1.35	28	15
	Magne- sium (Mg)	H CCAST. 7.9	5.7	31 2.53	32 2.65	0.15	0.09	3.0	3.5	6.38 0.38	8.9 0.73	7.8	11 8 8:0	8.9	20	12	26 2.17
	Calcium (Ca)	31 NORTH 7	2.69	31	148 2.10	0.55	0.37	6.7	0.0	14 0.70	35	00 1.60	24 1.20	37	23	0.50	1.95
	£	7.8	7.0	7.9	7.9	L. 9	6.8	4.7	7.0	7.0	7.3	6.7	J.5	7.1	7.00	0.8	φ 0.
Specific		225	37.1	388	465	62	55	99	81	128	270	195	238	322	† 10†	301	544
	Ten of of		99	29	95	29	K		9								
	Dote sampled	3-28-61	10-12-01			10-18-61	3-28-61	3-28-61	10-81-01	661	199	199	199	199	8-4-61	8-25-61	10-14-61
Stote well	number and ather number	Mirram 43N/SW-BF1	-SF1	-24FI	-2452	-3261	-3361	43N/10W-14B1	-1481	31N/11W-8M1	311/12W-11Q1	-12m	-15KI		5N/1E-4H2	-871	6n/1 E -7m
	Owner and	F. Lockensmeyer,	F. Lockensmeyer,	L. L. Lukes, irriga- tion	L. L. Lukes, irriga-	B. Welker, domestic	Taylor, irrigation	L. Miller, domestic	L. Miller, domestic	H. A. Reymolds, domestic & irrigation	R. Hood, domestic & garden	J. Lengberg, domestic	Jease, domestic	J. R. Morris, domestic 32N/11W-35G1	Jscoby Creek School, domestic	Lend Portland Lumber Co., industrial	F. Coleman, domestic & irrigstion

o. Determined by oddition of constituents.

b. Growimetric determination.

c. Andysis by U.S. Goldogical Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),

c. Andysis by U.S. Goldogical Survey, Quality of Water Branch of Water Resources (D.W.R.) as indicated.

Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

d. Iron (Fe), Aluminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 500 except as shown

-199-

			8	Specific					Mineral		constituents] <u>.</u>	par	parts per millian	illon			10,0		1		
Owner and	number and	_	Temp		¥.	-	⊢ -	_		Corbon	1	L		- N	- 01		3		F 10 5	os C	as CaCO ₃	Analyzed
980	other number	peldmps	- 6	mhas at 25° C)		(CO)	S (OM)	Enipos (No)	Sium Sium (X)		bonote (9	(50%)		trate ri (NO _S)	ride (B)		(SiO ₂) Other constituents ^d	solids in pom	Ē	Tatal	N.C.	3 60
C. Barber, domestic	HB & M 6N/1E-8HL	8-25-61			0.410	NORTH CC	7.2 1	15 0.65	3.4 0	MAD RIVER 0 41 0.00 0.67	1	13 13 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	8)(Cont.) 17 0.45	5	0.0	0.02	0,000, We(total)	1) 148	34	57	2.	IWR
Iverson, irrigation	ш71-	8-4-61		398	8 .3											ाः	Zn 1.2 Cu 0.02 tal)2.2	.522	ಎ	202	0	DWR
. N. Holgerson, domesti	1961-	8-4-61		374 8	80 5.	2.59	1:09	10 0.14	0.03	0.00	235 3.85 0.	0.0	0.31	0.	1.0 1.0	0.07 24	As 0.01, tal)0.51	22.8	#	184	0	IME
Mrs. E. Worth, domestic & irrigation	-30N1	10-14-61		334 8	2.5	2.30	0.92	0.39	1.2	0.23	3.11	0.00	0.31	10.0		5.05		ıi d	я	161	0	IWE
Arcate Plywood Plent,	-32FI	7-31-61		857	8.2	14 0.70	11 1	131	7.0 0.13	0.00 4.	273 4.47 0.	0.00	103	2.0 0.04 0.04	0.2 0.00	0.59 27		430 1 d	92	80	0	DWR
Ace Bulb Farm, domestic & irrigation	GN/1W-1H1	8-4-61		174	6.9				0.0	% 	30 4.0	4.3 0.09		26 0.42	0100	0.04	Cu 0.01, Fe(1	108 801	24	39	17	DWR
G. A. Curtis, domestic	7N/1E-18Q1	8-4-61		592	8 0 10				0.02	0.00		0.04		0.22 0.	000	92 70.0	Zn 3.6 Cu 0.01, Fe(1 tal)0.39, Fb	184	31	901	0	IWR
T. Galaty	-3081	8-14-61		113	7.5	4.5	5.6 0.46 0	0.38	0.5	0000	42 0.69 0.69	0.16	0.18	6.3	0.00	12 to.0	4 Cu 0.02, Fe (to-	85	98	34	0	IWR
S. Christianscn, irrigation	311/114-5141	10-91-01		142	7.5	6.2 0.31	5.7	13	0.08	0 56 0.00 0.00	PLAIN 592	(1-9) 2.1 0.04	14 0.35	7.00	0.2	00.00		tot	14	88	0	IMI
P.G.& E., industrial	14N/1W-8P1	10-16-61		157	7.5	0.29	0.73	11 0.43	1.7	0.00	67 1.10 0.	3.3 0.07	114 0.39	0000	ol 1000	20.02	cu 0.01, Fe (to-	100	31	다.	0	DWR
P. Lorenzen, irrigation	-1611	10-13-61		536	8.3	41 2.04	2.20 3	32 1.39	5.8	0.00	290 5.	5.1	28 0.79	6.1 0.10 0.10	ं। । ।	0.18 47	7 Fe(total)0.76 Zn 0.03	334	Ť	212	0	LYNR
P.G.8. E.	-1731	10-16-61		161	7.8 0	0.37	0.69	11 0.48	1.6	00:00	70 2.	2.8	1 ^t 0.35	0 0 0 0 0 0	0.0	12 70.0	cu 0.01, Fe(to- tal) 0.11, Fe 0.0 Zn 0.05	101	8	53	0	DWR
Arcata Redwood Co., domestic & industrial	5N/1E-18Q1	10-12-61		. 698	7.8	0.30	1.24 6	150	4.4	0.00 5.	343 °. 5.62 °.	0.0	3.07	00.03	0.0	25 7.1	C Cu 0.01, Fe(to-tal) 0.40, Zn 0.05	517	22	102	0	DWR
L. L. Spinney, domestic & stock	-2001	10-12-61		574	7.6	14 0.70	0.96	25 % .%	1.4	0.00	1.80 0.	2.0	30	00.0	0.00	0.00	35 Al 0.01, Fc(to- tal)0.01, Zn (.00	175	36	83	0	DATR
a. Determined by addition of constituents.	n of constituents.																					

b. Graviment of detarmination.
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultante (P.C.C.),
c. Analysis by U.S. Geological Survey, Quality of Water Besources (D.W.R.) as indicated.
c. Analysis and Consultante (A.I.), Arsenic (A.I.), Copper (Cu), Lead (Pb), Manganess (Mn), Zinc (Zn), reported here as 600 except as shown

	100		05	Specific					Mineral	Mineral constituents	nts in	d Ninbe	parts per millian equivalents per million	million or mill	l lo		Total		Hard	5	
Owner and	nymber and ather number	Oate eampled	Ten Feri	conduct- ance (mlcra- mhas at 25°C)	된 전 전	Calcium Magne- sium (Ca) (Mg)	Sodium (Na)	Patas-	Carbon ate	Bicar- banate (HCO ₃)	Sul - fate (SO ₄)		Irote (NO ₃)	Fluo- ride (F)	5.0	Silica (SiO ₂) Other constituented	ed solved pavlos de solved in ppm	pos na	as CaCO ₃ Total N.C.		Analyzed by c
A. Capall.	HB & M	9-5-61		181	7.8 67	NORTH COASTAL	STAL REGION 8.8	ON NO. 3)EEL	I RIVER	VALLEY 26	(01-10) 8.0	8.5	1.0	0.13	14 Fe(total)0.05	281	7	240	72	DWR
irrigation					en en	1.4					0.54	0.22	0.14	3.0		0.08					
A. Johnson, domestic & irrigation	-12Dl	9-21-61		501	7.8 13	55 0.73	3 0.61	0.8	000	100	0.10	0.28	0.05	0.0	0.02	27 Al 0.01, Fe(to- tel)0.34, Mn 0.20 Zn 0.02	129	စ္က	2	0	DWR
C. Anderson, irrigation	-1761	8-31-61		559	7.9 34	70 2.53	32 1.39	5 0.07	00.00	3.47	25	38 1.c7	8.00	0.0	80.0	22 Fc(total)1.5, Mn 0.58, Zn 0.03	320	ŧ5	717	04	DWR
Golden State Co., industrial	3N/1W-18KC	19-11-01		161	8.2 30	3.02	20.91	2.8	00.00	281	23 0.43	0.35	0.02	0.4	0.07	25 Fe(total)0.95, Cu 0.02, Fb 0.01, Mn 0.04, Zn 0.06	292	16	526	0	DWR
C. Goble, irrigation	-2961	8-31-61		76 [†]	8.3 29	35 35	1.09	2.8	00.00	278	0.33	118	0.03	0 0 0	0.13	19 Al 0.01, Fe(to-tal)0.54, Mn 0.31, Zn 0.01	28t	8	215	0	DWR
R. Tedson, irrigation	-30M	10-23-61		453	8.2 44	27 27 20 2.26	9.8	3 0.05	000	3.67	28 0.58	12 0.34	0.27	0.1	0.15	19 Cu 0.01, Fe(to-tal)0.02, Fb 0.01	569	6	223	39	DWR
J. V. Toate	3N/2W-2A2	10-25-61		1,960	7.8 72 3.59	08.5 68 68 68	178	20.00	00.0	78	24 0.50	574 10.19	6.8	0.0	90.0	20 Fe(total)0.10, Fb 0.01, Zn 0.05	998	275	520	1,56	IWR
P. M. Christianaen, irrigation	-2701	8-31-61		6,860	7.5 124 5.68	281 50 23.05	33.50	22 50 0.56	00.00	3.74	3.14	2,150	7.6	0.0	0.20	24 Fe(total)2.0, Mn 4.6	3,710	R	1,640	1,450	DWR
R. Connick Co., irrigation	-3201	10-25-61		1,700	8.2 43	12 tr.14	7 5.57	4.4 0.11	00.00	3.60	0.83	11.59	2.3 10.0	0.5	0.15	24 Cu 0.03, Fe (to-tal) C.62, Fb 0.01, Mn 1.6, Zn 0.05	907	59	331	151	DWR
P. C. Lorenzen, Irrigation	-35M1	10-11-01	.,	1,130	7.9 47	60 14.55	3.35	13	0 0 00	265	31	212 5.98	0.02	0.0	80.0	27 Fe(total)1.6,Mn 0.05,Zn 0.01	n 599	턵	365	143	DWR
W. B. Mooy, domestic	MIBRA 22N/12W-612	8-16-61		412	8.1 46	30 20	3 0.70	0.02		ROUND VALLE 0 272 0.00 1.45	0.0 0.00	33.00	2.6	0.0	0.14	23 Cu 0.06, Re(to-tal)0.15, Pp 0.01, Mn 2.0, Zn 0.04	257	15	198	0	DATR
C. B. Rohn, 1rrigation	-19FI	19-91-8		864	8.4 34 1.70	11 07	1 0.43	3 0.02	5 2 0.07	304	0.52	5.5	4.2 0.07	0.0	80.0	27 Cu 0.03, Fe(to-tal)0.04, Fo 0.03	30 30 30	-30	566	77	IWR
B. Hurt, domestic	22N/13W-1J	8-16-61		214	7.9 21 1.05	05 0.93	6.8	0.6	000	0 113	10	4.2	3.6	000	0.11	13 Fe(total)0.16, Pb0.00,Nn 0.01, Zn 0.45	126	13	66	9	IWR
R. T. Hurt, irrigation	Dist-	8-16-61		348	8.2 34	70 1.3	20 10.87	20.0	00:00	3.54	6.2	6.8 0.19	000	0.02	0.11	23 As 0.02, Fe(to- tal)0.09, Fb0.00, Mn1.8, Zn0.01	†17 Ji	R	154	0	IWR
Determined by addition of prostituents	of constituents		1																		

O. Determined by addition of constituents.
D. Gravimetric determination.
C. Analysie by U.S. Goldagled Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (F.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

d. Iran (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown.

Continue Continue		State		3	Specific				Mineral	Mineral constituents	ants in	•	parts per million equivalents per million	Per mitti	S L			Total		Hardnes		
C-16-63 C-16-64 C-16	Owner and	number and other number	Oats sampled	5 E	mlero- mhos		—		Corbs (CO.)	Bicar bonote		0.0	- Ni-	5 E	(B)		Other constituents ^d	edide solide myq ni	E SE	os CoCo		Pazz
C-16-61		MIBSW	0			TORTH COAS		ĕ	-	UTD VALI	⊵ '	नि	ᅒ		├	, ;	10 of 10 of	C ! !	 	\vdash	-	,
0-16-61	F. F. Robrbaugh, domestic	22N/13W-13A1	2-16-61			00 00					0.27		700			긔	Zn 0.23	143			<u></u>	4
8-16-61	Crawford Lumber Co., domestic & industrie		8-16-61			 					0.14		0 1 0			91	A10.01, Aso.02, Cuo.01, Fe(total) 0.15, MnO.30, ZnO.	132			置 	gg .
8-16-61 669 8.3 66 32 20 0.6 0.6 0.7 700 0.00 0.00 0.00 0.00 0.	G. Graver, irrigation.	-31v1	8-16-61			 					0.13		000			캠	A10.02, As0.01, Gu 0.04, Fe(total)1. Pb0.01, Mn0.24, Zn 0.05	141			<u> </u>	ps
8-16-61	E. Baner, domestic, irrigation & stock	23N/12W-33L1	8-16-61			 					000		0. +0			웨	A10.03,As0.12, Cu 0.05, Fe(tots1) 0.37, Fb0.02, Mn2. Zn 0.14				<u>គ</u>	<u> </u>
8-16-61 223 7.0	W. V. Clark, domestic & irrigatio		8-16-61								0.23		0.0				Fe(total)0.03, Zn 0.04	232			<u>芦</u>	Æ
	irrigs tion	-36P2	8-16-61							1.96	0.19		φδ. 				A10.14, Pe (total)				É	Et.

totind or constituents.

Miscall School (U.S.G.S.), Pacific Chemical Consultante (P.C.C.),

Bedoelded Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultante (P.C.C.),

Laboratory (T.T.L.) or Stats Department of Water Resources (D.W.R.) as indicated.

Laboratory (T.T.L.) or Stats Department of Water Resources (D.W.), Sinc (Z.A.), reported here as 6.00 sacept as shown with (AI), Arsenic (AB), Copper (Cu), Lead (P.D.), Manganese (Mn), Zinc (Z.A.), reported here as 6.00 sacept as shown

⁻²⁰²⁻

	State well		w. c	Specific					Mineral		constituents	. <u>.</u>	parts per millian	ts per	millio	-			L	Hardness		
Dwner and	number and		Temp		E E		⊢		200				١		- 0				100	as CaCO 3	Anolyzed	pez/
98 0		peidung	- 16 L	mhas at 25°C)		(Ca) (Mg)		Sadium (No)	sium (K)	ate ban (CO ₃) (HC	HCO ₃) (S	(SO ₄)	(Cig.	trate (NO ₃)	<u></u>	(B)	(SiO ₂) Other constituents ^d	solids in ppm		Total N.C. ppm ppm	-	,
	MDBGM							UKIAH	AH VALLEY	(21-15)												
E. B. Miller domestic	14N/12W-5K1	9-61		588	8.4 57 2.34	34 21 1.72		1.65	0.05	$\begin{array}{c c} 3 & 301 \\ \hline 0.10 & 4.93 \end{array}$	93 1.19		0,18	0.02	0.02	0,85	24 Fe 0.44 (Totel) A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.03	359		228 0	DWR	
M. Mehtonen domestic	14N/12W-26K1	9-61		362 8.	8.3 $\frac{24}{1.20}$	20 20 1.82		0.74	0.0	0,00	3.18 0.11 0.11		0.45 0	00.0	0.03		30 Fe 0.38 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.22 Zn 0.01	213	02	151 0	DAR	
Regina Weter Co. municipal	15N/12W-21H1	19-61		242 7.	7.9 24	20 1.02		0.42	0.03	0.00	36 0.13		0.24	0.01	0.0	0,61	15 Fe 0.03 (Totel) Al 0.00 Ae 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.00	149	16	0 111	DAR	
D. Broggi domestic and irrigation	15N/12W-35D1	9-61		7.	7.5 40	00 14		31 0.	0.01	0,00	234 4.6 3.84 0.10						Fe 0.53 A1 0.00 Cu 0.01 Mn 0.24	274	98	160 0	DWR	
P. Srown domestic	16N/12W-5D1	9-61	ø	356 8.	8.1 $\frac{21}{1.05}$	05 20		24 1.04 00.00	0.02	0.00	176 1.8 2.88 0.04		0.70	0.0	0.02		90000	209	28	0 75	PAR DE	
P. Brown irrigetion	16N/12W-5D2	9-61		325 8,	8.0 17	85 1.47		28 1.22 0.0	0.02	0.00	$\begin{array}{c c} 179 & 1.5 \\ \hline 2.93 & 0.03 \end{array}$		0,45	0.04 0	0.02	90.00	2000	197	3¢	0 911	NA NA	
P.G. & 8. domestic and industrial	16N/12W-9Q1	9-61		414 8.	8.8 28 1.40	8 17 40 1.38		1.65	0.0	0.53 3.	3,59 7.2		0.22	0.00	0.03	0.10	0.000	254	37	0 681	DAR	
J. E. Nelson domestic	17N/12W-18A1	9-61		1950 7.	7.9 38	90 0.46		355	0.02	0.00	3.65 0.00		100	0.02	9,00		0.0000	1130	87	0 111	ž.	_
H. Mathews downatic	17N/12 w-2 8H1	9-61		205	7.0 0.70	70 0.90		00.00	0.4	0.00	7.3	0.33	0.20	0.39	0.0	% o o o o o o o o o o o o o o o o o o o	32 Fe 0.14 (Total) Cu 0.00 Pb 0.00 Pm 0.07 Zn 0.21	150	21	80 50	E	ii.
A. DaMarcantonio	12H/11H-2F1	19-6		8	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	2.20	21 1.74 0	SANEL 11 0.48 0	11.4 VAL	SANET. VALLEY (1-16) 1.4 12 2 0.04 0.40 3.	212	0.40 0.40 0.60	0.17	0.010	0.0	8 0.3	18 Fe 0.04 (Total) Cu 0.00 Pe 0.00 Fe 0.00 Pe 0.00 Fe 0.00 Fe 0.00	239	= = = = = = = = = = = = = = = = = = = =	0 261		
Patentilland by addilland	of constituents				\dashv							-		-	-	-			-	+		

Determined by addition of constituents.
 Gravimatric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.S.S.), Pacific Chemical Consultante (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) os Indicated.
 Linn (Fe), Alswinnum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manageness (Mn), Zinc (Zn),

⁻²⁰³⁻

	P													
	Analyzed by c			DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR
	as CaCO ₃	N.C.		8	0	0	14	18		0	0	6	0	0
		Tata! ppm		169	149	84	149	158		18	144	265	178	103
	L DOS	Ē		10	50	14	10	12		91	13	6	10	16
Total	- sip			201	212		184	203		400	175	313	215	139
		(SiO ₂) Other constituents		Fe 0.63 (Total) Al 0.00 As 0.00 Cu 0.04 Pb 0.00 Mn 0.14 Zn 0.01	Fe 0.00 (Total) Al 0.02 As 0.00 Cu 0.00 Pb 0.00 mn 0.00 Zn 0.02	Fe 0.56 (Total) A1 0.00 As 0.00 Cu 0.02 Pb 0.00 ru 0.00 zn 0.02	Fe 0.00 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.05	Fe 0.08 (Total) Al 0.00 As 0.00 Eu 0.00 Pb 0.01 Mn 0.00 Zn 0.02		Fe 0.12 (Total) A1 0.00 As 0.01 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.45	Fe 3.6 (Total) A1 0.00 As 0.00 Cu 0.02 Pb 0.00 Mn 0.00 Zn 0.05	Fe 0.02 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.02	Fe 0.02 (Total) A1 0.03 As 0.00 Cu 0.02 Pb 0.01 Mn 0.00 Zn 0.03	Fe 0.04 (Total) Al 0.07 As 0.00 Cu 0.00 Ps 0.00 Mn 0.00 Zn 0.06
				12	19	16	2	있		क्ष	16	窓	12	<u> </u>
Hion	Borga	<u>6</u>		0.23	2.3	0.29	0.27	0.28		0.32	0.09	0.17		0.67
or milli per m	Fluo	şē.						0.00			0.0			0.00
parts per millian equivalents per millian	Ä	trate (NO ₃)		0.4	0,19	0.02	0.0	0.19		0.0	0.03	0.21	0.0	0.0
oquiv		وَقِق		5.5 0.16	0.24	0.11	0.19	0.22		33 0.93	0.17	0.23	0.13	0,13
nts in		fot• (SO ₄)		0.29	0.27	0.14	0.42	0,40	-	0.00	12 0.25	0.25	0.20	0.11
Mineral constituents	Bicor-	bonate (HCO ₃)	(Cont.)	192 3.15	2.93	104	151 2.47	162 2.66	(21-1)	287 4.70	2.87	300	3.64	$\frac{134}{2.20}$
neral c	Carbon	ote (CO ₃)	1-16)	0.20	0.17	00.00	0,23	0.13	_	0.00	00.00	0.20	0.00	0.00
2	Patos-	Sign (K)	VALLEY	0.5	0.02	0.0	0.0	0.02	ALEXANDER VALLEY	5.0 0.13	0.02	0.01	0.02	0.03
		(No)	SANEL V	0.40	0.74	0.28	0.33	0.42	ALEX	118 5,13	0.44	$\frac{12}{0.52}$	9.4	0.40
		sium (Mg)		2.23	1.78	0.83	1.63	1.76		0.18	23	3.84	$\frac{17}{1.42}$	0.96
	1000	(CO)		23	24 1.20	0.85	1.35	28 1.40		0.18	0,95	1.45	43	1.10
	王	13	<u>. </u>	8,6	9.6	8.3	8.7	8.0		8,3	0.0	8.4	8,1	7.8
Specific	ance	mhos of 25° El		356	359	191	318	351		551	304	513	364	229
	Tamp													
	Date			9-61	9-61	19-6	9-61	9-61		8-21-61	9-61	9-61	19-6	9-61
State well	number and		MDBGM	13N/11W-7D1	13N/11W-18B1	13N/11W-18D1	13N/11W-19N1	13N/11W-30H1		9N/8W-7Q1	141-M6/N6	10N/9W-26L1	11N/10W-28N1	11N/10W-33A1
	Owner and	950		E. F. Hawn irrigation	A. Damiano irrigation	J. H. Pomroy Co. irrigation	Hopland Public Utility District municipal	Grace Ranch domestic, stock, and irrigation		Redwood Hereford Ranch domestic and irriga- tion	H. Dick irrigation	W. D. Dana irrigation	Italian Swiss Colony irrigation	Italian Swies Colony domestic and industrial

a. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. tran (Fe), Aluminum (Al), Argenic (As), Copper (Cu), Lead (Pb), Manageness (Mn), Zinc (Zn),

	Pez.												
	Analyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hardness	000	N.C. E gg		14	0	0	4	0	45	0	0		0
		Totol		59	67	13	296	155	157	96	29		80
-	Sod-	Ē		35	81	9,6	29	19	50	55	25		E .
Toto		in ppm		143	325	283	495	256	250	294	222		189
		(SiO ₂) Other constituents		Fe 0.01 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00	9 9 9 9	Kn 0.00 Zn 0.01 Fe 0.79 (Total) Al 0.00 As 0.00 Du 0.01 Pb 0.02 Mn 0.00 Zn 0.22	Fe 0.00 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.51	0.02	0.00	Fe 0.44 (Total) Al 0.04 As 0.01 Cu 0.02 Pb 0.01 Mn 0.50 Zn 0.05	Fe 0.19 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.02	Fe 0.20 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.08	Fe 0.16 (Total) A1 0.04 As 0.00 Cu 0.00 Pb 0.01 Mn 0.26 Zn 0.66
				%	128	32	99	89	3	89	69	1	29
LIION		<u>@</u>		0.07	0.68	2.0	0.22	0.05	0.04	0.11	0,05		0.02
ports per million equivolents per million		e (F)		0.00	0.02	0.07	0.02	0.00	0.00	0.02	0.02		0.0
orts pe	Ξ	trate (NO ₃)		0.32	0.8	0.02	0,44	0.14	0.32	0.01	0.00		0.0
Ainbe		<u>ş</u> .		21 0,59	30	34 0.96	1.38	9.2	1,16	37 1,04	0,93	1	0.16
i c		fote (SO ₄)	i.	0.00	28 0.58	4.1	36	0.08	0.19	0.00	5.6 0,12		0.00
Mineral constituents	Bicar-	bonate (HCO ₃)	(1-17) (Cont.)	55 0.90	3.92	211 3,46	356	3.28	136 2.23	3.33	112		153 2.51
neral co	Corbon-	ote (CO ₃)		1-	1-	0.00	0.00	0.00	0.00	0.00	00.00		00.0
Ī	Potas-	Sium (K)	VALLE	0.9 0 0.02 0.00	1,2 0,03	0.0	0.04	1,2 0,03	0.04	0.05	0.04		0.05
	Sodium	(No)	ALEXANDER VALLEY	15 0.65	102	98	2.44	0,74	0.78	2,44 2,44	35 1.52	1	0.83
		sium (Mg)		0.68	5.2	0.04	3.07	18 1.50	1.79	13	7.8		0,96 0,96
	Colcium	(00)		10 0.50	0.55	4.4	2.84	32 1.60	1.35	0,85	14 0,70	1	0.80
0 ±	표	6	4	6.9	8.2	8.0	8.3	8,1	8.0	8,0	7.7		6.2
Spacific conduct-	ance (micro	mhos ot 25°C)		199	523	453	762	360	413	430	295		243
	Tamp in °F												
	Sompled			9-61	9-61	9-61	9-61	9-61	9-61	9-61	9-61	9-61	9-61
State well	other number		MDB&M	11N/10W-33G1	5N/9w~3F1	6N/7W-17E1	6N/7W-18R1	6N/7W-30D1	6N/8W~3B1	6N/8W-16R1	6N/8W-35A2	6N/9w-2GI	78/6w-29P1
	Owner and	us•		C, Pellegrini domestic	R. R. Mattrl irrlsetlon	G. L. Crane irrigation	J. J. Wilson irrigation	T. Carley irrigation	G. Mallory domestic	J. Pedranzini Irrigation	Cotati Public Utility District municipal	City of Sebsstopol municipal	Kenwood Fire Department municipal

Defermined by addition of constituents.
 Gravimetric determination.
 Gravimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Woler Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn),

	Anolyzed	3 6 0		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
		N.C.		29	0	0	0	17			0	0	0	0
	os CoCO 3	Totol		213	81	154	130	164			88	116	42	47
	Cont.	E E		45	36	38	41	56			63	88	. 45	07
		solids in ppm a		187	508	354	309	322			308	243	146	158
		(SiO ₂) Other constituents ^d		Fe 0.31 (Total) A1 0.01 As 0.01 Cu 0.00 Pb 0.01 Mn 0.00 Zn 0.29	Fe 0.74 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00	Fe 0.52 (Total) Al 0.06 As 0.00 Cu 0.01 Pb 0.01 Mn 0.08 Zn 0.04	Fe 2.7 (Total) Al 0.02 As 0.00 Cu 0.02 Pb 0.01 Mn 0.00 Zn 0.08	00000	Fe 1.6 (Total) Al 0.04 As 0.00 Cu 0.00 Pb 0.00 Mn 0.30 Zn 0.01	Pe 1.1 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.30 Zn 0.01	Fe 0.00 (Total) Al 0.02 As 0.00 Cu 0.00 Pb 0.01 Mn 0.06 Zn 0.03	P & d Z	0.63	Fe 0.12 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00
				3	73	16	위	<u>8</u>	1	1	73	হা	9]	991
	Porog	(B)		0.14	0,08	0.41	0.11	0.08	<u></u>		0.11	0.00	0.01	0.0
r mille	Fluo	Ę.		0.2	0.02	0.0	0.02	0.2	1		0.00	0.00	0.3	0.0
parts per million	ż	trote (NO ₃)		13 0.21	0.01	0.0	0.00	0.48			0.0	0.00	0.5	0.6
a	1	(C)		142 4.00	5.8 0.16	19 0,54	0.42	1.38			0.76	0.48	0,34	14 0,39
nts in		(SO ₄)	(1	36	3.1 0.06	0,00	36 0.75	0.10			0.00	0.05	6.7	0,33
Mineral constituents	Bicor-	bonote (HCO ₃)	VALLEY (1-18) (Con	178 2,92	150 2.46	290	3.38	150 2.46			4.24	3.29	0.98	0.93
erol c	Carbon	ote (CO ₃)	у (1-1	0.00	00.00	00.00	0.00	0.00			00.00	0.00	000	0.00
¥	Patos-	sium (K)	- 1		0.11	6.8	0.07	0.12			3.1 0.08	0.04	1.5	0.04
		(No)	SANTA ROSA	81 3,52	22 0,96	45	43	1.17			3.09	33	15	0,65
		mnis (Mg)	921	1.42	0.97	19 1.58	17 17 17 17 17 17 17 17 17 17 17 17 17 1	25 2.08	1		0.36	1.22	3.5	0.29
	ani Ju	(00)		2,84	13 0.65	30	1.20	24 1.20			1.40	$\frac{22}{1.10}$	11 0,55	13 0.65
· ·	E L	<u></u> 6		8.1	7.8	8.3	8.1				8.1	8.1	7.6	7.3
Spacific	conduct- once (micro-	mhos ot 25°C)		830	250	787	877	787			473	367	155	175
	Temp in °F													
	Oate			19-6	9-61	9-61	9-61	9-61	9-61	9-61	9-61	9-61	9-61	9-61
Stote well	number ond		MDBGM	7N/7W-14P1	7N/7W-15C1	7N/7W-2901	7N/8W-3L1	7N/8W-5G1	7N/8W-13P1	7N/8W-24A6	7N/8W-31C1	7N/8W-33M1	7N/9W-9F1	7N/9W-29R1
	Owner and	esn		Annadel Farms Irrigation	M. Clarke domestic and irrigation	E. F. Bethards domestic and irrigation	W. E. Samuelson domestic	C. Bordessa domestic		Sessions Hereford Ranch	C. Dotti Irrigation	A. Marks domestic and irrigation	C. W. Gilbert	A. Helwig domestic end

Determined by addition of constituents.
 B. Gravimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated. Iran (Fe), Aluminum (Al), Arganic (As), Copper (Cu), Lead (Pb), Managanese (Mn), Zinc (Zn),

⁻²⁰⁶⁻

	Anolyzed by c		DWR	DWR	DWR				
			0	0	0				
Hardness	Totol Ppm		131	158	75				
	fue sod		67	07	35				
Total	solved solved in ppm		286	369	171				
	Silica Other constituents ^d (SiO ₂)		Fe 0.74 (Total) Al 0.00 As 0.00 Cu 0.01 Pb 0.00	0.02	0.00				
			45	83	88				
lon	Boron (B)		0.06	0.16	0.02	<u> </u>			
E	Fluo- ride (F)		0.0	0.3	0.00				
equivalents per million	NI- trote (NO ₃)		0.6	0.00	0.0				
equivo	Chio- ride (CI)		38	30	6.8 0.19				
ri s	Sul - fote (SO ₄)	-	5.8 0.12	18	0.00		-	,	
constituents	Bicar- banate (HCO ₃)	(Cont.)	3.47	267	129 2.11				
Mineral co	Potos-Carbon- sium ate (K) (CO ₃)	(1-18)	0.00	0.00	00.00				
M.	Sium (K)		0.04	0.19	0.0				
ı	Sadium (No)	SATA ROSA VALLEY	46	51 2.22	18 0.78				
	Mogne- sium (Mg)	SVS	0.92	1.96	9.1				
	Colcium (Co)		34 1.70	24 1.20	15 0,75				
!	Ŧ. G		8.0	8.2	7.8				
Specific	ance (micro- mhos of 25° C)		467	535	216				
	Temp in °F								
	Date		9-61	9-61	9-61				
Store well	number and other number	MDB&M	7N/9W-36M1	8N/8W-20Q1	9N/10W-1C1				
	Owner and		Sebastopol Meat Co. industrial and irrigation	H. A. Faught irrigation	Frei Brothers domestic and industrial				

Determined by addition of constituents.
 Grovimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn),

Carrier Carr		State well	Date		Spacific canduct-					Mineral	rai con	constituents	. <u>e</u>	parts per million equivalents per million	rts per	parts per million valents per mill	[<u>e</u>		Total	1	Hardness as CaCO		
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	pug	other number	sampled	E e	mhos at 25° C	£	E			(K)	arbon B ate CO ₃) (F		Sul - fate (SO ₄)					Silica SiO ₂) Other canatituent		P S E	Total	$\overline{}$	Analyzed by c
11 11 11 11 11 11 11 1								SAN	FRANCISC	O BAY													
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,									PETALU	MA VAL		 											
31/66-541 4-17-61 62 4.000 7-9 7-34 14.2 15.2 1	and stock	3N/6W-1Q1	4-17-61											3.86	0.7		2.33	<u></u>	752	70	202	0	DWR
31/64-5A1 4-17-61 62 11000 8.0 9-13-61 6.4 10000 8.0 9-13-61 6.4 1	and in	3N/6W-3C1	9-61											3,92 1100 31,02	0,02 0,02 0,29				213(0011	38		45	DWR
31/64-5A1 4.17-61 6.2 11000 8.0 9.29 9.50 1700 120 0.00 13.73 0.00 13.73 0.00 100.75 0.00			9-61		8050								***		45			ABS 0.0	1		1660		WR
31/64-1181 4-17-61 64 1090 1-2 1950 1-2 1-2 1950 1-2 1-2 1950 1-2 1-2 1950 1-2 1-		3N/6W-5A1	4-17-61														1,44	<u> </u>	ed) 6350	63			WR
3N/6W-1581 4-17-61 55 460 6.8 40 13.67 10.00 10.			9-13-61		10900								•	3500							2290		JWR.
$3N/6W-15M1 \qquad 4-17-61 \qquad 57 \qquad 460 \qquad 6.8 \qquad \frac{40}{2.00} \qquad \frac{15}{1.26} \qquad \frac{26}{1.13} \qquad \frac{111}{0.05} \qquad \frac{60}{0.00} \qquad \frac{41}{1.12} \qquad \frac{60}{0.00} \qquad \frac{41}{0.005} \qquad \frac{366}{0.001} \qquad \frac{12}{0.006} \qquad \frac{111}{0.006} \qquad \frac{60}{0.001} \qquad \frac{41}{0.006} \qquad \frac{28}{0.000} \qquad \frac{10.00}{0.000} \qquad \frac{28}{0.000} \qquad \frac{10.00}{0.000} \qquad \frac{28}{0.000} \qquad \frac{10.00}{0.000} \qquad \frac{28}{0.000} \qquad \frac{10.00}{0.000} \qquad \frac{20.00}{0.000} \qquad 20.00$	B Co. and dairy	3N/6W-11B1	4-17-61											354			.31		7 1100				WR
3N/6W-15M1 4-17-61 57 460 6.8 40 1.26 1.18 0.0 1.11 60 41 3.8 0.2 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01 0.01 0.00 0.01			9-61		1970									366	15			ABS 0.0			292		W.R.
$3N/6W-18M1 \qquad 4-17-61 \qquad 657 7.0 \frac{34}{1.70} \frac{44}{3.61} \frac{28}{1.22} \frac{0.3}{0.01} \frac{0}{0.00} \frac{169}{2.77} \frac{44}{0.92} \frac{50}{1.41} \frac{172}{1.22} \frac{0.09}{0.01} \frac{25}{0.01} \frac{60.09}{0.00} \frac{25}{0.01} \frac{60.09}{0.01} \frac{60.09}{0.$		3N/6W-15M1	4-17-61	57								_		1.16			70.07	<u> </u>	_				W.R.
$3N/6W-18M1 \qquad 4-17-61 \qquad 657 7.0 \frac{34}{1.70} \frac{44}{3.61} \frac{28}{1.22} \frac{0.3}{0.01} \frac{0.3}{0.00} \frac{169}{2.77} \frac{44}{0.92} \frac{50}{1.41} \frac{17}{1.24} \frac{0.2}{0.01} \frac{10.00}{0.00} \frac{12}{3.00} \frac{169}{0.00} \frac{25}{0.00} \frac{17}{0.92} \frac{0.09}{0.01} \frac{25}{0.00} \frac{1}{0.00} \frac{12}{0.00} \frac{19}{0.00} \frac{1}{0.00} \frac{1}$			9-13-61	92	374									32 0.90							16		NWR.
616 $\frac{52}{1.47} \frac{52}{0.84}$ 246	stock, and	3N/6W-18M1	4-17-61											50			60.0	_೬೩ರಕರ.					WR.
			9-13-61		616									1.47	52 0.84						546		W.R.

Consiminate of unusual or cursifiue ins.
 Growinstric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Managness (Mn), Zinc (Zn), Detergent Surfactsnt (ABS).

	1000			Specific					N S	ral con	Mineral constituents	. <u>.</u>	par	parts per million	parts per million equivalents per million	ا			-			
Owner and	number and	Oate	Tsmp F	conduct- ance	E E	Solcium	1		otos-C	arbon- B			- 5	- IZ	lua- Bo	5	00	- P	Sod Sod			Analyzed by c
951				mhas at 25°C)			sium (Mg)	(Na)	sium ate (K) (CO ₃)	co ₃) (H	banate (HCO ₃) (fate (SO ₄)	<u> </u>	trate (NO ₃)		(B)	(SiO ₂) Other constituents		E E	Total	N.C.	
	MDB6M						21	PETALUMA	VALLEY	(2-1)	(Cont.)											
K. Johnson domestic	3N/7W-14F1	4-17-61		929	8.3	$\frac{\frac{22}{1.10}}{\frac{1}{1}}$	35 2.90	64 2.78	0.9	0.00	247 4.05 0	0,60	75 (0.01	0.7	0.62 3	35 Fe 0.04 (Dissolved) A1 0.00 As 0.00 Cu 0.00 Pb 0.00	red) 384	41	200	0	DWR
		9-13-61		662								[64	75				Cr 0.00 ABS 0.0	mloi		205		DWR
Lopes	4N/6W-7H1	4-17-61		1040	8.2	34	72 5.89	3.96	0.0	0.00	551 9.03 0	0,71	61 1.72	0.26	0.4 2.0		22 Fe 0.00(Dissolv	ved) 604	34	380	0	DWR
		19-6		1170									58	26 0.42			Cu 0.00 Pb 0.00 Mn 0.00 Cr 0.00 Abs 0.0 Abs 0.0			627		DWR
Lopes	4N/6W-7H2	4-17-61		2500	8.6 3.6	62 3.09	76	397	0.05	24 0.80	516 8.46 2	126 2,62			0.5 2.6		19 Fe 0.00(Dissolv A1 0.00 As 0.00	лен) 1480 2	90 65	897	9	DWR
L. A. Sourke	4N/6W-21Q1	4-17-61		1020	8.2	14 0.70	11 0.88	201 8.74	0.04	0,00	382 6.26 0	24 0.50	124 3.50	0.5	0.2 0.0	0.90	Cu 0.01 Pb 0.03 Mn, 0.00 Zn 0.31 Cr 0.00 ABS 0.0 44 Fe 0.06 (Dissolved) A1 0.00 As 0.01	_	609	79	0	DWR
domestic and scock		9-61		1020									122	0.4			Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.01 Cr 0.00 ABS 0.0	lol-loi		77		DWR
L. A. Bourke	4N/6W-27NI	9-61		1080									138	0.9			A8S 0.0			217		OWR
stock S. K. Herzog daity and stock	4N/6W-27R1	4-17-61		1120	8.3	42 2,10	31 2,56	159 6.92	0.05	0.00	438 7.18 0	0.27	145	0.02	0.2	2 2	25 Fe 0.00 (Dissolved) A1 0.00 As 0.00 Cu 0.00 Pb 0.00		634 60	233	0	DAR
O. White irrigation and stock	4N/6W-33R1	4-17-61		4010	8,2	164 8.18	209 17.19	336	0.49	0.00	8.72	0.00	1090 30,74	0.12	0.0	0.29	Cr 0.00 ABS 0.0 A1 0.00 (Dissolved) 2 A1 0.00 As 0.01 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.57	0 ved) 2130 1 0 7	30	1270	834	DWR
		9-61		5530									1590	26			Cr 0.00 ABS 0.0	101		1850		DWR
Union Oil Co. industrial	4N/7W-2D1	9-61		24000									9500	0.18			ABS 0.0			9080		DWR
a. Determined by addition of constituents.	of constituents.																					

Growinstric determination.
 Growinstric determination.

	State well		0.0	Spacific conduct-					Minera	Mineral canstituents	Jents in	inbe	parts per millian equivalents per millian	parts per million valents per mill	Light			Tota		ardness	
Owner and	nymber and ather number	Sampled	Temp in °F)		<u>ੂ</u> ਵ	Calcium Ma	Magne-So sium (Mg)	Sadium s (Na)	Potas-Carbon- sium ate (K) (CO ₃)	Carbon-Bicar- ate banate (CO ₃) (HCO ₃)	Sul - fore (SO ₄)	OFIC OFIC OFIC OFIC OFIC OFIC OFIC OFIC	ni- trate (NO ₃)	Fluo- ride (F)	Boron (B)	Silico (SiO ₂) Other	Silico Other constituents ^d (SiO ₂)	solids solids my ni	sod-in Ta	as CaCO ₃	Analyzed by c
	NDB6M						PET	PETALUMA VALLEY	ALLEY (2	(2-1) (Cont.	1									1	
Riebli domestic and stock	SN/6w-3001	4-17-61		8	8.4	2.20 1	22 1.88 5	5.26	0.04 0.	6 0.20 6.06	0.25	2.88	0.6	0.03	0.43	23 Fe 0. Cu 0. Gu	Fe 0.02 (Dissolved) A1 0.00 As 0.01 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.07	\$15	299	204	0 DWR
N, J. Matzen domestic	5N/7W-8D3	9-61		776								169	1.1	10		Cr 0.00	00 ABS 0.0			318	DWR
Oberg Lumber Co. domestic	5N/7W-19A1	4-17-61		541 8	8.3	34 9	0.78	3,00	2.1 0.05 0.05	$\begin{array}{c c} 0 & 227 \\ \hline 0.00 & 3.72 \end{array}$	2 32 0,67	1.16	0.01	0.01	0.04	29 Fe 0.	Fe 0.02(Dissolved) A1 0.00 As 0.00 Cu 0.00 Pb 0.02	329	54	124	0 DWR
		9-61		542								41 1.16	0.10			Mn 0.00 Cr 0.00 ABS 0.0	00 Zn 0.06 00 ABS 0.0			120	
E. Scott irrigation and stock	5N/7W-20C1	4-17-61		7 716	7.7	3.89	32 2.64 2	61 2,65	0.06	0 185	3,16	3.07	0.6	0.3	0.08	46 Fe 0.	00 (Dismolved)	572	- 53	327 175	5 DWR
		9-61		852								151 4.26	6.8	1		Cr 0.0	Cr 0.01 ABS 0.0			227	DWR
Al's Barber Shop domestic	5N/7W-20L3	4-17-61		2100 8	8.3	251 12.52 3	3.04 4	110 4.78	2.1 0.05 0.0	0.00 3.80	0,62	13.90	0 80	0.00	0.02	48 Fe 0.	00 (Dissolved)	0911 (23	779 589	DWR
		9-61		2100′								448 12.63	3 1.74	PK 1.4		Cr 0.	Cu 0.01 PP 0.01 Mn 0.004 Zn 0.07 Cr 0.00 ABS 0.0			772	DWR
City of Petaluma	5N/7W-22Q1	19-6		867								0.37				ABS 0	0.0			159	DWR
R. E. Atkinson	SN/7W-26E1	19-61		574								$\frac{47}{1.32}$	0.7			ABS 0	0.0			184	DWR
City of Petaluma municipal	5N/7W-28A1	19-6		598								60	0.5			ABS 0	0.0			20	DWR
City of Petaluma municirel	5N/7W-28H3	9-61	_	767								0,70	0.07	le-		ABS 0	0.0			164	DWR
G. E. F -b domestic	5N/7W-28N1	4-17-61		1400 8	0.8	86 4.89 31 8	3.76	5,44	0.04	0 284 0.00 4.65	5 2.42	6,18	0.66	0.3	0.08	39 R C A 100 C M C O 100 O 100 O 100	0.01 (Dissolved) 1 0.00 As 0.00 1 0.02 Pb 0.03 1 0.08 Zn 0.08 F 0.01 ABS 0.0	826	38	433 200	DWR
																			_		

a. Defermined by addition of constituents.
 b. Growinstric determination.
 c. Analysis by U.S. Geologicol Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iran (Fe), Aluminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn), Detergent Surfactant (ABS).

Owner ond other other other other other other other other other domestic, stock, and irrigation				canduct-					Mineral	Mineral constituents	usnts in		equivalents per million	valents per million	ullion			Totol	å	Hardness	_	
	number and other number	Sampled	Temp in °F	ance (micro-	<u>မ</u> မ	Calcium Mo	_		itas-Corbon-	on- Bicor-				Fluo	Boron		Other constituented	solved solved	Sod	ŏ L		Anolyzed by c
				mhos of 25° C)			(6M)	(NO)	(K) (CO ₃)		(504)	(CI)	(NO ₃)	3) (F)			(SiO ₂)		E	Toto1 Ppm p	P C C	
							PET	PETALUMA VALLE		(2-1) (Cont.	<u>(r.)</u>											
	5N/7W-34E2	4-17-61		847 8		0,18	3.2 0.26 8	195 8,48 0	$\begin{array}{c c} 1.0 & 14 \\ \hline 0.02 & 0.47 \end{array}$	4 374 6,13	13 0.37	1.83	<u> </u>	0.7 0.3	0.21	54	Fe 0.13(Dissolved) A1 0.00 As 0.00 Cu 0.00 Pb 0.03	605 (b	96	52	0	DWR
		9-61		842								70/1.97		0.00			Cr 0.01 ABS 0.0			22		DWR
/NS	5N/7W-35K1	9-61		553								1.32		0.02			ABS 0.0			176		DWR
:/NE	3N/3W-18C1	4-18-61		8 068	8.1	39 1.95	42 3,42 3	NAPA-SONO 83 3.61	NAPA-SONOMA VALLEY 83 1.5 0.00 3.61	EY (2-2) 00 313 5.13	13 13 0.64	112 3,16		2.9 0.6 0.05 0.03	0,25	25	Fe 0.00 (Dissolved 0.00 As 0.00	ed) 491	07	269	12	DWR
		9-14-61		1010								127		33			Cu 0.00 Pb 0.00 Mn 0.00 Zu 0.11 Cr 0.00 ABS 0.0			294		DWR
JNC.	3N/3W-18G2	4-18-61		1390	8.1	2.79 6.	73 5	116 0	0.9 0.00	00 273	110 47 2.29			164 0.3 2.64 0.02	0,14	174	Fe 0.00 (Dissolv	ed) 828	36	7 7 7	218	DWR
		9-14-61		1420								163		196 3.16			Cr 0.00 ABS 0.00			479		DWR
/NE	3N/4W-4P1	9-14-61		2300																319		DWR
Napa County Airport 4N/4	4N/4W-2L1	4-19-61	09	755	8.2	$\frac{72}{3.59} \frac{1}{1.}$	1.37 2	2.48	0.5 0	00 2.44	44 44 2.04	34 2.85 2.85		0.07 0.02	0.18	55	Fe 0.01 (Dissolved) A1 0.02 As 0.00 Cu 0.01 Pb 0.00	897 (pa	33	248 1	125	DWR
		9-14-61										91	<u> </u>				Mn 0.00 Zn 0.08 Cr 0.00 ABS 0.0	(m)a		249		DWR
/N7	4N/4W-5C1	4-19-61		569	7.9	8.2 0.41 0.	4.7 0.39 1	40 1.74	1.5 0.04 0.00	00 78	8 28 5.8 0.12			16 0.4 0.26 0.02	0.07	52	Fe 0.01 (Dissolv Al 0.00 As 0.00	red) 196	29 9	07	0	DWR
																	Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.18 Cr 0.00 A8S 0.0	Iolmio.				
		9-14-61		300								0.76	2/2							77		DWR

Determined by addition of constituents.
 Grovimetric determination.
 Grovimetric determin

	State well			Specific					Mine	Mineral constituents	fituents	.c	parts per million equivalents per million	parts per million valents per mill	nillion r millio	١		Total		Hardn	S S	
Owner and	number and other number	Date	Temp in °F	ance (mlcro-	표	E	Magne - S	Sadium P	atos-Co	Carbon- Bi	Bicar			- iS	Fluo-B	Boron Si	Silico Other constituents ^d	solved solved	e de la constant de l	as CaCO ₃		Analyzed by c
				mhos at 25° C)		(00)			(K)	(CO)		(\$04)	ê (i	Ç 0			, co.			PD I	S E G	
	A798.OM						NAP	NAPA-SONONA VALIEY (2-2)	VALIES		(Cont.)											
Press Wireless domestic	4N/4W-7A1	4-19-61		8 484	8.2	0.70	0.90	68 68 6	0.02	00.00	2.13	3.0	81 2.28	0.7	0.01	0,08	He 0.13 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.04 Zn 0.16 ABS 0.0	291	9	08	0	DWR
		9-13-61		497									82 2.31				1			82		DWR
G. Lawrence stock	4N/4W-13E1	4-19-61		2280	7.7	9,63 4,	54 4.41 9	216 1	0.02	00.00	266 4.36 6	326 6,79 1	412	36.0	0.3	0.28	39 Fe 0.00(Dissolved) 1430 Cu 0.01 Pb 0.00 Cu 0.01 Pb 0.00 Ph	ed) 1430	07	703	485	DWR
		9-14-61		1850								Jω	304				cr 0.00 A8S 0.0			897		DWR
H. Mini stock	4N/4W-25KI	4-19-61		1250 8	8.4 2.	43 9	97 76.7	92 2 2	2.3	0,33	\$27 8.64 1	$\frac{60}{1.25}$ $\frac{2}{2}$	102 2.88	54 0	0.02	1.2	32 Fe 0.00(Dissolve A1 0.01 As 0.00	ed) 753	28	909	28	DWR
													75				Cu 0.02 Pb 0.00 Mn 0.00 Zn 0.08 Cr 0.00 ABS 0.1					
		9-14-61		1140									_							458		DWR
J. S. Navy municipal	4N/5W-1402	19-81-7		957 8	8,4	12 0.60 0.00	0,70	7.87	3.0	0.20	4.87	1.00	119	0.8	0.04	0.15	82 Fe 0.14 (Dissalved) A1 0.00 As 0.00 Cu 0.00 As 0.00	ed) 607	85	65	0	OWR
		9-61		943									119 3.36	0.7			Cr 0.00 ABS 0.0			59		DWR
Sonoma Ranch stock	4N/5W-32B1	9-61		9190								,	2850	33			A8S 0.0			1810		DWR
Sonoma Ranch stock	4N/5W-34D1	4-18-61	62	8 2990	8.1	81 6.04 6.	80 6.55 T	415	0.36	0.00	628 10.29	0.6	643	0.04	0,2	2.1	68 Fe 0.00 Dissolved A1 0.00 As 0.01 Cu 0.00 Pb 0.00	ed) 1620	62	530	15	DWR
		9-61		2860									572 16.13	40			Cr 0.00 ABS 0.0			524		DWR
M. L. George domestic	5N/4W-9Q2	4-19-61	79	997	8.1	20 1.00	1.24	2.30	0.02	0.00	3.60	0,16	32	0.00	0.03	0.08	Fe 0.00 (Total)	294	20	112	0	DWR
		9-14-61		478								•	36				Mn 0.07 Zn 0.07		-	116		OWR
o. Determined by addition of constituents.	of constituents.									-												

Observinetic determination.
 Convinetic determination.
 Convinetic determination.
 Candysts by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn), Detergent Surfactant (ABS).

	State well		0, 0	Specific canduct-					Mineral	ral con	constituents	. <u>e</u>	parts per millian equivalents per millian	parts per millian valents per mill	millia	e e		Tatal	à	Hardne	85	
Owner and	nymber and ather number	Sampled	Temp in °F		HZ 5	Calcium Mo	_	فتنفصا	atas - Ca					-IN			iica		Cent	as CaCO ₃		Analyzed
esn.				mhas at 25° C)		_	Sium (Mg)	(DN)	Sium (K)	ote (CO ₃) (H	banate (HCO ₃)	fate (50 ₄)	(C)	trate (NO ₃)	ğ.	(8)	(SiO ₂) Other constituents ^a	in ppm a	Ē	Tatal	N.C. PPm	,
	W98@W						NAPA	APA-SONOMA	VALLEY	(2-2) (Cont.	(Cont.)											
W. Gellenger domestic	5N/4W-11F3	4-19-61		869	. 8 . 8	16 7. 0.80 0.	0.58	121 5.26	0.14	0.00	252 4.13	0.00	94 2.65	0.01	0.0	2.2	74 Pe 0.04(Dissolved of 0.00 As 0.03 Cu 0.00 Pb 0.00 Mn 0.32 Zn 0.04	445 (5)	78	69	0	DWR
		. 9-13-61		700									85				or o			69		DWR
P. A. Casser domestic and stock	5N/4W-14C1	4-19-61	63	237	7.4	0.70	0.78	0.74	2.3	0.00	102	0.10	0.51	0.0	0.0	90.00	66 Fe 0.17 (Dissolve A1 0.02 As 0.01 Cu 0.00 Pb 0.00 Mn 0.54 Zn 0.07	182 0	32	74	0	DWR
		9-14-61		569									18 0.51				Cr 0.00 ABS 0.0	6		83		DWR
J. Healy domestic	5N/4W-15E1	4-19-61		707	8.5. 	25 1.25 0.	9.4	2.09	0.07	0.13	3.08	0.0	34 0.96	0.01	0.03	0.11	56 Fe 0.01(Dissolved) A1 0.00 As 0.00 Cu 0.00 Pb 0.00	ved) 272	20	101	0	DWR
		9-14-61		067									54 1.52				Mn 0.28 zn 0.10	lolol		125	·····	DWR
A. I. Poe domestic	5N/4W-21P2	4-19-61		2130	8.7	36 1,80 0,	0.98	425	6.3	0.60	336	125 2.60	101	0.03	0.2	0.46	28 Fe 0.02 (Dissolve Al 0.02 As 0.02	red) 1250	- 98	139	0	DWR
		9-14-61		2300									428				Mn 0.00 Zn 0.05 Cr 0.00 ABS 0.0			143		DWR
Napa State Hospital	5N/4W-23C2	9-14-61		241									8.0							95		DWR
Adams and Forbes	5N/4W-2681	4-19-61	986	356	8.4	20 1.00 0.	0.80	39	0.12	0.07	3.10	0.00	0.48	0.01	0.02	0.27	0.15	red) 300	- 74	06	0	DWR
		9-14-61		358									16				Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.02 Cr 0.00 ABS 0.0			93		DWR
J. Firmingner domestic	5N/5W-18D2	4-18-61		516		1.35	21 1,75	1,83	0.06	00.00	2.72	0.42	0.8	0.98	0.07	0.14	84 Fe 0.00 (Dissolve Al 0.00 As 0.01 Cu 0.02 Pb 0.00 Mn 0.00 Zu 0.12 Cr 0.00 ABS 0.0	ed) 373	33	155	19	DWR
a. Determined by addition of constituents.	of canstituents.																					

Determined by addition of constituents.
 Gravimetric determination.
 Gravimetric defermination.
 Analysis by U.S. Geological Survey, Quality of Wafer Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Arminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Aluminum (Al), Arsanic (As), Capper (Cu), Lead (Pb), Managness (Mn), Zinc (Zn), Detergebt Surfactent (ABS).

	State well			Specific conduct-					₹ E	rol con	Mineral constituents	<u>:</u>	od	ents par	ports per million aquivolents per million	ign		Tofo	-		8800	
Owner and	buo namber	Dote sompled	Tamp in °F	ance (micro-	Ŧ	aniolo 7	 		Ofos-C	arbon-	3icar-	- Ins	-01-62	- Z	Fluo-	و	co:		Sent Sent P	- 1	os CaCO 3	Anolyzed
e \$n				mhos of 25° C)			sium (Mg)	(No)	sium ate (K) (CO ₃)	ote to	banote (HCO ₃)	fore (SO ₄)	2 2 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	(NO ₃)	ride (F)	(8)	(SiO ₂) Other constituents	fed solids in ppm	SE E	Total	N.C.	a fa
	MORON.						NAFA	NAFA-SONOMA V	VALLEY	(2-2)	(Cont.)											
L. Miglioretti domestic and irrigation	5N/5W-20R1	4-18-61		1020	9.	0.85	0,73	208 9.05	0.03	0.67	440	0.33	88 2.48	0.8	0.00	4.3	25 Fe 0.00(Dissolved) A1 0.00 As 0.00 Cu 0.00 Pb 0.00		605 85	6/ 9	0	DWR
		19-6		852									55 1,55	0.4			Mn 0.06 Zn 0. Cr 0.00 ABS C	위인		38		DWR
E. L. Smith domestic and stock	SN/6W-12F1	4-18-61		375	7.7	0.80	1,16	41	0.04	0.00	181 2.97	8.9	20 0.56	3.3	0.2	0.47	29 Fe 0.00 (Dissolved	_	253 47	86	0	DAR
		9-61		418									20 0,56	0.1			Mn 0.06 Zn 0.0 Cr 0.00 ABS 0.0	임취임		69		DWR
M. Kiser	5N/6W-24K1	9-61		416									15	0.6			ABS. 0.0			179		DWR
T. E. Connely domestic	5N/6W-25P1	4-18-61		208	ω 	28 1.40 1	1.48	43	2.3	0.00	162 2.66	6.2	69	2.6	0.2	0.00	83 Fe 0.00(Disso A1 0.01 As 0.		332 39	144	11	DWR
																	Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.23 Cr 0.00 A8S 0.0	8 2 6				
		9-61		205									65	0.07			ABS 0.0	Ī		144		DWR
C. L. Barber	6N/4W-6P1	9-13-61		474									19							208		DWR
A. R. Johnson domestic and stock	6N/4W-15Q1	4-19-61		260	7.9	09.0	5.1	33	0.11	0.00	$\frac{127}{2.08}$	60,00	9.1	6.5	0.0	0,15	56 Fe 0.01 (Disso A1 0.00 As 0.	କ	193 56	51	0	DWR
		9-14-61		258									6.5				Cu 0.00 Pb 0.00 Mn 0.00 zn 0.26 Cr 0.00 ABS 0.0	8 2 2		43		DWR
R. Ohlandt	6N/4W-17A1	9-14-61	49	365									9.1							136		DWR
N. Tervio domestic	6N/6W-23M2	4-17-61		470	7.7	0.60	5.8	3.00	0.38	0.00	149	3.8	98.1	0,7	0.8	1.6	73 Fe 0.05(Disso A1 0.00 As 0.		321 67	54	0	DATR
													;				Cu 0.00 Pb 0.02 Mn 0.30 Zn 0.40 Cr 0.00 A8S 0.0	819191				
		9-61		471									1.80	0.01			ABS 0.0			09		DWR
o Determined by addition of constituents	of constituents									-									4			

o. Determined by oddition of constituents.

b. Growmetric determination.

c. Analysis by U.S. Geologicol Suvey, Quality of Woter Bronch (U.S.G.S.), Pocific Chemical Consultonts (P.C.C.),

Analysis by U.S. Geologicol Suvey, Quality of Woter Bronch of Woter Resources (D.W.R.) as indicated.

Terminal Testing Loboratory (T.T.L.) or State Department of Woter Resources (D.W.R.) as indicated.

d. Iran (Fe), Aluminum (At), Arsenic (As), Copper (Cu), Lead (Pb), Monoonese (Mn), Zinc (Zn), Detergent Surfactant (ABS).

				Specific					Z	los los	Mineral constituents	, <u>e</u>	bd	is per	parts per millian					H		\vdash	
	State well	Oate	-	conduct-	_1.	-	-	l	E	D3 -			equiva	ents p	equivalents per millian	6			Total		Hardness	_	
Owner and	ather number	sampled	18 ci	ance (micra- mhos	E S	Calcium A	Magns -	Sodium P.	Patas-Co	Carbon E	Bicar- banate	Sul - fate	- ole ebir	- in to take	Fiuo-	Boran S	Siloa Other	Silica Other canstituents ^d (SiO.)	salved	cent sod- ium-	ĕ L		Analyzed by c
				ot 25° C)	1		-		2) (° 03	HCO ₃)	(504)		(NO3)	E		2		a a		d mdd	mdd	
	NDB&M						NAEA-	NAFA-SONOMA V.	VALLEY	(2-2)	(Cont.)												
								20	1	-	02	·		0		,-							
D. Stamos domestic	6N/6W-26E1	4-18-61		436	8,2	0,11	0.11	3.70	0.21	0.00	2.46	0.02	1.55	0.0 0.0	0.00		41 A C A E	0.11 (Dissolved) 0.00 As 0.02 0.00 Pb 0.04 0.00 Zn 0.01	302	06		0	DWR
		9-61		977									56 1,58	0.00			ABS 0.0	0.0			13		DWR
A.G. Fagieni domestic	7N/4W-30L1	4-19-61		136	7.8 7	7.8 6	6.0	0,33	0,06	0,00	58 0.95	0.04	9.1	0.00	0.00	0.01	29 Fe 0	0.09 (Dissolved)) 92	5 6	777	0	DWR
																	2 Æ ?	00 Zn 0.01					
		9-13-61		126								;	0,12	i.						-	07		DWR
Wheeler domestic and stock	7N/5W-5A1	4-19-61		667	8,4	2.04	2.14	0.83	0.20	0.07	3.36	0.98		0.24	0.01	 위	15 A1 F	Fe 0.01 (Dissolved)	307	16	509	39	DWR
																	2 ¥ ç	. 00 Zn 0.06		_		_	
		9-13-61		483									0,34				5			~	218		DWR
J. Alcouffe	9N/6W-31Q1	9-13-61		147									8.2								20		DWR
R. H. Archerd domestic	9N/7W-25N1	4-19-61		858	8.1	0.55	5.2	148	8.0	0.00	179 2.93	0.00	165	0.02	6.0	9]	71 Fe 1 A1 1	1.0 (Total) 1.2 As 0.04	513	84	67	0	DWR
		9-13-61		935									178 5.02				2 £	, 00 Pb 0.01			67		DWR
							SI	SUISUN-FAIRFIELD VALLEY	RFIELD	VALLEY	(2-3)												
Taylor domestic	3N/1E-48	5-18-61		1400									265		,		A8S	0.0				<u></u>	DWR
McDougal Livestock Co.	3N/1E-21D1	5-18-61	99	1780									182 5.13				ABS	0.0					DWR
		9-11-61	89	1740	8,7	8.1	7.3	400	1,3	26 0.87	616	89	189	5.1	0.02	6.7	52		1060	76	20	0	DWR
McDougal Livestock Co.	3N/1E-22F2	5-18-61		1330									134 3,78				ABS	0.0					DWR
		9-11-61		1540	8.6	1.05	1.49	304	0.03	1.13	437	74	200	0.26	0.00	4.1	ଛା		916	84_1	127	0	DWR
a. Determined by addition of constituents. b. Gravimetric determination. c. Analysis by U.S. Godlaglack Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (ID.W.R.)	of canstituents. an. Ical Survey, Quality Itary (T.T.L.) ar Stat	af Water Bran	ch (U.S.	G.S.), Pac	Fic G	emical (Consultan	I Consultants (P.C.C.),													-	-	
d. Iron (Fe), Aluminum (AI)), Arsenic (As), Capp	er (Cu), Lead	(Pb), M	anaanese	(Mn)	inc (Zn)	. Deterg	ent Surfa	ctant	(ABS).													

	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DAR	DWR	DWR	DWR
			ă.		ă		<u>ద</u>		ă		ă		ă			<u> </u>		ă	ದ	ሷ	
Hardness	CoCO ₃			0		17		0		288		•		999	90		•				0
				82 144		57 220		84 139		49 381		55 79		33 395	38 332		39 233				50 532
<u></u>	dis- cent solids in ppm in ppm			923 8		635 5		2010 8		853 4		282 5		670 3	629 3		422 3				
,ē								50						9	9						1170
	Silico (SiO ₂) Other constituents ^d		ABS 0.0		ABS 0.0		ABS 0.0		ABS 0.0		ABS 0.0		ABS 0.0			ABS 0.0		ABS 0.0	ABS 0.0	ABS 0.0	
				27		799		53		119		82		34	ଛା		131				27
Lion	Boron (B)			4.6		0.9		9.9		1.3		0.5		0.7	0.8		1.3				2.4
parts per million equivalents per million	Fluo- rida (F)			0.6		0.6		0.6		0.02		0.2		0.07	0.07		0.5				0.6
ents pe	Ni- trote (NO ₃)			$\frac{17}{0.27}$		3.8		$\frac{4.1}{0.07}$		$\frac{7.7}{0.12}$		0.4		0.10	$\frac{9.9}{0.16}$		$\frac{18}{0.29}$				34 0.55
pod	Chlo- ride (CI)		129	210 5,92	160	177	23.83	843	49	312 8.80	40	41	$\frac{106}{2.99}$	74 2.09	76	39	39	0.45	3.27	236	3.44
Ë	Sul - fore (SO ₄)	it.)		65		53		135		173 3.60		0.02		124	123 2.56		28 0,58				138 2.87
Mineral constituents	Bicor- bonate (HCO ₃)	(2-3) (Ont.)		490		248		425		114		157		414	345		333				879
arol co	Patos-Carbon- sium ate (K) (CO ₃)			8 0.27		00.00		$\frac{32}{1.07}$		00.00		0.00		00.00	0.37		0,00				0.00
Min	sium (K)	LD VAI		0.03		3.4		2.6		0.0		2.8		0.5	0.03		0.10				0,0
	Sadium F (No)	SUISUN-FAIRF ELD VALLEY		304		138		665		165		47		3,83	60.7		68 2.96				248
	Mogne- sium (Mg)	SUIS		$\frac{22}{1.78}$		25 2.06	-	51 4.21		54 7.43		0.58		31 2,56	31 2.54		33				6.30
	Colcium (Ca)			$\frac{22}{1.10}$		47		$\frac{27}{1,35}$		67 3.19		20		107	82 4.09		39				87
	£			4.8		8.2		8.6		7.8		7.7		7.9	8.3		8.2				7.6
Specific			1250	1550	986	1040	3570	3460	1330	1450	376	377	1080	1150	1020	803	725	371	1060	1870	1910
	Temp in °F								95	79										19	
	Sampled		5-18-61	9-11-61	5-18-61	9-11-61	5-18-61	9-11-61	5-18-61	9-11-61	5-18-61	9-11-61	5-18-61	9-11-61	9-11-61	5-19-61	9-11-6	5-19-61	5-18-61	5-18-61	9-11-61
State well	number and other number		3N/1E-22F3		4N/1E-8F1		4N/1W-33A1		4N/2W-4D1		4N/2W-5Q2		4N/2W-18M1		4N/3W-13G2	5N/2W-27J4		5N/2W-29L3	5N/2W-34B1	5N/2W-34P1	5N/2W-34P4
	Owner ond		McDougal Livestock Co.	irisation	G. Stewart	domestic	State of California		Heally damorio		Southern Pacific RR,		F. P. Smith		D. R. Mangels	H. J. Beck		W. end L. Pierce	City of Fairfield municipel	L. Sing	domestic

o. Defermined by oddition of constituents.
b. Grovimetric determination.
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboradary (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
d. Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manoonese (Mn), Zinc (Zn), Detergent Surfactent (ABS).

	Anolyzed	5		DWR	DWR	DWR	
	os CoCO ₃	N.C. PPm		517	152	503	
		Total		795	419	164	
	Cent Sod-	Ē		9	143	77.72	
Total	dis-	eolids in ppn		1,570	446	1,060	
		(SiO ₂) Other constituents					
				뭐	켍	<u> </u>	
1	Boron	E (8)		0.55	99	0.66	
ports per million	F1u0-	eğir. (F)		0.5	0.05	0.3	
orts per	Z	trote (NO ₃)		0.1	0.02	0.35	
ă	- old			390	2.59	284 8.01	
Ē	1 100	101e (SO ₄)		# <u>12.6</u>	352	178 3.70	
constituents	Bicor-	bonote (HCO ₃)	(2-4)	347	326	351 5.75	
Mineral co	- Logic	(CO ₃)	PLAID	0.00	0.0	00.0	
Σ	Potog	Sium Sium (X)	PITTSBURG PLAIB (2-4)	9.2	6.1	4.3	
		Sodium (No)	빏	242 30.53	150	182 7.92	
	ļ,	sium sium (Mg)		87	3.73	59 1.89	
		(Ca)		175 8.73	7.64	5.04	
	玉			7.8	8.2	8.1	
Specific	conduct-	(micro- mhas at 25°C)		2,470	1,410	1,740	
	Temp	5					
	Date	sompled		6-12-61	6-12-61	6-12-61	
	State well	other number		2N/1E-7RL	-22C1	2N/2E-20Al	
	puo secono	957		Continental Can Co.	Dow Chemical Company domestic	Fibreboard Products Inc.	

Determined by addition of constituents.
 Growmatric determination.
 Growmatric determination.
 Analysis by U.S. Geological Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Labbardory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Irannol Testing Labbardory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iran (Fe), Atuminum (A1), Arsenic (Ae), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 600 except as shown

	State well			Specific	-				Mineral	1000	constituents i	2	par	parts per million equivalents per million	Hon			Total		Hordness		
Owner and	number and other number	Delle	P.E.		ī	Celcium (Ce)	- E E	Sodium (Na)	(%)	(CO3)	Bicer- bonete (HCO ₃)	- 100 - 100	\$ 2 0	NI- frote ride (NO ₃) (F)	88	100	Other constituents	Ħ.	125	2 10 10 10 10 10 10 10 10 10 10 10 10 10		Analyzed by c
C. Curlette	TW-MI/HI	6-6-61		009	7.7	45	37 1	22.1	0.02 0.0	- lo	Nha	49 1.02 0.	26 0.73	7.9 0.2 0.01	T 0.46	- FI	AB\$ 0.0	356	17	264	41	DAR
demostic and irrigation 8. H. Cowell Foundation 18/14-481 irrigation	m 18/14-4R1	6-9-61	3	1050	7.2									0.30 0.3	0.41	티	ABS 0.0	594	56	391	157	DWR
F. Baker domestic	2N/1W-30J1	6-9-61		116	7.6	3.69 7	51 2 2	2.13	0.7	0.00	$\frac{391}{6.41}$	2.04	46 1.30	16 0.2 0.26 0.01	0,48	위 위	ABS 0.0	557	21	396	75	DWR
F. Derville domestic	ZN/14-31D1	6-9-61		916	7.4 3	3,64	\$2 4,31	33	0.01	0.00	287 4.70 T.	1,48 2.	89 0	50 0.2 0.81 0.01	0.33	티	ABS 0.0	541	15	398	163	DAR
R. B. Ogilvie domestic	2N/2W-13P1	6-12-61		787	4.0	7 K	2.06	4.04	1.0 0.02 0.02	5 0.17 3.	3.77 T.	1.08 2.	2.68	0.18 0.5	0.33	হা হা	ABS 0.0	465	32	188	0	DAR
Bertinola demostic	2N/2W-26B1	6-9-61		906	80 53	2,45	3.07	3.83	0.03 0	0.00	356 0.	0,35	3,24	0.02	0.93	- 21 - El	ABS 0.0	\$15	41	276	0	DWR
dome at ic	2N/2W-36R2	6-9-61		1820	8.0	136	8.03	114 1	0.04 0.	0.00	609 9.98 T.	62 1.29 8.	291 8.21 0	0.21 0.3	0.64	:XI	ABS 0.0	1040	25	743	244	DWR
J. D. Naflen domestic	2N/2W-36J1	6-9-61		1050		3.02	3.19 7	108	0.6	0,00	314 5.15	1,89	3.27	33 0.3	0,48	읽	ABS 0.0	635	3	312	35	DARR
A. Sebastieni domestic	IN/14-7K1	6-9-61		2120	8.1	96 4.79	70 5.72	278 1 12.09 0	CTO VILI	0 0 0 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	370	479 6.97 6.97	239	12 0.5 0.19 0.03	0.92		A35 0.0	1380	53	929	223	JAR
Landis domestic	1N/14-29G1	6-9-61		1790	8.0	3.69	314. 	220 9.57 0	0.0 0.02 0.02	0.00	372 6.10 7.	4.73	267 7.53	20 0.9 0.32 0.05	0.92	21	ABS 0.0	1080	51	457	152	DAR
C. Book irrigation	IN/24-11N1	6-12-61		1140	7.7	24. 4 44. 44	2,15	127 5.52 0	0.06	0.00	494 8.10 0.	25 0,52	3.41	0.6 0.6	35 11.2	7	ABS 0.0	678	45	330	0	DAR
J. E. Wells domestic	1N/2W-13P1	6-12-61		1480	8.2	5.14	5.83	3, 32 0	0.01	0,00	10.01 2.	114 3	3,35	41 0.5 0.66 0.03	23	위 	ABS 0.0	915	33	250	67	DWR
e. Determined by addition of constituents.	s of constituents.				1				1	+	-	-		-	+	-			1	1	1]

e. Determined by addition of constituents

Mity of Weier Branch (U.S.B.1), Pecific Chemical Carcuitents (P.C.C.),
State Osperiment of Worler Resources (D.W.R.) as indicated.
Copper (Cul, Lead (Ph), Mempenses (Mn), Zinc (Z.A), reported here as \$\overline{\alpha}_0\$ scept as shown, and Detargent Surfactant (ABS).

				Specific					Ž	los los	Mineral constituents	. <u>.</u>	B	parts per million	illon				-			
	State well	Date	Temp	conduct-							-	- 1	Palnka	equivolents per million		-		} 			Hardness as CaCO ₄	Anoley
Owner and	ather number	peldwos	<u>.</u>	(micro- mhos ot 25°C)	¥	Calcium (Ca)	Mogne- sium (Mg)	Sadium (No)	Potos - (X)	ote (CO ₃)	Bicar- bonate (HCO ₃)	Sul - tate (SO ₄)	CCI)	hrote (NO ₃)	Flua- ride (F)	Boron Sili (B)	Silica (SiO ₂) Other constituents ^d	solved solids in ppm	D S E	السناج	N.C.	by c
	MDBGM							YGNACIO	VALLEY	(2-6)	(2-6) (Cont.)	~						_				
F. H. Dunham domestic	2N/2W-27R1	6-9-61		1670	8,5	51 2,54	43	266 11,57	3.5	0,33	503 8.24	95	248	0.02	0.3	5.8	41 ABS 0.0	1010	65	303	0	DAR
A. Buscaglia domeatic	2N/2W-36E1	6-9-61		3240	7.5	232 11,58	15.80 12.80	274 11.92	0.7	00.00	573 9.39	438 9.12	563 15,88	110 0.	0.03	2.2	34 ABS 0.0	2090	33	1220	750	DWR
							EAST	BAY AREA	O.P.	SANTA CILA	CLARA VALLEY	EY (2-9)	্ব									
Manassa Block Taming Company	1S/4W-4A1	6-2-61	99	1340									210 5.92				ABS 0.0					DWR
Red Star Yeast Co. irrigation	1S/4W-34F2	6-2-61	99	266									156				ABS 0.0					DAR
National Lead Co. industrial	2S/3W-8Q	6-2-61		1940								1,	458 12,92				ABS 0.0					DWR
General Metals industrial	2S/3W-21J1	6-2-61	19	5320									1690				ABS 0.0					DWR
A. Ratto irrigation	25/3W-28G1	6-2-61	99	706									62				ABS 0.0					DAR
Alameda Municipal Golf Course	2S/3W-30A	6-6-61		1050									183				ABS <u>0.0</u>					DWR
Soares frigation	2s/3w-30D2	6-2-61		830									93				ABS 0.0					DWR
Hohener Packing Co. industrial	2S/3W-33H3	6-2-61	99	618									30				ABS 0.0			_		DAR
R. A. Zobel frrigation	2S/3W-34A2	6-2-61	99	864									1,32				ABS 0.0					DWR
J. A. Jacklich domestic	2S/3W-34D3	6-6-61	99	595									32				ABS 0.0					DWR
D. S. Navy	2S/4W-3E1	6-2-61	89	777									2.45				ABS 0.0					DWR
															\dashv	-		-	-			

	Stote well			Specific conduct-				3	Minarsi constituents	natituents	Ē	parts per million equivalents per million	parts per million valents per mill	million	1_				Hardness	
oen een	nymber and ather number	Date sampled	Ton T	ence (mlcro- mhos et 25° C	₹	Colcium siu	Magne - Sodium sium (Mg)	o) (K)	Carbon one (CO ₃)	Bicar- bonate (HCO ₃)	Sui - fote (SQ ₄)	CCI)	Ni- trate (NO ₃)	Fiuo- ride (F)	5-	Silice Other constituents	alls- solved solids in ppm	£85	as CaCO ₃ Totol N.C.	Analyzed by c
	HYNOH					EAST B	AY AREA O	T BAY AREA OF SANTA CLARA VALLEY	LARA VAI		(2-9) (Cont.)	[:								
Todd Shippard	2S/4W-3F1	6-2-61	67	738							144	102 2.88				ABS 0.0				DWR
Alemeda High School domestic	2S/4W-12RJ	6-2-61	99	384								38 1.07				ABS 0.0				DWR
Ratto	2S/4W-25A1	6-2-61		836							1.4	2.59				ABS 0.0				DWR
Bayeide Rursery irrigation	3S/2W-7J1	6-2-61	59	1140								89 2.51				ABS 0.0				DWR
Kruger and Sons industrial	3S/2W-19R4	6-6-61	3	1120							,	3.18				ABS 0.0			·	DWR
A. Mataas irrigation	3S/2W-30R14	6-6-61		1280								3.24				ABS 0.0				DAR
G. Stroh irrigation	3S/2W-31H1	6-6-61	80	282							,,,	1,16				ABS 0.0				DAR
Lurman Estates irrigatien	3S/2W-31K1	6-6-61	59	710							p. 7	1.86				ABS 0.0				DAR
Mt. Eden Mursery domestic & irrigation	3S/2W-32D	6-6-61	74	792							,,,	2.37				ABS 0.0				DWR
Avansine Mortensen Co.	35/34-163	6-2-61	7.5	1040								129 5.44				ABS 0.0				DAR.
A. H. Braed irrigation	35/34-352	6-6-61	67	728				-				1.30				A3S 0.0				DAR
Trojan Powder industrial	38/34-1101	6-5-61		1460							,	291 8.21				ABS 0.0				DAGS
Cienelli irrigation	38/34-1352	6-2-61	63	1910								3,41				ABS 0,0				DAG
Greenmeed Corp. demagific & irrigation	3E/3H-2AJ1	6-6-61		¥							,	1.68				ABS 0,0				DARR
					-						-		\dashv	\dashv	-			-	\dashv	

Determined by addition of consiliuants.
 Consistent determination.
 Consistent determination.

	State well			Spacific conduct-					Mine	Mineral canstituents	stifuents	.c	parts per million equivalents per million	parts per million volents per mill	million ir millio	١			Total	à	Hordness			
Owner and	ather number	Sampled	din • F	once (micro- mhas at 25° C)	됩	Caterum Ma	Magne-Sc sium (Mg)	Sadium P(No)	Potos-Carbon- sium ate (K) (CO ₃)	arbon B	Bicar- bonate (HCO ₃)	Sul - fote (SO ₄)	\$ 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	rote (NO ₃)	Flua- ride (F)	Boron Si (B) (S	lica iiO ₂)	Silica Other canetituents ^d	eolids mgg ni	E PE	Toto!		Anolyzed by c	
						EAST BAY		A OF SAN	TA CLA	AREA OF SANTA CLARA VALLEY	1	(2-9) (cont.)	t.)											
	3S/3W-24Q2	6-6-61		1880									280				ABS 0.0	0.0					DWR	
domestic and stock Citizens Utility Co. municipal	4S/1W-21F2	3-6-61	61	670	7.6	3.24 2	27 2.19	44 2	0.05	00.00	4.41	93	42	0.04	0.0	0.80	14 Fe 0. Cr	Fe 0.06 (bts.) Al 0.0 As 0.00 Cr 0.00 Cu 0.00 Pb 0.00 Mn 0.00 T.0. 1.4 Phenol 0.00	7443	26	272	25	DWR	
		6-5-61	61	824	7.6	3.64	33 2.71	2.13	0.05	0.00	4.52	110 2.29	09011.69	0.04	0.02	0.81	15 Fe 0, Cr 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Fe 0.01 (bts.) A1 0.02 As 0.00 Cr 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.00 Se 0.00 T.0. 1.4 Phenol 0.000	209	25	318	92	DWR	
		9-5-61	99	753	7.9	3.54 2	2.55	2.09	0.05	00.0	4.51	106	56 1.58	0.06	0.02	0.74	17 Fe 0. A1 0 Cr 0 C	Fe 0.00 (D1s.) A1 0.00 As 0.00 Cr 0.02 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.02 Se 0.03 T.0. <2.0 Phenol 0.000		25	305	79	DWR	
		12-7-61	63	768	0	3.34	32 2.67	2.13	0.06	00.00	4.42	103	53	3.2	0.02	0.73	17 Fe 0. A1 0. Cr 0 Cr	Fe 0.13 (Total) A1 0.00 As 0.01 Cr 0.00 Cu 0.00 Pb 0.01 Mn 0.00 Zn 0.01 Se 0.00 T.0. <1.4 Phenol 0.000	451	26	301	08	DWR	
H. J. Kaiser Ind. industrial	4S/1W-21M1	3-6-61	63	674	7.7	2.99	2.14	38 1	0.04	00.00	250	1.60	1.18	0.03	0.02	0.64	18 Fe 0. A 1 0. C 1 0.	Fe 0.03 (D1s.) A1 0.0 As 0.00 Cr 0.01 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.00 Se 0.00 T.0. 1.4 Phenel 0.000	707	24	257	52	DWR	
		6-5-61	62	629	8.7	3.04	2,13	1.74	0.04	00.00	248	1.64	1.30	0.03	0.0	0.64	16 Pe 0. Cr 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0.	Pe 0.00 (D1s.) A1 0.00 As 0.00 Cr 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.00 Se 0.00 T.0. I	411	25	259	26	DWR	
by addition	Determined by addition of constituents.																							

	Analyzed	, fo		DWR	_	DWR		DWR	DWR	Š	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
\$ 00	03 C0CO 3	N.C.		73		7.1			0			0	2220					1900	
		Tatal		267		267			228			124	2420					2200	
	e o	Ē		25		24			41			78	10					12	
Total		eolids in ppm a		398		404			977			918	2820					2660	
		(SiO ₂) Other constituents ^a			Pb 0.00 Mn 0.00 Zo 0.01 Se 0.03 T.0. 2.8 Phenol 0.000		Zn 0.00 mn 0.00 Zn 0.00 T.0.	ABS 0.0	Fe 0.00 (Total) A1 0.02 As 0.00	Mn 0.00 Zn 0.24	Abs 0.0	Pe 2.3 (Total) Al 0.00 As 0.00 Cu 0.05 Pb 0.01 Mn 1.2 Zn 0.03	Fe 0.60 A1 0.06 Cu 0.00 Mn 0.00	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	Fe 0.70 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00	Mn 0.00 zn 1.2
				17		18			87				18					17	
High		<u></u>		0,56		0.69			1.5		_		0,52					0,50	
r millic	Fluo-	şe.		0.3		0.0			0.3				0.0					0.3	
parts per million equivalents per million	ž	(NO ₃)		0.03		0.03			0.13			0.06	0.08					0.27	
Pinba	-0160	(i.j.)	it.)	52		1.52		37	0.93	80	2.26	1.86	1670 47.09	1750	794	1780	32.99	1350	
ë	Sul -	(SO ₄)	(2-9) (Cont.)	80		1.69			1.33			33	1.60					221	
constituents	Bicar-	bonate (HCO ₃)		3.87		3.92			341			13.90	4,00					360	
Mineral c	Carbon-	(CO ₃)	RA VAI	00.00		0.00			0.00			0.00	0.00					0.00	
Min	Potas-	sium (X)	TA CL	0.04		0.05			0.20				0.11					4.8	
		(No)	EAST BAY AREA OF SANTA CLARA VALLEY	41		1.74			3.31			320 13.92	121 5.26				•	135	
		Sium (Mg)	T BAY AR	2.34		2.24			2.12			1.58	262 21.55	_				212	
	Colcuin	(CO)	EAS			3.09			467			0.90	537					7.6 26.50	
	Ŧ.			7.5		7.9			8.2			8.2	7.5					7.6	
Specific	ance (micro-			929		069		784	745		1420	1470	5280	5430	2900	5380	3870	7840	
	Temp in • Fi			79		53													
	Sampled			9-5-61		12-7-61		5-9-61	9-26-61	;	2-11-01	9-26-61	11-7-61	5-10-61	5-11-61	5-10-61	5-10-61	9-26-61	
State well	other number			4S/1W-21M1				4S/1W-21R2			45/1W-22M2		4S/1W-28D7	4S/1W-28E3	4S/1W-29B2	4S/1W-29M6	4S/1W-30C2		
	Owner and	#8D		H. J. Kaiser Ind.				Desalle			A. J. Rezendes irrigation		M. DeSalle domestic	A. Rodriguez domestic & irrigstion	A. C. Bettencourt domestic	Rodiguez	J. Silva		

o. Defermined by addition of constituents.

B. Grandiner and the constituents of water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

C. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

C. Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

C. Iran (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 500 except as shown, Selentum (Se), and Odor (T.O.), Detergent Surfactaot (ABS).

	1000		55	Specific					Minerol	Mineral constituents	nents in		parts per million	parts per million	6							
pub Leuw C	number and		Temp				J		1	Bicor	1	1	ž	F Indian				e dis-	Cent.	os CoCO 3		Anolyzed
9 \$0	Tedmun Tento	Deidebe	<u> </u>	(micro- mhos at 25°C)	<u> </u>	Calcium (Ca)	Sodium Sium (Mg)		sium ate (K) (CO ₃)	bonote (HCO ₃)	101e 3) (SO ₄)	(C 25	trote (NO ₃)	şê.	90rou (B)	(SiO ₂) Other	(SiO ₂) Other constituents ^d	solids in ppm a	E S	Totol	N.C.	by c
						EAST BAY		AREA OF SANTA CLARA VALLEY	CLARA	VALLEY	(4-9) (Cont.)	ont.)										
Cloverdale Creamery	4S/1W-30G1	5-10-61		920								164				ABS	0.0					DWR
industriai		9-26-61		1060	8.0	104 5.19 3.	37 42 1.83	83 0.05 0.05	05 0.00	3.21	5 58		0.07	0.0	0.37	24 Fe A1 Cu	0.21 (Total) 0.00 As 0.00 0.00 Pb 0.00 0.00 Zn 0.41	564	18	414	253	DWR
W. E. Hutchins	4S/1W-31A2	5-17-61		745								2.09				ABS 0	0.0					DWR
irikarion		11-8-61		277	8 0.8	3.24	21 1.70 2.96	96 0.05							0.38	22 Fe A1 Cu	0.05 (Total) 0.05 As 0.00 0.00 Pb 0.01 0.15 Zn 0.28	777	37	247	27	DWR
Alameda County Water District municipal	4S/1W-31B3	9-19-61		823	8.2	3.74 1.	$\frac{19}{1.57} \mid \frac{62}{2.70}$	62 1.6 70 0.04	0.00	3,88	1.06	3.13	0.04	0.0	0.40	24 Fe Al	00 (Total) 00 As 0.00 01 Pb 0.00 07 Zn 0.01	463	34	266	72	DWR
F. Beschart	4S/1W-32A5	5-10-61		2350								514 14,49				ABS C	0.0					DWR
domestic & irrigation Pianetta domestic & irrigation	4S/1W-33E1	11-8-61		3390	7.7	382 19.06 10.06	130 10.71 4.	108 4.70 0.10	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	00 435	3 1,44	164	0.40	0.0	0.56	23 Fe 0.03 A1 0.02 Cu 0.01 Mn 0.00	03 (Total) 02 As 0.00 01 Pb 0.00 00 Zn 0.26	1840	14	1490 1	1130	DWR
Enrico snd Sodini	4s/1w-33G3	5-10-61		1370								176				ABS C	0.0					DWR
irrigation		11-8-61		1640	7.7	137	62 5.13 6.7	141 6.13 0.08	08 0.00	00 10.39	1.75	5 5.27	0,53	0.0	1.0	22 Fe 0. A1 0. Cu 0.	0.01 (Total) 0.00 As 0.00 0.00 Pb 0.00 0.00 Zn 0.02	982	34	599	79	DWR
B. Rose domestic	4S/1W-34Q4	11-8-61		1530	7.7	7.44 4	4.05	98 2.4	00000	00 453	3 0.92 0.92	6.20	1.05	0.2	0.27	26 Fe Al Cu Cu	0.01 (Total) 0.08 As 0.00 0.00 Pb 0.00 0.00 Zn 0.57	877	27	575	204	DWR
Alameda County Water District	4S/1W-35P3	5-8-61		652								1,24				ABS	0.0					OWR
municipal		8-31-61		674	8.1	1.40	1.46	97 4.22 0.04	7 04 0.00	00 342	0.37	39	0.00	0.2	0.33	25 Fe A1 Cu Mn	0.30 (Total) 0.01 As 0.00 0.01 Pb 0.00 0.00 Zn 0.03	396	59	143		DWR
Andrada domestic & irrigation	4S/2W-3R1	5-11-61		286				1				0.73				ABS	0.0					DWR
and the state of t						1	-		-											-	+	

Determined by oddition of constituents.
 Georgical Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
 Analysis by U.S. Geological Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
 Analysis by U.S. Geological Survey, Quality of Woter Branch Resources (D.W.R.) as indicated.
 Analysis by U.S. Geological Survey, Quality of Woter Branch Resources (D.W.R.) as indicated.
 Alaminum (Al), Arsentic (As), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as 600 except as shown, Detergent Surfactant (ABS).

	State well			Specific					Miner	Mineral constituents		, <u>e</u>	par	parts per million equivalents per million	illon			Total		Hardne	:	
Owner and use	number and other number	Date	E e	ance (micra-	<u> </u>	Calcium %	Magne - So	Sadium s (Na)	Potas-Cal	Carbon Bic	Bicar-Si banate 16	Sul - fote (SO,)	Chla- ride	NI- frate (NO ₃)	de Boron		Silica Other constituents ^d	solved solved in ppm	E BE	Total N.C.		Analyzed by c
				62 2						3	51			,				25			<u> </u>	
Andreda	4S/2W-3R1	9-26-61		593 8	8.4	40 40 5.00	11 0.90	10 11 78 2.1 4 2.0 0.90 3.39 0.05 0.13 4.7	2.1 0.05 0.05	4 4 4. 0.13 4.	1 22	41 61 0	20 20	0.00	0.02	0.41	24 Fe 0.10 (Totel) A1 0.00 As 0.00 Cu 0.02 Pb 0.00	365	53	145	0	DWR
City of Hayward municipal	4S/2W-5A14	6-7-61	89	862								1-	43				0.0					DWR
J. F. Bettencourt irrigation	4S/2W-9Q2	6-6-61	89	4710								188	138.92 38.92				ABS 0.0					DWR
Holly Sugar industrial	4S/2W-10C1	5-17-61		555													ABS 0.0					DWR
		9-26-61		802	8.0	1.50 1.50	1.14	94 00 00 00 00 00 00 00 00 00 00 00 00 00	0.06	0.00	3.08 3.08 0	0.90 2		0.07	00.0	0.40	22 Fe 0.05 (Total) Al 0.01 As 0.00 Cu 0.00 Pb 0.00 Mn 0.14 zn 0.05	396	09	132	0	DWR
Scutto Brothers	4S/2W-10Q2	5-10-61		2410								151	490				ABS 0.0					DWR
מחופפרור מ זיין 9מיר		9-19-61			8.0 14	294 14.67	150	5.31	3.5	0.00	7.93 7	361 7.52 16		0.19	0.01	0.84	23 Pe 0.05 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.02 Mn 0.01 Zn 1.8	1790	16	1350	953	DWR
H. Andrade	4S/2W-10Q3	5-17-61		2060								lov	336				ABS 0.0					DWR
domestic & irrigation		9-26-61		2290	7.7	200 9.98	134 11,00	101 3	3.2	0.00	349 7	360 11		0.39 0.	0.00	0.87	22 Fe 0.03 (Tots1) A1 0.03 As 0.00 Cu 0.04 Pb 0.01 Mn 0.00 zn 0.04	428	17	1050	764	DWR
H. Dutra	4S/2W-11Q5	5-10-61		1470								14	147				ABS 0.0					DWR
domestic & lrigation		9-26-61		1,480	7.8	140 7	58 4.76	94 0 0 0 0	0.04 0	0.00	7.29 2	2.33	3.27	3.05	0.0	0.33 2	21 Fe 0.57 (Totsl) Al 0.00 As 0.00 Cu 0.05 Pb 0.04 Mn 0.00 Zn 5.0	951	26	588	223	DWR
C. Cosso irrigation	4S/2W-13E2	11-9-61		3600	8.0	$\frac{312}{15.57}$	175	156 6.79 0	0.11	0.00	3.60	270 5.62 26	947	0.32	0.00	8 8	8. fre 0.88 (Total) Al 0.02 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.04	2000	18	1500 1	1320	DWR
T. E. Harvey irrigation	4S/2W-14E1	11-9-61		0147	7.3 21	430 10	203	210 4	0.10	00.00	376 8	387 8.06 32		0.0.48	0.0	0.40	20 Fe 0.05 (Total) A1 0.03 A8 0.00 Cu 0.00 Pb 0.00 Mn 0.00 zn 0.49	2610	19	1910	1600	DWR
A. Caeton domestic & irrigation	4S/2W-14J1	5-10-61		624								1-5	51				ABS 0.0					DWR
a Determined by addition of constituents.	of constituents.																					

a. Determined by addition of constituents.
 b. Graviminatic determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron(Fe), Aluminum (Al), Arsenic (As), Capper (Cu), Lead (Pb), Monganese (Mn), Zinc (Zn), reported here as Gogescept as shown, Detergent Surfactant (ABS).

					-								par	parts per million	illion						-	
	State well			conduct-					Mine	Mineral constituents	stituents	<u></u>	equivole	equivolents per million	millio.	,		Total		Hardness	SS	
Owner and	number and other number	sompled	Temp in °F		٦ ٢	Colcium si	Mogne - Sc sium (Mg)	Sodium P (No)	Potos-Co sium (K)	Carbon B ofe br (CO ₃) (H	Bicar-S bonote 1 (HCO ₃)	Sul - fote (SO ₄)	CHo- CCI)	Ni- trate (NO ₃) (ride (B)	(Silico	Other constituents ^d	solved solids in ppm	Sod E	as CoC Total		Analyzed by c
						EAST B	EAST BAY AREA OF SANTA CLARA VALLEY	OF SAN	TA CLAR	A VALLE		(2-9) (Coht.)	~									
A. Caeton	4S/2W-14J1	9-26-61		744 8	0.8	84 4.19 1	1.32	37 2	0.06	0.00	266 4.36 I	$\begin{array}{c c} & 61 \\ \hline 1.27 & \overline{1} \end{array}$	49	0.21	0.0	0.45 22	Fe 0.00 (Total) A1 0.02 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.01	416	22	276	28	DWR
2. P. Harvey	4S/2W-15C1	5-11-61		568								,0	30				ABS 0.0					DWR
000		11-9-61		620 8	8.0	3.19	20 1.65	38 2	0.05 0	0.00	287 6.70	0.87	28 0.79	0,18	0.0	0.32 25	Fe 0.08 (Total) A1 0.01 As 0.00 Cu 0.00 Pb 0.00	372	25	242	7	DWR
King	4S/2W-15L4	5-10-61		959								,-	41				A8S 0.0					OWR
		9-25-61		639	8.2	3.39 1	19 1.57	34 2	0.07	0.00	265 4.34 1	53	36	0.18	0.0	0.39 24	Fe 0.01 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.04	378	23	248	31	OWR
Patterson	4S/2W-23F2	5-17-61		667								15	40		_		ABS 0.0				_	DWR
111111111111111111111111111111111111111		9-26-61		589	8.2	2.74	1.82	31 1	0.05	0.00	3.60	52 1.08	43	8.6	0.00	0.35 22	Fe 0.02 (Total) A1 0.02 As 0.00 Cu 0.00 Pb 0.01 Mn 0.00 Zn 0.03	344	23	228	87	DWR
L. Croce	4S/2W-24D4	5-18-61		578									30				ABS 0.0					OWR
5 5 5 6 6 6 7 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8		7-25-61		612 8	8,1	3.39	20 1.61	1.39	0.05	0.00	272 4.46	1.02	29 0.82	0,18	0.2	0.37	Fe 0.08 (Total) A1 0.00 A8 0.01 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.12	366	22	250	27	DWR
L. S. Amaral irrigation	4S/2W-24F6	11-9-61		2490 7	7,1 11	236 11.78 9	9.60	3.44	3.3	0.00	296 4.85	1.46	632	0.39 0	0.2	0.30	Fe 1.7 (Total) A1 0.40 As 0.00 Cu 0.01 Pb 0.01 Mn 0.00 Zn 0.02 Cu		14	1070	827	DWR
J. A., J. R., and L. A.	4S/2W-24J1	5-22-61		619									41				ABS 0.0					DWR
irrigation		11-8-61		641	8,1	3.34	20 1.67	37 1.61	0.05	0.00	250 4.10	1,00		0.02 0	0.2	0,41	Fe 0.96 (Total) A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.08 Zn 0.00	373	54	251	97	OWR
M. Kitani domestic & irrigation	4S/2W-24L5	5-11-61		109								-	0.99				ABS 0.0					DWR
o. Determined by addition of constituents. b. Growinstric determination. b. Growinstric determination. c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), c. Analysis by U.S. Geological Survey, Quality of Water Branch of Water Resources (D.W.R.) as indicated. Terminal Testing Laboratory (I.T.L.) or State DepartCut, Lead (Pb), Manganese (Mn), Zinc(Zn), reparted here as \$\alpha \alpha \al	of constituents. ion. ical Survey, Quality itary (T.T.L.) or Stat	of Water Bron te Department per (Cu), Lead	ch (U.S. of Wat (Pb), M	G.S.), Poci er Resour	ces (D.	emical Co W.R.) as linc (Zn),	oneultant indicated reparted	s (P.C.C.), here os 6	000 000 exce	pt as sh	own, Det	ergent	Surfacts	ine (ABS	•(:							

-226-

1961

	10000		S	Specific					Minero	Mineral constituents	nents in	'	parts per million equivalents per million	parts per million	High High			Total		Hordon	=	
Owner and	number and ather number	Date	Teri OFF	conduct- ance (micro- mhas	<u> </u>	Calcium Mar	Magne - Sad Eium (Mg)	Sadium si (Na)	Potas-Cart sium al (K) (CD	Carbon Bicar- ate banate (CD ₃) (HCO ₃)	Sul - fore (SO ₄)		n - lu - l	Flug- ride	Boran (B)		Silico (SiO ₂) Other canatituented	solved solved in ppm	Post in the second	as CaCO ₃ Tatal N.C. ppm		Analyzed by c
						EAST B	BAY AREA O	OF SANTA	CLARA	SANTA CLARA VALLEY) (6-5)	(Cont.)										
M. Kitani domestic	4S/2W-24L6	9-25-61		909	8.1 .9.		$\frac{21}{1.72} = \frac{1}{1.}$	30 1.	0.05 0.00	00 269 4.41	1,06	0.93 0.93	3 0.13	3 0.01	0.35	21	Fe 0.03 (Total) Al 0.01 As 0.00 Cu 0.00 Pb 0.00 Mn 0.01 Zn 0.04	367	20	256	36	DWR
W. D. Patterson	4S/2W-26A1	5-10-61		820								103	m!o				ABS 0.0					DWR
TILL BEST TOTAL		9-26-61		846	8.2	3.04	34 2.81	2.39 0.	0.06 0.00	$\begin{array}{c c} 0 & 212 \\ \hline 00 & 3.47 \end{array}$	1.06	3.67	0.10	0.10	0.35	22	Fe 0.01 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.01 Mn 0.00 Zn 0.03	997	29	293	611	DWR
J. L. aod E. A. Abbau stock and irrigation	4S/2W-26J1	11-8-61		1570	8 2 6	6,24 3	3.15 5.	129 5.61 0.	0.09	0 242 0.00 3.97	97 0.94	355 34 10.01	2.4	0.00	0,23	25	Fe 0.01 (Total) A1 0.02 Ae 0.00 Cu 0.00 Pb 0.01 Mn 0.58 Zn 0.00	842	37	470	272	DWR
H, H, and W, D. Patter	48/2W-27L1	5-10-61		614								33	ലല		<i>-</i>		ABS 0.0					DWR
son domestic and irrigation	non	9-26-61		598	8.2	26 7	0,58	100 1.	0.04 0.	0 300 4.92	00 30	30 27 62 0.76	6 0.01	0.0	0.37	22	Fe 0.00 (Tots1) A1 0.00 As 0.00 Cu 0.01 Pb 0.01 Mn 0.00 Zn 0.06	363	69	96	0	DWR
E. Malani industrial	4S/2W-35L2	11-8-61		817	7.9	33 6	6.9	131 1. 5.70 0	0.04	0 260 0.00 4.26	26 34 0.71	34 107 71 3.02	1.0	0.0	0,34	5 24	Fe 0.06 (Total) A1 0.01 As 0.00 Cu 0.00 Pb 0.00 Mn 0.04 Zn 0.01	794	72	111	0	DWR
J. F. Trinidad domestic & irrigatio	5S/1W-6D1	11-8-61		1620	7.7	125 6.24 5	5.11 5	119 5.18 0	0.07	0 324 0.00 5.31	24 119 31 2.48	19 48 8.66	0,0	0.01	2:2	20	Fe 1.6 (Total) Al 0.05 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.04	917	31	568	302	OWR
Malani domestic & irrigation	5S/1W-6G1	5-10-61		1560								379	66				ABS 0.0					DWR
A. F. Brosius domestic & irrigation	5S/1W-9K1	5-11-61		801								1.47	2 12				ABS 0.0					DWR
a. Determined by addition of constituents.	of constituents.																				\dashv	

Designment by addition or constituents.
 Analysis by U. S. Geological Survey, Quality of Water Bronch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Terminal Testing Laboratory (T.T.L.) or State Deportment of Water Resources (D.W.R.) as indicated.
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated here as \$\frac{50.0}{50.0}\$ except as shown, Detergent Surfactant (ABS).
 Jran (Fe), Alwanium (AI), Arsenic (As), Capper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as \$\frac{50.0}{50.0}\$ except as shown, Detergent Surfactant (ABS).

	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR		DWR	
			0	138		0		0		21	
1	Totol N.C.		270	360		80		19		227	
	A S S E		36	36		80		91		53	
Total	solved in ppm		457	620		346		264		567	
	Silica Other constituents ^d		Fe 0.21 (Total) A1 0.03 As 0.00 Cu 0.02 Pb 0.02 Mn 0.00 Zn 0.18	Fe 2.2 (Total) Al 0.02 As 0.00 Cu 0.05 Pb 0.01 Mn 0.47 Zn 0.75	ABS 0.0	Fe 0.40 (Total) A1 0.01 As 0.00 Cu 0.01 Pb 0.01 Mn 0.00 Zn 0.02	ABS 0.0	Fe 0.03 (Total) A1 0.02 As 0.00 Cu 0.01 Pb 0.01 Mn 0.00 Zn 0.02			
			26	52		24		22		27	_
lon	Boron (B)		0.33	0.26		1 0.37		0.22		3 0.29	
Ber mitt	Pico Pir Pico Pico Pico Pico Pico Pico Pico Pico		0.0	0.00		0.2		0.00		0.03	
parts per million aguivolents per million	rote (NO ₃)		1.5	0.04		0.00		0.1		0.03	
- agui		nt.)	52	219 6.18	26	0.48	14 0.39	0.37	্র	170	
: :	Sul - fate (SO ₄)	-9) (Cont.)	0.92	0.52		30		0.48	EY (2-9	0.87	
constituents	Bicor- bonote (HCO ₃)	LEY (2	378 6.20	271 4.44		295 4.84		3.47	SA VALL	3.98	shown
Mineral c	Carbon- ate (CO ₃)	ARA VAJ	0.00	0.00		0.00		0.00	EA CLA	0.13	se pt as
, ž	Potos- sium (K)	SANTA CLARA VALLEY	0.08	5.5		1.0		0.02	OF SAN	0.04	0.00 ex(
	Sodium (No)	AREA OF SA	3.13	93		108 4.70		3.96	BAY AREA	5,26	nnts (P.C.C. ted.
	Magna- sium (Mg)	EAST BAY AR	$\frac{26}{2.10}$	3.05		5.0		0.20	SOUTH B	1.35	Consulta as indica n), reports
	Calcium (Ca)	EAS	3.29	83 4.14		15 0.75		3.6		3.19	Chemical (D.W.R.)
	Æ		8.1	8.2		8.3		8.0		8,4	ocific surces
Specific	conduct- ance (micro- mhos		806	1160	576	265	747	430		1010	S.G.S.), P
	Temp In • F									76	och (U.
	Date sampled		9-19-61	9-19-61	5-11-61	9-26-61	5-9-61	9-25-61		8-31-61	of Woter Bron
Stote	number and other number		55/1W-9K1	5S/1W-9M1	5S/2W-1B1		5S/2W-1N1			58/34-3561	of constituents. ion. icol Survey, Quolity itory (T.T.L.) or Stof), Arsenic (As), Copp
	Owner and		A. F. Brosius domestic & irrigation	W. B. Brinker irrigation	P. Encisco domestic and stock		West Vaco Chemical industrial			City of Palo Alto municipal	o. Determined by addition of constituents. b. Growmetric determinations. c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated. d. from (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as \$\frac{0.00}{0.00} \text{except as shawn}\$

	State weil			Specific conduct-					Minerol	1 1	constituents	Ë	od	ports per millian equivolents per million	millio	اء		Totol	à	Hardness		
Owner and	other number	Sompled	Temp in °F	_	풆	Calcium	Magne-	Sadium P	Potas-Ca	Carbon B	Bicar- banate	Sul -	Chlo- ride	Ni - F	Fluo-Bo	Boran Silic (B) (Silic	Silica Other constituents	solids	S Contraction	ŏ∟	- 1	Anolyzed by c
				at 25° C)		_					1	(504)		(NO ₃)			12-	a a		mdd mdd	ε.	
						S.	SOUTH BAY A	AREA OF SA	SANTA CL	CLARA VALLEY	-1-	(2-9) (Cont.)	<u>.</u>]									
Winsor Brothere	6S/1E-7C1	8-29-61	99	575	4.8	1.80	13	3.26	0.02	0.13	270	45	0.62	0.01	0.01	0.22 20		350	53		<u> </u>	DWR
V. Cortess irrigation	6S/1E-21G1	8-29-61		804	e e	3.14	2,01	3.44	2.4	00.00	360	43	1.24	0.50	0.02	0.34		491	07	258		DWR
Machado Betates domestic and frritestion	6S/1E-30M1	8-29-61		582	8.4	3.29	1.69	30	0.04	3 0.10	4.52	41	0.70	0.10	0.0	0.14		357	20	249 18		DWR
J. S. Garcia domestic and irrigation	65/14-1181	8-30-61	69	536	7.9		19					41 0.85	24 0.68			0,16 26		320	27	201	О	DWR
Collier Carbon and Chemical Corporation industrial	6S/1W-16Al	9-13-61	72	2520	8.1	9,13	7,03	9.40	0.05	00.00	4.20	139	18.24	0.02	0.02	0.31		1420	37	809 599		DWR
A. Franch domestic and irrigation	6S/IW-14E1	8-29-61	72	520	4.8	53	13	1.74	0.03	0.13	3.74	0,83	0.70	0 0 0 0 0 0	0.0	0.14		315	32	184	0	DWR
S. Ikagani irrigation	6S/1W-19Q1	8-29-61	69	515	4.8	2.50	15	1.74	0.02	0.20	7 00.7	30	0.62	0.02	0.01	0.21		310	32	188	0	DWR
S. Waston irrigation	6S/1W-28R1	8-22-61	20	463	8.0	2.30	1,26	1.17	0.03	00.00	3.42	45 0.94	0.42	0.00	0.00	0,16		287	24	178		DATE
G. H. Pukumote irrigation	6s/1W-29CI	8-29-61		520	8.1	2,50	1.34	36	0.03	00.00	265 4.34	26 0.54	21 0.59	0.03	0.00	0.26		308	53	192	0	DWR
Rementee	6S/2W-9H1	8-25-61		200	8.0	2.04	0.70	2.61	0.05	00.0	4.51	14 0,29	19	0.02	0.0	0.23 21		302	848	137	О О	DWR
J. Josephin	6S/2W-9K2	8-25-61	74	559	4.8	28	12	3,39	0.03	0,13	4.18	200	1.13	0.00	00.0	0,17		35	28	120	ρ •	DWR
City of Palo Alto municipal	6S/2W-17D4	8-31-61	11	691	8,5	2.50	1.42	3.35	0.03	0.33	4.47	42 0,87	54	0.03	0.02	8 17 8 8		422	46	961	• •	DWR
California Water Ser.	68/2W-20NI	8-30-61		530	8.0	35	1.95	1.74	1,1	00.00	3,91	0.40	33	0.21	0.00	0,14 35		319	32	185	0	DWR
Hom Brothers	6S/2W-24M3	8-29-61		200	8	39.1	1.37	1.91	0.02	00.00	254	30	0.56	0.01	0.2	0.22		310	36	166	0	DWR
Slonakar demositic and irrigation	6S/2W-29D2	8-30-61	89	768	8.1	3.69	2. 24 2. 34	49	0.03	0.00	3.80	0,40	42	0.71	0.00	0.21		464	56	302 12		DWR
																-				+	-	

o. Determined by addition of constituents.
b. Growimstric determination.
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
d. Iron (Fe), Aluminum (AI), Argenic (As), Capper (Cu), Lead (Pb), Managese (Mn), Zinc (Zn),

⁻²²⁹⁻

																					Ī		
	Store well			Specific					Minerol		constituents	.E	ports per million equivolents per million	ts per	ports per million volents per milli	00			Totol		Hordn		
Owner ond	number and	Dote	Temp	once	표		Mogna		D-sotor	Carbon	3icor-	- 105		-iN			900	7		Cent	os CoCO3		Anolyzed
USE	orner number	sompled	- -	mhos of 25°C)		(CO)	Sium (Mg)	(No)	Sium (X)		bonote (HCO ₃)	(SO ₄)) (1) (2) (3) (3) (4)	frofa (NO ₃)	işe.	(8)	(SiO ₂)	Other constituents			Totol	N.C. Ppm	,
	MDBGM					Sour	TH BAY AR	AREA OF SANTA		RA VALI	EY (2-9	CLARA VALLEY (2-9) (Cont.)	7										
H. Mantelli domestic and	6S/2W-34M1	8-30-61	89	531	8,1	55	23	22 0,96	0,02	00.00	265	16 0,33	24 0.68	0.31	0.1	0,13	<u></u>		319	17	231	14	DWR
irrigation O. P. Gluhaich irrigation	6S/2W-36H2	8-24-61	70	556	7.9	43	24 1,96	1,39	0.04	00.00	173	44	51	0,31	0.00	0.30	26		326	25	205	63	DWR
City of Palo Alto municipal	6S/3W-1BI	8-31-61	72	1140	8.2	59 2.94	18	150	0,05	00.00	233	200	218 3	3.6	0.0	0.32			647	59	220	29	DWR
City of Palo Alto	6S/3W-2DI	8-31-61	7.0	756	4.8	3,79	18	60 2.61	1.7	0,13	286	58	288	11 0	0.02	0.22	72		157	33	265	54	DWR
City of Palo Alto	6S/3W-12C1	8-31-61	74	4799	8,5	40	8.5	3.83	1.5	0.20	249	33	53 1	0.02	0.5	0.17	[32		390	58	135	0	DWR
W. S. Bennet	7S/1W-5P1	8-29-61		959	80	3,69	2.42	30	1.3	00.00	319	48 1,00	29 0	12 0,19	0.2	0.31			403	17	306	1	DWR
								LIVERMORE	RE VAL	VALLEY (2-	(2-10)												
T. P. Biehop Co.	2S/1W-22Al	5-31-61		974									178				ABS	S 0.0					DWR
F. Guetanich	2S/2E-35G2	5-31-61		2650									634 17.88				ABS	S 0.0					DWR
Volk-McLain Co.	38/1W-1B1	3-1-61		794	8,0	2,45	1.43	109	0.0	00.00	382	22 0.46	$\frac{62}{1.75} \frac{0}{0}$	0.1	0.2	0.3	23 Fe	0.0 (Die.)	471	55	194	0	DWR
E. D. and J. Nevin	3s/1W-1G1	5-31-61		1060									84				ABS	S 0.0					DWR
	3s/1W-3Q1	5-31-61		1290									3.84				AB	ABS 0.0					DWR
U. S. Government observation	3S/1E-6M1	2-7-61		7040	0.8	264 13,17	178	1240	0.06	00.00	1090	2040	860 (24.25)	0.9	0.05	5.0	19 Fe PO	Fe 0.01 (Dis.)	5150	99	1390	967	DWR
State of California observation	3S/1E-6N1	4-20-61		37200	7.7	1170	2060 169,62	5940 258,39	19	00.00	720	5050	13300			13.0	12 Fe PO	Fe 0,01 (Die.) Po4 0.30	27900	53 1	11400 1	10800	DWR
State of California observation	3S/1E-6P1	4-20-61		40600	7.4	1030	119.80	8020 348,87	0,33	00.00	11.42	6700	13400			20.0	14 Fe P0,	Fe 0,00 (Dis.) P04 0,10	31000	29	8560 7	7990	DWR
State of California observetion	3S/1E-7C1	4-20-61		35100	7.7	096 77	1590	6390	7.9	00.00	9.44	5750 119.72	327.12			19.0	11 Fe P0.	Fe 0.00 (Dis.) PO4 0.25	26600	19	8940 8470	470	DWR
O Determined by addition of constituent	of constituents																						

o. Determined by addition of constituents.

b. Growimetric determination.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

d. Iron (Fe), Aluminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn), Detergeat Surfectant (ABS),

	State well			Specific conduct-					Minerol		constituents	i.E	ports per million equivolents per million	ports per million volents per mill	million			Totol	à	Hardness		
Owner and	other number	Sompled	Temp in °F	ouce (micro-	Æ	Calcium		كالمند	otas-Cor								7	solved Solved	Sod	OS COCO		Anolyzed
857				mhos of 25° C)		(Ca)	Sium (Mg)	(No)	Sium (K)	ote bor (CO ₃) (HC	bonofe for (SI)	fate (SO ₄)	CCI)	trate ri (NO ₃) (I	ride (B)		(SiO ₂) Other constituents	solids in ppm a	Ē	Total N.C.		
							IT	LIVERMORE VALLEY		(2-10)	(Cont.)											
Volk-McLain Co.	3S/1E-7E3	1-24-61		7940	7.7	99 2	362 29.81	940	0.11	0.00	1170	2030	1380 1 38.92 0	1.1 0.02 0.0	1.2 4.7	22	Fe 0.01 (Dis.)	2960	07	3090 2130		DWR
Volk-McLain Co. observation	3S/1E-7E4	2-7-61		18100	8.0	26.85	943	3440	3.4	0.00	1450 L	8500	1780 1	0.03	0.11	18.0	Fe 0.00 (Dis.) PO4 0.05	16000	59	5220 4030		DWR
U. S. Air Force domestic and irrigation	3S/18-8H3	6-1-61		744									1.80				ABS 0.0					DWR
8. Hagemann domestic and	3S/1E-11H1	6-1-61		639									38				ABS 0.0				-	DWR
E. Hagemann none	3S/IE-11H3	4-10-61		1640	8.0	99 4.94	9.06	73	0.05	00.00	8.20	28 1.21	7.61 0	0.29 0.	0.00	ا ا	Fe 0.0 (018.) A1 0.17 Cu 0.01 Mm 0.00 Pb 0.00 Zn 0.00 Cr 0.00 Po Po 0.20	907	18	700 290		DWR
A. H. Hagemann domestic and irrigation	3S/1E-12C1	4-11-61		1070	24	3.24	62 5.08	2.91	0.04 0	00.0	392 6.42 0	0.98	3.58 0	0.40	0.00	<u>و</u>	Fe 0.00 Cu 0.00 Fb 0.00 CF 0.01	619	36	416	26 I	DWR
A. H. Hagemann none	3S/1E-12C2	4-11-61		1910	0, 8	2.69	6.07	250 10,88	0.03	0.00	10.56 2	2.83	7.05	0.04	0.00	01		1100	55	854	0	
E. Hagemann stock	3S/1E-12D1	4-19-61		1640	7.9	95	7.86	114 4.96	0.06 0	00.0	9.41	1.37	6.99	0.34 0.	0.00	52		953	788	630 159		DAR
City of Livermone domestic and irrigation	3s/lE-12Hl	4-19-61		915	0 8	3.04	5.72	37	0.04 0	0000	7.28	0.77	2.17	0.31	0.00	<u>8</u>		551	2	438 74		DWR
Calif. Rock and Gravel domestic	3S/1E-13P2	5-31-61		581								-,-	45				ABS 0.0					DARR
H. J. Kalser Ind. domestic	38/16-1511	6-1-61		526									0.82				ABS 0.0					DWR
					-				-	-	-				-	-			-	-	4	

Obstarmined by addition of constituents.
 Grovimstric distrinction.
 Grovimstric distriction.
 Grovimstric distrinction.
 Grovimstric distriction.
 Grovimstric distriction.

⁻²³¹⁻

	1000		-	Specific	-				Miner	Mineral canstituents	tifuants	Ë	parts per millian	parts per millian	nillian	1		3				
Owner and	number and	Date	Temp	-tonduct-	<u> </u>	2		1000	- Co	Carbon- Bi			- Lord	I Z	-on	9		Solved	2000	as CaCO 3		Analyzed
9 5 7		Day de la constant de				(co)	Sign (Mg)	(oN)	(K)		bonofe (S	(SO ₄)	# E G	(NO ₃)	ĘE.	(B)	(SiO ₂) Other constituents ^a		, E	Total	N.C.	36
							TIM	LIVERMORE VALLEY		(2-10)	(Cont.)											
H. J. Kaiser Ind.	3S/1E-16N1	6-19-61		682								D	35				ABS 0.0					DWR
	3S/1E-16P1	6-19-61		498									38				ABS 0.0					DWR
	3S/1E-17D1	7-28-61		828											<u>•1</u>	0.84		553		139		DWR
	3S/1E-17D2	7-28-61		521											<u> </u>	0.30		329		204		DWR
H. Kruse	3S/1E-17H2	6-1-61		815									65				A.B.S 0.0					DWR
500	3S/1E-18A1	7-28-61		1040											<u>•1</u>	0,83		7799		366		DWR
San Francisco Weter Department	3S/1E-19A5	6-19-61		824								1-,	55				ABS 0.0					DWR
municipal Brondelo	3S/1E-29A1	4-19-61		691	7.6	36 1.80 1.1	20	3.61	0.0	0.00	286	0,35	74 2,09	9.4 0.15 0.0	0.2	0.3	Fe 0.00 (Dis.) Cu 0.01 Mn 0.05	412	51	173	0	DWR
																	Pb 0.00 Zn 0.54 Cr 0.00 As 0.00 Po ₄ 0.35 Al 0.00					
	3S/1E-29E3	5-22-61	79	1620	7.4 5.	5.34 3.	39 3.18 8	192 8,35 0	0.06 0	00.00	8.20 1.	54 7	255 7,19 0	0.02	0.2	5.2 29		931	64	426	16	DWR
Caetlewood Corporation none	3s/1E-29N1	4-12-61		3170	7.8	122 6.09 4.	49 1	430 0	0.43	00.00	338 1.	0.02	870 1 24.53 0	0,02	0.02	24.0 24	,	1710	99	505	228	DWR
Ceetlewood Country Club observation	3S/1E-32B1	1-24-61		0968	7.3 13	262 13.07 8.	106 8,73	1390 0.46	33 0.84 0	00.00	268	11 0,23 8	2850 2	0.04	0.4	81.0 40		4910	73	1090	87.0	DWR
Cohen stock and irrigation	3S/1E-32K2	4-3-61	61	1830	8 ° 0 ° 8	93 4	3.68	9.66	0.8	00.0	374 6.13 1.	$\frac{61}{1.27}$	380 10.72 0	0,02	0.04	17.0		1030	54	416	109	DWR
H. Turner observation	3S/1E-32K4	4-3-61	09	2830	7.9				lo lo	0.00	486		610 17.20				Fe 0.01 (Die.) Cu 0.00 Mn 1.3 Zn 0.02 Cr 0.00			775	376	DWR
		4-4-61	09	2840	7.8 9.	186 9.28 6.	73 1	308 6	6.0 0.15	00.00	512 8,39	3.66	$\frac{610}{17.20}$ $\frac{1}{0}$	1,1 0,02 0	$\begin{bmatrix} 0,2\\0,01\end{bmatrix} \boxed{\frac{2}{0,01}}$	2.5 47		1680	46	765	345	DWR
o Determined by addition of constituents	of constituents																					

o. Determined by addition of constituents.

b. Growmetric determination.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Terminal Testing Laboratory (T.T.L.) or State Opportment of Water Resources (D.W.R.) as indicated.

d. Iran (Fe), Aluminum (Al), Arsenic (As), Capper (Cu), Lead (Pb), Manaonese (Mn), Zinc (Zn), Detergent Surfactant (ABS).

	Stote wall		,, -	Specific					Minar	Minaral constituents	tituents	.E	parts per million equivalents per million	parts per million valents per mill	r million	5		Total	à	Hardi	0888	
Owner and use	number and ather number	Dofa	Te no F		E E	Calcium Mc	Magne- sium (Mg)	Sodium Pc (Na)	Potas-Car sium (K) (C	Carbon Bi ate bo (CO ₃) (H	Bicar- bonate (HCO ₃) (Sul – fote (SO ₄)	OHO (12)	Ni- trate (NO ₃)	Flus - B ride (F)	Boron Si (B) (S	Silica (SiO ₂) Other constituents ^d	dis- solved solids in ppm	P S E	Total Ppm	as CaCO ₃ Fotal N.C. ppm ppm	Analyzed by c
							VIII	IIVERMORE VALLET (2-14) (Cont.)	VILET (2-10)	(Cont.)											
Ball domestic	3S/2E-6NI	5-8-61		672	7.8 2	43 4 3.	3.65	35 1	0.04 0	0.00	288 0	35	42 1,18	30 0	0.01	0.3	31 Fe 0.00 (Dis.) FO 0.15	404	21	290	₹.	DAR
H. R. Johnson none	3S/2E-7C1	5-8-61		1640	7.8	84 4.19 8.	100	5.05	0.08	0.00	608	47 0,98	210 5,92 0	0.18	0000	1:0	28 Fe 0.00 (Dis.) PO. 0.10	006	29	620	121	DWR
H. L. Hagemann domeatic and	3S/2E-7K1	5-31-61		761									50 1.41				ABS 0.0					DWR
Calif. Water Service municipal	3S/2E-8H1	5-31-61		724									1,30				ABS 0.0					DWR
Coast Mfg. Company	3S/2E-10F2	4-13-61		881	8.2	2.59 4.	52 4.29	2,35	0.04 0	00.00	330	77.0	2.37	35 0.56	0.0	0.5	34 Fe 0.00 (Dis.) FO ₄ 0.25	513	1 25	344	73	DWR
Amling Da Vore Nursery irrigation	3S/2E-10H1	5-31-61		794									78				ABS 0.0					DWR
B. Wagoner irrigation	3S/2E-17N1	5-31-61		683									1.94				ABS 0.0					DWR
B. G. Wood irrigation	3S/2E-29DI	5-31-61		741									1,72				ABS 0.0					DWR
C. Crohare	3S/2E-29Q1	4-19-61		789	8.0	68 3,39 2.	36 3	2,35	0.05	00.00	319	103	45	000	0.01	8.0	14 Fe 0.0 (Dis.) FO 0.00	7 480	27	316	54	DWR
J. Amaral domestic	3S/3E-19C1	5-31-61		1590				·					224 6.32				ABS 0.0					DWR
o Determined by addition of constituents	of constituents																					

a. Determined by addition of constituents.
 b. Growmetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (Pb), Managonese (Mn), Zinc (Zn), Detergent Surfactant (ABS).

⁻²³³⁻

	State well			Specific conduct-					Z.	Mineral constituents	nstituent	ë	po	ents per	parts per million equivalents per million	<u>[</u>			Tatal	à	Hardness	sse	
Owner and	other number	Sampled	Temp in °F	ance (micra-	E	Coloum	_	Sadium	Patas-C	Carbon-	Bicar-	Sul -	Chia-	1 2	Fluo-		- June		eolved	S on the	as Ca		Analyzed by c
• • • • • • • • • • • • • • • • • • • •				mhas at 25°C)		(Ca)	sium (Mg)	(Na)	(K)	sium ate b (K) (CO ₃) (I	banate (HCO ₃)	fate (SO ₄)	ir (CID)	trate (NO ₃)	ğ.(F.)	(8)	SiO ₂) Oth	(SiO ₂) Other constituents	solids in ppm	Ē	Tata1 ppm	N.C. Epp	
							히	CENTRAL COASTAL REGION (No.	ASTAL	REGION	No. 3												
	MDBGM							PAJA	PAJARO VALLEY	LEY (3-2)	ন												
F. T. Blake	12S/1E-11L1	5-4-61		415									19										DWR
,		9-26-61	\$	380	0 8	30	20	19	0.04	00.00	2.90	0.44	18 0.51	6.8	0.3	0.10	48 Pe	0.00 (Totel)	252	21	157	12	DWR
State of Celifornia	12S/1E-11N1	5-4-61	19	411							7.		18				3 및	300					DWR
		9-26-61		408	8.1	29	23	21 0.91	0.04	0000	168	28	23	13	0.02	0.11	41 A 14	0.02 (Total) 0.02 Ae 0.00	266	21	167	29	DWR
J. Roacha	12S/1E-14J1	5-4-61	\$	469									62				공 못	000					DWR
irrigation		9-26-61	99	381	8,1	22 1,10	19	1.04	1.4	0.00	122	18	32 0.90	28	0.1	90.00	38 Pe	0.05	232	28	133	33	DWR
E. L. Padden	12S/1E-23R1	5-4-61		599									35				28	0.00 Pb 0.01 0.00 Zn 0.03					DWR
domestic		9-26-61		995	8.1	28	28 2.34	47	12 0.31	00.00	4,44	43		0.5	0.2	0.08	30 Fe	1.4	351	33	187	0	DWR
H. Trafton	12S/1E-24G1	5-4-61		538									23				3 4	0.00 Zn 0.04		-			DWR
irrigation		9-26-61		512	8,1	2.00	2.38	$\frac{27}{1.17}$	3.5	00.00	265	0.67		0.02	0.2	0,13	32 Fe	0.64 (Total)	316	21	219	7	DWR
Caseon	12S/1E-24J2	5-4-61	19	2310									613				3 4	0.0					DWR
Morey	12S/1E-25B2	6-15-61	74	499									23										DWR
111881100		9-27-61	73	477	8.1	25	1.77	1.91	0,07	00.00	3.24	52 1.08	23	0.5	0.2	90.00	31 Fe A1 Cu	0.02 (Total) 0.00 As 0.00 0.00 Pb 0.00	297	86	151	0	DWR
			· · · · · · · · · · · · · · · · · · ·														Æ	0.05					
o Determined by uddition of constituents	of constituents									1													

a. Determined by uddition of constituents.
 b. Grovimetric determination.
 c. Analysis by U.S. Geological Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboraday (T.T.L.) or State Department of Water Resources (DW.R.) as indicated.
 d. Iran (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn),

Anolyzed by c DEAT. DWR DWR E H DWR PAH PAH DEAT. DWR DWR N. N. DWR DWR ല 18 0 6 43 47 N.C. 6680 Hardness as CoCO₃ 83 Tatal 220 185 6780 136 187 239 294 224 Sod-3 17 22 24 22 20 g Total dis-salved solids in ppm 7260 296 285 280 358 311 421 400 Pe 0.04 (Total)
Al 0.00 As 0.00
Cu 0.00 Pb 0.01
Mu 0.01 A 0.00
Cu 0.00 Pb 0.01
Al 0.01 A 0.00
Cu 0.00 Pb 0.01
Mu 0.66 Zn 7.2
Fe 0.00 (Total)
Mu 0.00 Pb 0.00
Mu 0.00 Pb 0.00
Mu 0.00 Pb 0.00
Mu 0.00 Pb 0.00
Mu 0.00 Pb 0.00 Fe 0.28 (Total)
Al 0.00 As 0.00
Cu 0.01 Pb 0.00
Fe 0.12 (Total)
ABS 0.0
Fe 1.9 (Total)
Al 0.00 As 0.01
Cu 0.01
Fe 1.9 (Total)
Al 0.00 As 0.01
Cu 0.01
ABS 0.01
ABS 0.01
ABS 0.01 Fe 0.00 (Total) Al 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.00 0.01 (Total) 0.00 Ae 0.01 0.01 Pb 0.00 0.15 Zn 0.02 Silica Other constituents^d # 49 H 4 40 37 읾 81 37 27 33 0.14 0.16 0.12 0.12 0.17 0.16 0.10 0.00 Boron (B) ports per million . equivolents per million 0.2 0.0 0.00 Fluo-ride (F) 0.0 0.0 0.0 0.03 0.0 9.02 0.0 0.4 0.0 0.04 Ni-trate (NO₃) 37 0.0 45 4580 4.82 14 32 38 18 14 26 0.73 19 0.54 45 57 47 유흥() 36 1.04 Sul -tote (SO₄) 42 34 0.71 0.73 56 1,16 361 57 .5 Mineral constituents 113 246 222 3.64 221 3.62 280 Bicar-banate (HCO₃) 123 PAJARO WALLEY (3-2) (Conc.) 301 4.93 172 2,82 Potas-Corbon-sium ata (K) (CO₃) 000 000 0.00 000 4 0.00 0.00 0000 1.9 1.9 0.00 0.07 1.5 2.3 2.2 1.9 Sodium (No) 25 1,09 26 1,13 38 31 33 158 210.01 2.00 Mogne sium (Mg) $\frac{922}{81.57}$ 1.52 18 25 2.33 24 1,96 130 2.58 Colcium (Ca) 1080 53.89 2.44 41 2.04 2,69 3.54 24 2.20 38 8.3 8.0 7.6 8.1 8.3 8.4 7.7 8.2 둅 conduct-anca (micro-mhas Specific 953 468 482 457 440 119 572 620 675 12200 641 692 Гепр п ° F 73 99 67 67 sampled 6-15-61 9-27-61 9-26-61 9-26-61 9-27-61 6-15-61 6-15-61 9-27-61 9-27-61 5-4-61 7-27-61 5-4-61 Dote Stote well number and other number 12S/IE-36A1 12S/1E-25C1 12S/2E-19B1 12S/2E-19M1 12S/2E-18K2 12S/2E-30E1 12S/2E-31A1 12S/2E-30N1 12S/2E-7K1 MDBSM Racchi and Glovanietti City of Watsonville industrial M. Williamson domestic and irrigation Hayee domestic and irrigation J. Fenaglio domestic and irrigation Owner and A. L. Wangamen irrigation domestic and irrigation T. E. Trafton irrigation irrigacion irrigation USe Watkine Ranger

Determined by addition of constituente.
 Grovimatric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

 Analysis by U.S. Geological Survey, Quality of Water Beacures (D.W.R.) as indicated.
 Iton (Fe), Aluminum (AI), Argenic (Ae), Copper (Cu), Lead (Pb), Manageness (Mn), Zinc (Zn), Detergent Surfactant (ABS).

	State well			Specific conduct-					Mij	Mineral cor	constituents	.5.	Bquiva	arts per	parts per million aquivalents per million	ro o		Totol		Hardness	850		
Owner ond	number ond other number	Sampled	Temp in °F	(micro- mhos	됩	Colcium	Mogne-	Sodium (NA)	Patos-C		Bicar- bonate	Sul -	Ohio - obji	Ni- frate	Fluor	Boron (B)	Sitica Other constituents	solved solids	Sod :	20 20 10	-	Anolyzed by c	
				ot 25° C)			\rightarrow	-	3		(HCO ₃)	(804)	(C)	(NO ₃)	(F)		200	E 60 E	_	E dd	m dd		
	новен							PAJARO	VALLEY	(3-2)	(Cont.												
anger domestic and irrigation	12S/2E-31A1	9-27-61		670	8 8 12	50 3	3.11	40	0.00	00.00	285	73	45	0.00	0.2	0.19	33 Fe 0.32 (Total) Al 0.00 Ae 0.00 Cu 0.01 Pb 0.00	422	23	281		DWR	
ensen irrigation	12S/2E-31CI	7-27-61	9	473	8.0 1	23 1,15	1,33	42	0.05	00.00	1.24	0,33	1.97	42 0.68	0.2	0.08	8 8 8	291	75	124		DWR	
. Tornavaca irrigation	12S/2E-31K1	7-27-61	89	1060	8.2 4	4,59	3.32	62 2.70	3.7	00.00	3.64	68	5,27	0.18	0.0	0.26		615	25	396 2	214	DWR	
. H. Cowell irrigation	12S/2E-32C1	7-27-61		565	8,3	2.20	2.28	1.48	0.07	00.00	3.59	51	1,21	0.04	0.2	0.15	0000	350	24	224	#	DWR	
ohneon	12S/2E-32K1	6-15-61		574									78						—			DWR	
		9-27-61		425	7.8	0.80	0,84	2.04	0.03	00.00	09 86 0	0.17	62 1,75	45	0.00	0,03	43 Fe 0.03 (Total) A1 0.01 As 0.00 Cu 0.02 Pb 0.00 Mm 0.01 Zn 0.00	262	55	82	<u>۾</u>	DWR	
. Hurley irrigetion	12S/2E-32N1	7-27-61	79	628	8,0	39	3,01	45	0.06	00.00	289	0.90	1,16	0.04	0.2	0.32	42 Fe 0.10 (Total) A1 0.00 As 0.00 Cu 0.00 Ps 0.00 Mr 0.00 72 0.07	394	28	248		DWR	
. Banouac irrigetion	12S/3E-7BI	9-27-61	49	1270	8,1	104 5,19 5	70 5.78	3.78	0.00	00.00	7.21	4.77	2.40	3.8	0.4	0,58	32 Fe 0.07 (Total) A1 0.02 As 0.00 Cu 0.03 Pb 0.01	830	56	549 1	188	DAR	
. Hurley irrigation	13S/1E-1A1	9-27-61		1510	8.3	4.74	5,99	4.22	0.11	00.0	3,59	82 1.71	328 9.25	0.21	0.0	0.23	0000	840	28	537 3	357	DWR	
	13S/2E-5M1	7-26-61	\$	1140	8.8 14.	87 4.34	3,99	3, 92	3.8	00.00	4.84	3.64	3.02	0.71	0.0	0.33		741	32	417 1	17.5	DWR	
. Hurley irrigetion	13S/2E-6E2	8-3-61	67	1260	8.8 F4	4.69 2	35 2.84	118 5,13	0.09	00.0	3,90	108	6.03	0.39	0.01	0.26	0000	762	04	377 1	182	DWR	
. Determined by oddition of constituents.	of constituents.																			1		7	

a. Determined by addition of constituents.
 b. Gravimentic defermination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.
 d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Managonese (Mn), Zinc (Zn), Detergate Surfactual (ABS).

	Anolyzed	,		æ	<u>م</u>	æ		æ	ρs	pe:	ps	<u> </u>	æ	~	Æ	Æ	Æ	
	Anol			DWR	DWR	DWR		DWR	DWR	- DWR	DWR	DWR	DWR	DAR	DWR	DWR	DWR	
dness	os CaCO 3	N.C.		152	0	85		20	87	55	26	77	13	•	137	8	09	
1	- 1	Total		329		272		191	227	207	211	176	179	200	428	193	290	
	Sod	S E		2 39	92	7 29		5 21	2 14	8 13	9 17	8 16	1 21	0 25	8 11	6 14	5 15	
Toto		solids in ppm		645	7 690	4		296	302	288	309	258	261	300	248	256	405	
		(SiO ₂) Other constituents ^a		Fe 0.00 (Total) Al 0.00 As 0.01 Cu 0.00 Pb 0.00	000000000000000000000000000000000000000	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.06 Zn	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	
				45	ह्य	77		18	뙤	31	38	139	156				ଜା	
uol	Boron	(8)		0.27	0,21	0.25		0.12	0.10	0.20	0,10	0.06	0.11	0.14	0.26	0.15	0.20	
parts per million equivalents per million	Fluo-	ride (F)		0.2	0.4	0.2		0.2	0.4	0.2	0.3	0.3	0.3	0.01	0.03	0.0	0.0	
irts per	ij	trote (NO ₃)		33	0.9	0.7		28	30	0,68	49 0.79	26 0.42	0,27	0.26	1.21	0,18	0.72	
pod	Chio-	rida (CI)		181 5.10	93	2.26		20	35	19 0,54	25	0,59	16	24	0,73	0.31	21 0,59	
i s	- InS	fote (SO ₄)		1.50	96	54		25 0,52	7.2	24	0,37	0,35	0,35	0,35	1,81	0.71	1.04	
	Bicar-	bonote (HCO ₃)	(Cont.)	3.54	187 3.06	250	N (3-3)	3.42	218 3,57	3,03	3.10	164	3,33	245	355	3,13	4.59	
Mineral and	Carbon-	ate (CO ₃)	(3-2)	00.00	0000	0,17	R BAST	00.00	0000	00.00	00.00	00.00	0.13	00.00	00.00	0.13	00.00	
Z i	Patos-C	Sium (K)	ALLEY	3.7	2.6	0.10	LLISTE	0.04	0.01	0.8	0.7	0.2	0.03	0.03	0.02	0.02	0.03	
		(Na)	PAJARO VALLEY (3-2) (Cont.)	98 4.26	163 7.09	51 2.22	GILROY-HOLLISTER BASIN	1.04	17 0.74	14 0.61	20 0.87	16 0,70	22 0,96	31	1,04	14 0,61	24 1.04	
		siúm (M9)		3.28	0.14	33		$\frac{21}{1.72}$	2.40	2.14	2.42	1,72	21 1.73	31 2,55	58 4.81	1.76	32 2.65	
	- Colonia	(Co)		3.29	8.5	2.69		$\frac{42}{2.10}$	43	40	36	36	37	1.45	3.74	2,10	3.14	
	五			8.2	8 8	8.5		7.9	7.8	7.9	8.2	7.8	4.4	7.5	8.1	8.4	7.8	
Specific				1090	819	726		475	518	467	493	416	435	511	851	417	643	
	Temp			65		67												
	Date			7-27-61	9-27-61	7-26-61		6-14-61	5-5-61	6-14-61	6-14-61	6-14-61	6-14-61	6-14-61	6-14-61	6-14-61	6-14-61	
State well	number and		MDB6M	13S/2E-6E3	13S/2E-6P1	13S/2E-6R1		9S/3E-25N3	9S/3E-34E2	10S/3E-1E2	10S/3E-23J1	10S/3E-26J1	10S/4E-18J1	10S/4E-28D2	115/4E-4Q3	11S/4E-8P2	11S/4E-21B2	
	Owner and	esn		J. Stucki irrigation	F. Caparro and Sons domestic and irrigation	Giberson irrigation		T. Andrade 1rrigation	State of California domestic	P. L. Hudeon irrigation	J. Orlando domestic and irrigation	E. H. Henderson domestic end irrigation	W. Henzi domestic and frriostion	D. Wolfe domestic and irrigation	G. Hoeeng lrrigation	H. Hersman irrigation	J. D. Fair domestic	

o. Determined by addition of constituents.

b. Grovimatric determination.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Terminal Testing Laboralary (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

d. Iran (Fe), Aluminum (AI), Assentic (As), Copper (Cu), Lead (Pb), Managenes (Mn), Zinc (Zn), Detergent Surfactant (ABS).

	3 6 7 7			Specific					Minsrol	constituents	ents in	vinge	ourts per	parts per million	l lo			Total		Hardne	5	
Owner and use	number ond	Sompled	Teap in °F	conduct- once (micro- mhos at 25° C)	Ŧ	Calcium (Co)	Magne - Sc sium (M9)	Sodium S (No)	Potas-Corbon- sium ofe (K) (CO ₃)	bonote (HCO ₃)		0.0	Ni- trote (NO ₃)	Fluo- ride (F)	5.	ilico 510 ₂) Ott	Silico (SiO ₂) Other constituents ^d	dis- solved solids in ppm	Sod- tum- tum-	as CaCO ₃ Total N.C.		Anolyzed by c
	MDB&M						GILRDY-	HOLLISTE	GILRDY-HOLLISTER BASIN (3-3)		(Cont.)											
F. Smith irrigation	11S/5E-26Q3	6-14-61		1080	8.4	47 2,34	22	150	1.2 0.03 0.	6 0,20 5,42	31 12 42 0.25	176	0.5	0.4	2.4	23 A	ABS 0.0	909	61	503	0	DWR
C. R. Lanini domestic	11S/5E-27M1	6-14-61		520	8 0	49 2,44	24 1,98	25 1,09	0.03	0 241	41 40 95 0.83	0.68	2.8	0,3	0.28	18 A	ABS 0.0	302	20	221	23	DWR
Ferry Morse Seed Co.	12S/4E-34P2	6-13-61	63	1560	7.7	159 7	50	110	2.1	0,00 334	34 276 47 5.75	173	32 0.52	0,03	0.42	27 E	ABS 0.0	766	28	603	329	DWR
Olympia School	12S/4E-35C1	6-13-61		1610	8.0	3,94	100	150	2.8 0	0 567	57 29 6.64	2.76	0.1	0,03	0,50	28 A	ABS 0.0	1060	E	609	144	DWR
M. Diaz	12S/4E-36C1	6-13-61		1730	7.9	85 4.24 9	110 9,03	156 6.79	2.8	0 568 0.00	351	3,16	3.5	0.6	1:1	28 A	ABS 0.0	1130	78	999	198	DWR
J. Lomanto	12S/5E-12M3	19-61-9		1130	8.2	3,79 4	53	3,57	2.2	0 363	105 35 2,19	3,72	8.8	0.0	3.5	- FE	ABS 0.0	269	90	408	110	DWR
P. Rovella	12S/5E-36A1	6-13-61		1310	4.8	0.80	15 1.24	261	1.7	5 0.17 7.82	32 1.42	146	0.5	0.03	1.6	42 A	ABS 0.0	791	78	102	0	DWR
irrigation S. Brandon	12S/6E-7M2	6-14-61		412	7.8	18 0.90	0.82	52 2,26	3.2 0.08 0.0	0.00 3.57	0.00	0.62	0.3	0.3	0.88		ABS 0.0	282	- 56	8	0	DWR
E. F. Broadfoot	12S/6E-19E2	6-13-61		1520	8.0	31 2	2.39	243	2.0 0.05 0.00	00 5.82	0.00	319	0.01	0.3	13	원 - 공	ABS 0.0	861	72	197	0	DWR
C. T. Pillsbury	12S/6E-31BI	6-13-61		2410	8.2	49 7	56 4.57	404	2.2 0.06 0.00	00 8.60	2,50	13,51	0.02	0.10	3.6	- F	ABS 0.0	1400	7.1	351	0	DWR
irrigation First Presbyterian Ch.	138/5E-331	6-13-61		1300	24.	3,24 5	65	125	2.6 0.07 0.00	364	241 56 5.02	106	5.2	0.5	0,95		ABS 0.0	812	38	430	132	DAR
V. Lompo	13S/5E-11G1	6-13-61		1420	8.2	3.44 5	72 5,95	139	3.0 0.00	389	39 250 38 5,20	3,36	24	0.02	0.50	26 AJ	ABS 0.0	894	33	470	151	DWR
J. Lauaghino	13S/5E-16A1	6-21-61		1880	8.4	87 4.34 8	100	212	2.4 0.06	14 524 0.47 8.59	24 416 39 8.66	3,47	39	0.02	0.4	28 Fe	0.36 (Total)	1280	77	630	177	DSGS
P. Matulich	13S/6E-19N1	6-13-61		2520	۳ ش ش	63 1	130 10,67	288	3.9 0	0,00 459	52 472	339	3.0	0.6	1.6	16 A	ABS 0.0	1540	4	691	315	DWR
Intigation San Benito County domestic and intigation	13S/6E-34C1	6-14-61		1360	8.1	103 5,14 5	63 5.18	113	0.07	0 431 0.00 7.06	31 295 06 6.14	2,51	0.02	0.2	6.0	유	Fe 0.10 (Dis.)	910	8	516	163	DSGS
O Cotermined by addition of constituents	of constituents																					

a. Defermined by addition of constituents.
 b. Growmetric determination.
 c. Analysis by U.S. Geological Survey, Ouality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. tron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Monagnese (Mn), Zinc (Zn), Detergent Surfactant (ABS).

⁻²³⁹⁻

	Analyzed by c		usgs		nsgs	nsgs	USGS	USGS	uscs	usgs	uses	USGS	uscs	nscs	uses	uses	USGS
80 00	as CaCO ₃		175		0	0	0	92	78	114	0	0	0	13	161	0	0
Hard	os Co Tatal ppm		540		71	122	51	260	268	278	154	139	159	158	302	131	111
	Sod-mu		32		82	67	55	47	42	07	56	58	97	57	14	51	49
Total	dis- solved solids in ppm		938		529	303	194	583	556	552	428	421	354	456	616	342	281
	Silica Other constituents ^d (SiO ₂)		Fe 1,50 (Total)														
			22		48	64)	2	77	57	126	141	67	£1	4	64	12]	97
High	Baran (B)		1.2		0.2	0.1	0:0	0.2	0.1	0.0	0 1	0-1	0.2	0.2	0.1	0.1	00
parts per millian equivalents per millian	Fluo- ride (F)		0.2		0.1	0.2	0.2	0.1	0.1	0.1	0.2	0.2	0.3	0.4	0.3	0.01	0.2
arts pe	rate (NO ₃)		5.1 0.08		0.8	0000	0.02	5.5	0.03	3.0	0,03	0.02	0.02	0.04	2.3	0.02	0.02
d oxinbe	Chlo- ride (CI)		89 2,51		88 2.48	1,80	1.13	193	175	175	3,13	3.13	1,69	150	222 6,26	2,00	52 1.47
i i	Sul - fote (SO ₄)	at.)	306		88	5.2	0.02	30	23	37	17	0.44	0,25	0.46	1,19	13	0,25
constituents	Bicor- bonate (HCO ₃)	-3) (co	445	7	234	165	69	3.28	3,80	3.28	216	3.29	3.44	172	172	3.20	160
Mineral co	Corbonate (CO ₃)	SIN (3	00.00	LEY (3	0.20	0.27	0000	0.40	00.00	00.0	0.07	00.00	0.43	0.10	0000	00.00	0,10
Ž.	Potos- Sium (K)	STER BA	3.0	SALIHAS VALLEY (3-4)	2.6	0.04	0.03	5.4	2.5	2.4	2.7	2.6	2.3	2.2 0.06	2.8	2.5	2.1 0.05
	Sadium (Na)	GILROY-HOLLISTER BASIN (3-3) (Cont.)	116 5.05	SALII	156 6.79	54 2,35	30	107	92	3.74	92 4.00	90 3.92	64 2.78	100	4.22	63	50 2,18
	Magne- stum (Mg)	GILE	66 5,46		6.9	13 1,09	6.3 0.52	31 2.51	28 2.27	2.37	13	1,13	1,13	19	31 2,55	13	13 1,07
	Calcrum (Ca)		5.34		17 0,85	27	10	54 2,69	62 3,09	3.19	41 2.05	33	41 2.05	32	70 3.49	31	23 1,15
	Ŧ		7.3		4.8	8.4	8.2	8,5	8.2	8.2	8,3	8.2	8.6	8,3	8.0	8.2	8.4
Specific	conduct- once (micro- mhos of 25° C)		1450		856	567	250	1020	026	962	732	709	568	812	1080	559	455
	Temp in °F				76	78	89	99	70	70	72	70	99	99	72	72	68
	Date		6-14-61		7-27-61	7-19-61	7-19-61	7-5-61	7-5-61	7-5-61	7-5-61	7-6-61	7-6-61	7-12-61	7-6-61	7-5-61	7-6-61
33	number and other number	MDBGM	13S/6E-34C2		13S/2E-7R1	13S/2E-10J1	13S/2E-13N1	13S/2E-16E1	13S/2E-19R1	13S/2E-20J1	13S/2E-29C4	13S/2E-31D2	13S/2E-31K2	13S/2E-31M2	13S/2E-31N2	13S/2E-32A2	13S/2E-32C1
	Owner and use		San Benito County public evimming pool		Monterey Bay Salt Co.	R, Bowen	R. M. Cheek	irrigation M. Minhoto	T. Leonardini domestic and	irrigation Calif. Artichoke and Vegetabla Growers donestic and	irrigation Permanente Cement Co.	J. J. King irrigation	Molera	E. Bellone	E. Bellone irriteation	irrigation	0. P. Overhouse ixrigation

a. Determined by addition of constituents.
 b. Growimstric determination.
 c. Andysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (RCC.), Terminal Testing Laboratory (T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iran (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Managenese (Mn), Zinc (Zn),

	State well			Specific					Minarol		canstifuents	_ '	par	parts per millian	parts per millian equivalents per millian			Totol	1	Hardne	SS	
Owner and use	number and ather number	Date	Temp in °F		Ŧ	Calcium (Ca)	Magns- sium (Mg)	Sadium F (No)	Patas-C sium (K)	Carbon B afe be (CO ₃) (H	Bicar Bonate (HCO ₃)	Sul - fote (SO ₄)	등 등 등 등 등 5 5 5 7	Ni- trafe (NO ₃)	Flua- ride (B)		Silica (SiO ₂) Other canstituents ^d	_	sod- lum lum	as CaCO ₃ Total N.C.	$\overline{}$	Analyzed by c
	MDBGM							SALINAS	VALLEY	(3-4)	(Cont.)											
Molera	13S/2E-32N1	7-6-61	72	523	e. 6	1.20	13	3.00	2.1 0.05	3	179 0	19 0,40	62 6	0.01	0.4	1 47		328	57	113	0	nses
D. V. Orcutt irrigation	13S/2E-33E1	7-5-61	99	1690	7.9	134 6.69	60 4.91	3,92	0.07	00.0	117 1.92	52 1.08	435	0.02	0.2 0.1	1 47		881	25	580 4	484	uses
C. Rieeatti irrigation	13S/2E-33R1	7-5-61	99	669	φ 10	3,19	1,77	53 2,31	2.4 0.06	0.27	3.43	67	73 73 7	0.07	0.3	1 39		436	32	248	64	USGS
R. Hollenbeck domestic and	_ 13S/3E-4L1	7-18-61		338	7.9	14 0.70	10 0.82	36	0.02	00.0	92 4		1,38	7.5	0.0 0.0	9		227	20	76		uses
Irrigation F. B. Taganas domestic and irrigation	13S/3E-20B2	7-12-61		290	7.2	13	8.1 0.67	32	0.0						loi			196	51	99	0	uses
C. Lightfood domestic and	13S/3E-29A1	7-12-61		573	7.8	0.80	1,36	66 2.87	0,03	000	1.08	0,21	3,52	0.13 0.13 0.0	1000	1		338	57	108	54	usgs
iritgation V. Coto domestic	14S/1E-24Q2	7-26-61	63	1100	7.3	58	33	94 4.09	2°0 0°05	00.00	42 0.69	70	136	230 3.71 0.00	0.00	<u>।</u> ह।		677	42	280	246	USGS
Marina Del Mar School domestic	14S/1E-25K1	7-25-61	49	538	7.1	1.35	1,23	49	0.04	00.00	44 0,72	18	2,26	82 1,32 0,0	0.01	97		321	45	129	- 66	DSGS
Martin irrigation	14S/2E-6Q1	7-12-61	70	559	8,7	1.20	13	3,22	2.0	0,20	2,79	1.04	24 1.52	0.02	0.04	1 56		365	58	114	0	nsgs
E. Struve domestic and	14S/2E-6R2	7-6-61	73	540	8.4	33	13	66 2.87	2.1 0.05	0.20	3.25	41	53 (0.01	0.4	1 49		361	51	136	0	uses
irrigation D. V. Orcutt irrigation	14S/2E-9Kl	7-7-61	89	610	8.2	43	19	2,35	0.08	00.00	157 2.57 2	100	48 (0000	0.2	2 48		393	38	185	95	DSGS
J. P. Rodgers	14S/2E-11D1	7-13-61	99	498	8.2	2,10	1.34	37	2.0	00.00	3,52	0.25	45	0.0	0.0	0.0		301	32	172	0	uses
E. C. Eatch domestic and	14S/2E-12Q1	7-13-61		208	8,6	50	18	32 1,39	1.4	0,37	3.64	9 0.19	37	0,04	0.3	<u>ः</u>		303	26	197	0	USGS
irrigation L. A. Wilder domestic	14S/2E-14N1	7-12-61		599	8,5	47	17	52 2,26	0.07	0.30	3,06	48	1.69	0.02	0.2 0.1	1 46		375	37	186	18	USGS
Monterey County Bank dometic and irrigation	14S/2E-15L1	7-12-61		641	8 1	41 2.05	28 2.31	59 2.57	0.07	0,33	3,08	2,12	1.18	0.0	0.2 0.1	1 48		426	37	218	7.4	USGS
A desired to the second	10000									-		-			-	-			\dashv	1	+	

o. Determined by addition of constituents.

b. Growmetric determination.

c. Analysis by U.S. Geological Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

d. Iran (Fe), Aluminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn),

	State well			Specific					Mineral		constituents	i.	parts per million equivolents per million	parts per million volents per mill	million			Total	3	Hardne	88	
Owner and	number and other number	Date	Temp in of	ance (micra-	Ŧ	Ε	Mogne-	Sodium P	Patas-Ca sium	Carbon- Bic	Bicor- St	Sul -	Chlo-	Ni- Fi	Fluo - Bar	Boron Sili	Silico Other constituents		1 0 0 E	ŏL		Analyzed by c
				at 25° C)		(0.3)	-										120			E Mdd	E dd	
	MDBGM						<u> </u>	SALINAS VALLEY (3-4)	CLEY C		(Cont.)											
J. W. Orcuet	14S/2E-16A1	7-12-61	99	675	δ, (1,	56 2.79 1	21 1,73	2,35	2.6	2 0,07	$\frac{199}{3.26} \frac{1}{2.2}$	102 1	1,35 0,	0.07	0.2 0.2	2 45	io!	430	ま	226	09	USGS
J. G. Armstrong Co.	14s/2E-18D1	7-6-61	62	1270	7.6	119 5.94 3	3.20	95 4.13	0.10	0000	260 4.26 3.	179 3,73 5	187 5,27 5,	5.5 0.09 0.09	0.2 0.2	2 39	m!	697	31	457 2	244	USGS
A. H. Bordgee	14S/2E-23J1	7-13-61	70	841	8,1	58 2	2,31	3,13	0,11	0 0 0 2 2	$\frac{160}{2.62}$ $\frac{1}{2.}$	133 2 2 2 2 2	98 3	3,3	0.1 0.01	2 43	m!	519	37	260 1	129	nsgs
M. T. DeSerpa irrigation	14S/2E-24E1	7-12-61	70	558	4.8	40 2,00 1	17 17 136	2,13	0,07	0,20	182 2,98 0,	34 1	58 1,64 0,1	1.6	0.2 0.1	1 45	101	344	38	168	6	nscs
domestic and irrigation	14S/2E-26A1	7-13-61		1240	8.2	107	43	3.83	0.11	0000	3.67	192 4.00 5	180 5.08 0.0	2.8 0.05 0.05	0.2 0.2	2 46	vol.	774	30	44	260	nses
A. Goodall domestic	14S/2E-30P2	7-26-61		495	7.4	30 5	5.6	54 5	1.5	00.0	46 0.75 0.	T 61.0	98	93 0.	0.1	13	m!	315	54	86	09	USGS
U. S. Army municipal	14S/2E-31M1	7-18-61	65		7.4	32 1,60 1	13	46 2,00		0000	110 0.	43 2	2,00	00	0.1			275	42	135	4	U. S. Army
D. P. McRaddin	14S/2E-35Q1	7-12-61	99	454	8.2	47 1	13	26 2	2.4	0000	$\frac{148}{2.43} \frac{8}{1.}$	83 0	16 0,45 0,0	0.01	0.0 0.0	9	,ct	308	24	172	51	USGS
Irrigation	14S/3E-30F1	7-13-61	89	1410	7.9	3,74 4	49	139	2.0	0000	266 10 4.36 2.	109 7	249 7.02 0,0	0.00	0.3 0.2	7 40		795	4	388	170	nsgs
Pacific Gae & Electric Company	14S/3E-33G1	7-13-61	89	738	χ, χ,	2,50 2	29 2.42	55 (2.6	0,30	182 2,98 1.	53 1,10 2	102 2.88 0	2.3 0.04 0.04	0.0 0.0	0 42	N!	435	32	246	82	USGS
municipal U. S. Army municipal	15S/1E-14N1	7-26-61	76		7.4	3,69 1	20	120 5.22		0000	305 5.00 1.	58 1,21 4	155	00	0.2 0.01			633	67	270	17	U.S. Army
P. Calabrese industrial	15S/1E-22C1	7-25-61		758	4.8	48 2,40 1	20 1.64	3,04	3,1	0,10	160 2.62 1.	48	112 3,16 0	7.0	0.00	13	m!	443	42	202	99	nscs
0. Veach domestic	15S/1E-23GI	7-25-61		239	7.7	9.1 0.45	3.2	32 1.39	0,03	0000	08.0	0,12	43 1,21 0	0.03	000	0.0	D 1	157	65	35	0	USGS
J. Siino domescic	15S/1E-26M2	7-25-61		484	7.9	0.90	8 <u>.5</u> 0.70	2,61	0.05	000	56 0.92	13 2	2.65	22 0,35 0.0	0.01	0.1 40	O.L	286	61	80	34	nscs
domestic and irrigation	15S/2E-1A3	7-14-61		437	8 5	46 2,30	12 1,00	28	2.6	0,13	$\frac{150}{2.46} \frac{7}{1.}$	74 1,54 0	13 0,37 0,0	0°8 0°01	0.2	의	Q1	295	27	165	35	USGS
irrigation	15S/3E-4K3	7-19-61	70	587	8.2	2,15	18	52 2,26	3,1	00.00	$\frac{136}{2.23} \frac{1}{2.2}$	127 2,64 T	39 0	0.01	0.2 0.2	7 43	m!	393	88	182	70	nsgs
																\dashv						

Determined by addition of constituents.
 Grovimatric determination.
 Analysis by U.S. Goological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (U.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (Pb), Managenese (Mn), Zinc (Zn),

	Anolyzed	by c		1 365	368	SOS	USG	USGS	USGS	uses	USGS	uses	USGS	USGS	USGS	USGS	USGS	USGS	uses
	CO ₃	N.C.		807	316	192	0	11	19	77	119	93	454	248	72	378	3	408	217
	Hardness as CoCO ₃	Total		556	3	364	510	126	216	257	356	221	999	905	304	575	157	809	357
		S E		48	28	54	26	26	97	37	37	95	33	39	07	23	22	56	25
	dis-	solved colids in ppm		1370	786	578	757	370	491	485	629	209	1240	850	623	921	263	1020	554
		(SiO ₂) Other constituents ^d																	
	L			<u>8</u>	8	137	47	62	2	67	27	88	38	9	정	33	39	41	35
		Boron (B)		0.6	0.3	0.1	0.1	0,1	0.2	0.1	0,1	0,1	0.5	0.5	0.4	0.1	0.0	0.4	0.2
parts per million	notine sper milion	ride (F)		0.2	0.2	0.0	0.2	0.0	0.2	0.01	0.0	0.1	0.2	0.0	0.2	0.1	0.3	0.3	0.01
arts pe	SILIBILIS	rrate (NO ₃)		0.03	0.00	$\frac{1.1}{0.02}$	5.9 0.10	0.02	0.9	0.4	0.2	5.4	53	0.00	15	23	1.6	24 0,39	12 0,19
١٩	ednik	CE)		238	3,52	1.92	2.54	3.13	128 3,61	3.02	155	248	150	$\frac{111}{3.13}$	1.38	92 2.59	13 0.37	136	144 4.06
i ci		Sul - fote (SO ₄)		580 12.08	318	198	33	0.19	26	35 0.73	95	14	497	348	181 3.77	366	63	400	108
constituents		Bicor- bonote (HCO ₃)	(Cont.)	180 2,95	156 2.56	3.44	629	140 2.29	3.93	262	289	156	258	193 3,16	257	3.93	138	244	171 2,80
Minerol co	- 1	Carbon- ate (CO ₃)	(3-4)	00.00	00.00	00.00	0.00	00.00	0.00	00.00	00.00	00.00	00.00	00.00	13	0.00	00.00	0.00	00.0
Σ		Patos-O sium (K)		5.6	0.11	3.4	9.2	1.8	0.07	0.07	0.11	0.05	0.10	3.1	0.10	6.0	0.06	3.0	0.05
		Sadium (Na)	SALTNAS VALLEY	238 10.35	3,57	2.35	86 3.74	3.22	3.74	3.04	4.31	130	149	118 5,13	94	3.39	21 0,91	100	2,35
		Mogne- sium (Mg)	s <u>o</u> l	76	26 4.64	50	43	15	17	17	2,18	25 2.02	78	50	2.00	3.12	12 0,99	5.72	3,60
		Colcium (Ca)		4.84	85	63	133	26 1.30	59 2.94	3.74	46.7	2.40	139	3.99	82 4.09	168 8.38	43	129	3.54
		Ŧ		8,1	8.1	8.1	7.4	7.5	7.3	7.5	7.8	8.2	7.8	8.1	8,5	7.7	8.1	6.7	8.1
Specific		(micro- mhos ot 25° C)		2030	1190	916	1260	618	826	820	1110	1100	1770	1280	941	1430	400	1520	982
	Temp	ri P		70	89	99	89		89	89	78		99	89	99	09	99	89	09
	Date	sampled		7-14-61	7-14-61	7-24-61	7-24-61	7-10-61	7-10-61	7-11-61	7-11-61	7-10-61	7-31-61	8-2-61	8-1-61	7-10-61	8-1-61	8-1-61	7-17-61
	State well	other number	WYEGH	15S/3E-5Q4	15S/3E-7D1	158/3E-16M1	15S/3E-17P1	16S/2E-1L1	16S/2E-2D3	16S/2E-3J1	16S/2E-3J2	16S/2E-12G1	16S/4E-24A1	17S/6E-27K1	18S/6E-1E1	18S/6E-2N1	18S/6E-28J1	19S/7E-4G2	19S/7E-10P1
		Owner and use		J. Stino	P. Giottinini irrigation	Spreckele Sugar Co.	J. Violini Irrigation	J. Hugo domeetic	A. C. Ambler domestic	Corral de Tierra Country Club domestic and	irrigation	C. Phillipe domestic	K. R. Nutting irrigation	irrigation	V. Jacks irrigation	L. Jacke irrigation	irrigation	irrigation	irrigation

o. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Andysis by U.S. Gedogloch Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultante (P.C.C.), Termical Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Managness (Mn), Zinc (Zn),

-243-

Analyzed by c USGS USGS DSGS USGS USGS USGS 0568 UBGS USGS DSGS USGS 30 995 80 124 87 109 46 762 284 220 638 Hardness os CaCO₃ N.C. 710 Total 197 258 410 1000 820 418 260 S 390 233 P S S E 45 43 28 28 38 8 Š ā 52 51 Total dis-solved solids in ppm 2120 440 709 666 424 435 592 488 842 2690 2150 Silica Other constituents 138 읽 읽 2 42 2 2 위 3 죍 শ্ৰ 9.1 2.5 0 0 0.2 3 0.5 2,1 000 7 2 Boro (8) parts per million equivalents per million 0 0 0 0 0.03 0.02 0.00 0.0 0,0 0.02 0.0 0.4 0.00 0.0 şşe 0.19 3.8 1.2 0.03 23 16 0.03 0.0 0.0 Ni-trate (NO₃) 8.5 0.14 23 768 160 3,47 36 159 62 56 126 315 266 82 2,31 1360 1080 8.41 109 505 109 148 348 1,89 1,69 200 Sol - 100 ڃ Mineral constituents Bicar-bonate (HCO₃) 175 3.41 258 3,38 164 3.28 325 3.10 H. ZI. (3-4) (Cont. CARNEL VATLEY (\$-7) (co) 0,20 0.07 000 0.0 15.0 000 000 16 8 800 Potos EVIE (X) SALINAS VALLEY 0,0 900 80 200 0.0 0.0 6.17 5.8 400 90 512 22.27 460 392 Sodium (No.) 159 3.04 2.04 4.09 51 46 118 3.74 $\frac{167}{13.76}$ 1137 Magne Sium (Mg) 51 53 2.24 5,17 $\frac{21}{1,76}$ 2,20 24 2,26 22 1,81 Colcium (Co) ¥ 02. 169 3.44 18 2,3411 2.89 3.19 127 6.34 5,14 3.99 81 8.0 8.0 8.3 8.3 8.4 7.8 8.5 8.1 7.3 8.5 8.5 Ŧ conduct-ence (mlcro-mhos at 25° C 3430 826 703 1080 1160 1250 705 3670 2990 1520 199 Temp in °F 62 89 49 89 \$ 20 62 3 61 Z 29 Dote sompled 7-17-61 7-18-61 7-7-61 7-7-61 8-4-61 7-7-61 7-7-61 8-4-61 8-4-61 8-3-61 8-4-61 State well number and other number 16S/1W-15L1 16S/1W-13L2 168/1E-18FZ 20S/8E-24J2 168/1W-13R1 19S/7E-13D2 19S/8E-32A1 16S/1E-17G1 19S/8E-33RJ 20S/8E-5R1 20S/8E-6B1 HDBGH Owner and City of Carmel domestic and irrigation B. Odello irrigation B. Odelle frrigation irrigation irrigation 3 irrigation irrigation irtigation irrigation irrigation

Cotarmined by addition of constituents.
 Conventric determination.
 Consider the Committee of Constituents.
 Analysis by U.S. Bendested Surery Quality of Water Brench (U.S.S.S.), Profite Chemical Consultants (P.C.C.),
Terminal Testing Lebershoy (T.T.L.) or State Opportment of Water Reservoirs (D.W.R.) on inflicated.
 Terminal Testing Lebershoy (T.T.L.) or State Opport(Cat., Lead (Pb.), Management (Mh.), Zinc (Z.M., repedited here on S.S. except on shown

	Analyzed by c	,	EWG.	DWR	DWR	DWR	IWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	IWE	DWR	IWR
rdness	as CaCO ₃	_	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		-	m 7	161	45	105	62	4	G	742	73	=	1.5	87	53	86	35	10	%
	dis- salved cent salved sod- in ppm lum	-	<u> </u>	67	2	8	25	8	74	-H	53	19	76	₫	52	00	<u>_2</u>	83	55
Ē		0	134	221	227	188	155	358	011	330	157	131	7.40	157	155	340	662	267	193
	Other constituents ^d			Ans 0.0															
	Silica (SiO ₂)		~!	5 53	<u>5</u> [†] <u>7</u>	18	2 65	146	E	7 49	5 52	133	59	13	7 72	27	5 54	리	18
an illian	Boran (B)		0.14	0.09	0.27	0.08	0.05	3.4	0.03	0.07	0.05	0.06	4.5	80.0	0.07	0.14	0.15	0.03	0,15
Per milli	Flug- ride	-	0.02	0.0	0.3	0.2	0.00	3.5	0.0	1.00	0.0	0.1	3.5	0.7	S.0 0.2	0.01	2.0	0.0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
parts per millian equivalents per millian	rrate (NO ₃)	,	0.15	1.9	0.8	0.03	2.8	1.5	1.7 0.00	010	1.4	9.2	0.11	1.5	2.0	2.6	0.0	0.5	3.3 -05
inbe	음. - 등 (고)	(5-1)	0.03	5.8	5.1	5.5	6.1	61	ت <mark>ا</mark> ا	1.5	1.2	0.4	92 2.59	3.3	3.3	3.0 0.0	3.04	13	6.0
its in	Sul – fate (SO ₄)	VALLEY	0.08	<u>ः १</u>	16	0.0	2.0	54	0.02	5.9	5.3	2.5	30	2.0 0.04	1,1	7.1	3.50	38	6.6
canstituents	Bicar- banate (HCO ₃)	E LAKE	1.51	3.52	2.79	24.5	3,746	135 2.21	86 1.41	302	115	101	3.41	106 1.74	31	278	3.51	2.11	1.77
Mineral ca	Carbon ate (CO ₃)	8	8	8	00.0	00.0	000	0000	000	0.33	0.00	0.00	0.13	0.00	000	5.23	00.0	00.0	3.00
Min	Patas-C sium (K)	10	0.05	0.03	3.7	1.6	0.10	1.8	1.7	4.3	1.2	0.5	5.0	5.2	5.3	11	5.6	14	7.0
	Sodium (Na)	REGION	0.96	18 0.78	54	12 0.52	10	118 5.13	5.9	16	14 0.61	8.2	154	28	18	3.13	206 8.96	63	27
	Magne- sium (Mg)	VALLEY	0.21	1.18	1.8	0.30	6.6	0.0	0.37	23	5.6	5.4	0.0	1.8	2.2	8.9	1.8	0.00	1.3
	Calcium (Ca)	3	0.65	2.04	15 0.75	25 1.30	0.70	2.3 5.11	0.85	3.04	1.00	22 1.10	5.2	8.2	0.10	21 6	0.55	0.20	13
	Ŧ	-	o. 0.	7.9	8.2	8.0	7.8	ω σίο	7.5	0 kg	7.6	2.9	4.8	0.0	200	8.5	8.0	2.8	8.0
Specific conduct-	ance (micra- mhos at 25°C)	10	184	386	318	234	178	552	149	495	208	183	726	194	162	191	1,010	331	222
	Te ni	,	ħ9	57	65	909				56	500				7	99			
	Date sampled		8-24-61	8-24-61	8-23-51	8-24-61	8-23-61	8-23-61	8-23-61	8-23-61	8-23-61	8-23-61	8-23-61	8-24-61	8-24-61	8-24-61	8-24-61	8-24-61	8-24-61
State well	nymber and ather number	MIBSW	44N/13E-36A1	44N/14E-7KI	45N/13E-12L1	45W/14E-32L1	46N/14E-32J1	47N/14E-2HI	-1482	48N/13E-20G1	48N/14E-23KI	-35A1	-35A2	39N/13E-6NI	40N/12E-11F	-2511	Aln/le-2n2	לנב-פון/אוק	41N/12E-15HL
	Owner and		Franks Bros., domestic	H. J. Hacker,	R. Jessup,	C. Waid, domestic	L. King, domestic	C. R. Vincent, domestie & stock	L. L. Smith, domestic	A. Greenwood, domestic & garden	H. C. Wella, domestic	Clara M. Cloud, domestic	Clara M. Cloud, irrigation & atock	D. Flourney, domestic	N. Monroe, stock	Pit River Ranch, dorestic	F. Calrwell,	Patricia Moyers, domestic & irrigution	Pacille Telephon , comestic

a. Optermined by addition of consiltuents.
 b. Gravimatric determination.
 c. Analysis & Sealogical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 c. Ferminal Issuing Loboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iran (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as \$\frac{0.00}{0.00}\$ except as shown

		Analyzed by c	T	DWR	DWR	DWR	TH.C	DWR	DWR	DWR	IWR	DWR	DAR	IWR	DWR	DWR	DWR	DWR	DWR	IWR,
	Hardness	000 3 N.C.		21.7	0	0	0	0	0	0	0	0	0	84	0	161	0	0	0	0
	Hare	Tatal	2	1,30	0,		99	92	76	124	55	149	80	22	42	270	109	63	99	31
	å	E DE	1	ω	92	8	28	09	Ę	28	88	36	39	85	27	15	29	57	45	99
	Total	solved solved in ppm		₽Z9	188	332	170	345	To4	54g	191	337	205	845	173	455	241	258	506	177
		Other constituents ^d			As 0.01			As 0.01			As 0.01			As 0.10		ABS 0.0				
-		Silica (SiO ₂)	1	99 6	37	19 2	5 63	8	8 42	5 51	59 65	리	13	1 85	8	8 8	2	8	7 62	81
	Hian	Boran (B)	ļ	0.08	0.09	0.05	0.05	0.76	0.28	0.05	0.09	0.08	0.03	5.4	0.02	000	0.07	0.03	0.07	0.05
	per millian	55C		0.02	0.2	0.2	0.3	0.02	0.3	0.2	0.2	0.0	0.02	0.10	0.0	0.2	0.2	0.0	0.0	0.0
	aquivalents per millian	rate (NO.)		5.1	0.0	0.6	9.5	2.8	4.0	0.5	2.3	5.0	0.02	1.6	0.5	137	0.21	0.0	24	0.0
	equiv	Spir.	(Cont.)	12 0.34	2.8	8.2	5.5	38	3.0	3.0	2.2	37	6.7	3.10	1.7	52	12 0.34	2.8	5.3	0.13
	ni st	Sul – fote (SO.)	12	NT4	15 0.31	30	3.4	36	5.3	60.0	1.6	3.0	6.2	367	6.7	27 0.56	6.2	2.6	0.3	0.20
	Mineral constituents	Bicar- banate	RAS BAST		2,31	235 3.85	36	16a 2.77	365	3.54	108 1.77	235	14th 2.36	32 0.52	123 2.02	133	152 2.49	3.18	122	1.67
	neral	Carbon- ata	-ALTUR	12 0.40	00.0	0000	0.00	00.00	2 0.07	0.03	0 0 0.00	00.0	000	2.07	000	000	0000	20.07	000	00.0
	Ī	Patas- sium (X)		8.8	1.4	9.0	5.3	12	10 0.36	5.7	4.4	0.28	2.7	0.12	2.9	5.7	53	7.6	4.5	0.05
		Sadium (Na)	REGION	1.8 0.78	59 2.57	101	13	64 2.78	101	24 1.04	17	42 1.83	25 1.09	220 9.57	14 0.71	22 0.96	0.96	1.96	27	30
		Magne- sium (Ma)]-⇒jw	0.1	0.1	5.1	3.9	5.1	10 0.83	6.1	16	4.2 0.35	0.0	10 0.83	36 2.99	0.88	4.4	6.3	0.12
		Calcium (Ca)	CENTRA	107 5.34	3.5	2.7	0.90	24 1.20	22 1.10	33	12 0.60	34 1.70	25 1.25	31	15	2.40	26 1.30	18	16 0.80	10
		¥		8.6	8.2	8	8.0	8.1	8.0	4.8	8.2	8.1	8.2	8.4	8.0	8.1	8.2	8.4	8.2	8.0
	Specific	ance (micra- mhas	01 25 C	833	560	944	197	475	795	353	500	200	259	1,300	213	869	333	.333	255	196
		Temp in • F		1 9		63	19	1 /L	19	55	62	79		82	62	55	63	20	62	61
		Date sampled		8-24-61	8-24-61	8-24-61	8-24-61	8-23-61	8-24-61	8-24-61	19-9-6	19-9-6	9-6-61	9-7-61	9-7-61	9-7-61	9-7-61	19-1-61	19-9-6	6-6-61
	State wet	number and ather number	MTBSM	41N/13E-18P1	42N/10E-29HI	42N/11E-l(El	-24A1	42N/12E-11Q1	42N/13E-31G1	-3261	37N/7E-13B1	38N/TE-2P1	2300	38N/8E-14P1	-17K	-30 R1	38N/9E-8E2	-2117	39N/7E-11A1	-1301
		Owner and		Morgan Bros., domestic	J. H. Michael, domestic	F. Martin	L. Goings, domestic & stock	City of Altures, municipal	Younger, domestic	E. Swanson, domustic	T. E. Councily, domestic	W. H. Gerig, domestic	City of Bieber, municipal	H. Simer, hot springs, domestic	F. Leonard, domestic	Marie Walsh, domestic	J. E. Albaugb, domestic & stock	A. L. Knudson, domestic	E. C. Robinson, domestic	D. Yowell, domestic

Determined by addition of constituents.
 Growimstric determination.
 Analysis by U.S. Sedagloid Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Labbratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (Al.), Areanic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown

	Poz o														
_	Analyzed by c	DWR.	DWR	DWR	DWR	DWR	DAR	DWR	DWR	DWR	E PAGE	EAR EAR	DWR	DWR	E S
g e o	as CaCO ₃	ω	0	51	0	0	0	0	0	0	0	0	0	0	0
l.		257	19	165	64	₹	69	143	5	121	77.	22	104	65	78
-	P Sod	34	52	#	37	24	32	22	8	L+1	19	22		#	27
Tefe	solved solids in ppm	624	175	375	148	554	141	474	146	326	180	152	197	10,	165
	Silica (SiO ₂) Other constituents ^d	ABS 0.0	AS 0.02	ABS 0.17		A1 0.08 Fe (fotal) 1.5 Mr 0.52 2n 0.17		0.02 (total	As 0.01 Cu 0.02 Fe (total) 0.01	A1 0.03 Cu 0.01 Fe (total) 1.2 Mm 0.01 Zn 0.04	A1 0.01 0u 0.01	Cu 0.01 Fe (total) 0.01 Zn 0.04	A1 0.01 Cu 0.01 Fe (total) 0.03 Zn 0.25	Al 0.01 Fe (total) 0.03 Zn 0.48	A1 0.02 Fe (total) 3.0 Fb 0.03 Mp 0.51 Zn 0.03
		55	P	29	57	64	88	59	9	5	41	147	52	# 34	28
ug II	Boran (B)	90.00	0.05	0.03	0.0	0.12	0.07	2.2	90.08	0.11	8	0.05	0.05	0.03	9.08
aquivalents per million	Fluo- ride (F)	0.2	0.2	0.6	0.2	0.2	0.00	0.0	0.0	0.03	0.0	0.0	0.2	0.00	0.00
arts p	rrate (NO ₃)	43 0.69	3.8	1.16	0.4	83 1.34	0.01	5.3	0.00	0.02	0.02	0.26	25 0.40	2.8	3.2
adniv		11.24 11.24	0.05	₩°0 %	0.0	5-5) 0.5 0.01	2.6	16 0.45	0.08	2.4	2.4 0.07	0.03	0.12	0.3	3.8
i i	Sul - fate (SO ₄)	(5-4) 41 0.85	6.7	40 0.83	0.0	0.0 0.00	3.3	3.3	4.8 0.10	0.0	0.6	2.6	0.05	0.00	0.00
Mineral constituents	Bicar- bonate (HCO ₃)	VALLEY 288 4.72	96 1.57	139 2.28	103	нтуен 487 7.98	1.85	384	1.64	317	168	1.56	127 2.08	2.38 1.38	2.03
neral c	Patas-Carbon- sium ate (K) (CO ₃)	BIG 8 0.27	0.00	00.0	0.00	O.00	0.00	000	000	0.00	0.00	00.00	000	0.00	000
Ī	Patas- sium (K)	1.6	4.7	5.2	6.12	7.6 0.19	2.6	0.12	0.04	5.4	0.00	2.6	3.8	0.0	0.08
	Sodium (Na)	61 2.65	21 1.35	41 1.78	15 0.65	3.8	15 0.65	3.82	1.74	57 2.48	13	9.8	12 0.52	4.0 0.17	14 0.61
	Magne- sium (Mg)	239	1.7	1.45	2.8	32 2.68	0,40	15	0.8	15	1.23 1.23	4.1 0.34	10 0.83	7.8	1.17
	Calcium (Co)	55 2.74	4.8	37	15	2.59	0.90	33	0.03	23 1,15	21	22 1.10	25 1,25	13 0.65	0.39
	¥ .	4.8	8.1	7.8	8.0	7.5	8.2	9.2	8.2	7.7	8.2	7.9	8.0	7.3	7.0
Specific		755	184	552	170	98	193	614	171	684	258		263	139	213
	Temp in • F	58	8	99	8	58	61	9	9	58	9	19		09	95
	Date eampled	6-6-61	19-1-6	9-7-61	9-7-61	9-5-61	9-6-61	9-6-61	9-6-61	19-1-61	19-9-6	19-9-6	9-6-61	9-5-61	9-5-61
State well	number and ather number	MDB&M 39N/7E-14R1	39N/8E-23A2	-26л	39N/9E-28F20	37N/4E-1KG	37N/5E-1C1	TW6-	-1481	-1972	37N/6E-6L1	-1913	-2981	38N/3E-24F1	38N/4E-30H1
	Owner and	L. Roberts domestic	R. Holmes domestic	L. A. Meeks	R. Swalo domestic	W. L. Bickel domestic	V. Cessns irrigation	Intermountain Fair municipal	W. C. Moen domestic	R. Reynolds 1rrigation	L. Joachim irrigation	L. A. Carpeoter domestic	R. L. Clark domestic	R. A. Peters domestic	E. V. Johnsoo domeetic

Determined by addition of constituents.
 Growimstric determination.
 Analysis by U.S. Gatadical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.),
Terminal Issting Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Tramnal Issting Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iran (Fs.), Alvenium (Al.), Arsenic (As.), Capper (Cu.), Lead (PD), Manganese (Mn), Zinc (Zn.), reparted here as Bogo accept as shown

Second control of the control of t						Ì														ŀ		ŀ	
The part of the		State well	Ī	0, 0	pecific	-				Mineral			8	parts p	per m	Tion			Total	ė	Harda	8 8	
19 19 19 19 19 19 19 19		number and ather number			once (micra- mhos			-		25 C		ł		- IN		Boran (B)		Other constituents ^d	solvad solids in ppm	E SOR	ō		Anolyzed by c
11-14-61 12-64 1	1				02	\dagger					ALL RIVE	15	- 6	<u> </u>		_	L						
90//4-201. 11-34-61		MDB&M <u>38n/4</u> e-35B1												0.05		0.03	27	(total)					W.R.
999/44-290 11-14-61 118						_				;	REDDING	BASIN	5-6)										
900/34-1480 11-15-61 166 17-6 17-6 17-6 17-6 17-6 17-6 17	8	29N/44-2NI	13-14-61										3.6			0.03	<u> </u>		140				WR
-340. 11-13-61		30N/3W-4MI	11-15-61										2.6	1.4		0.00	あ		178	18			W.R.
11-13-61 11-13-61 12-13		-3401	11-14-61										0.0	0.5		0.02	訓		179				NWR
-561 11-14-6		30N/44-1E1	11-15-61										0.0			0.08	의		8	35			AW.
11-13-61	ŕ	-5KD	11-14-61										2.4	2.6 0.0		0.00	61		124	27	53		JWR.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	derson		11-14-61										6.6			0.03	켒		174	18			State
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	lon	30N/5W-15R1	11-14-61										3.3	0.3		8	뀕		139				JA'R
31N/3W-12E1 11-15-61 195 7.6 199 8.1 8.0 10.0 10.0 10.0 10.0 10.0 10.0 1		-17R1	11-14-61				-						4.3	2.1		0.02	EXI		133				JWR.
-2951 11-15-61 195 7.7 $\frac{13}{0.05}$ $\frac{1.0}{0.05}$ $\frac{2.5}{0.05}$ $\frac{1.06}{0.05}$ $\frac{1.06}{0.$		11N/3W-12E1	11-15-61	-									3.9	3.8		90.00			174				JW.R.
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		-2921	19-51-11										3.7			75	E		176	19			W.R.
$-7A1 \qquad 11-15-61 \qquad 137 \qquad 7.5 115 \qquad 6.09 \qquad 7.44 \qquad 0.04 \qquad 6.09 \qquad 6.04 \qquad 0.05 \qquad 6.15 \qquad$		31N/4W-5F1	11-15-61										0.05	0.5		8			136				NATE .
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	Dist.	-7A1	11-15-61										6.3			₹ 0.0	श्र		76	23		·	NATE
$-1601 \qquad 11-15-61 \qquad 166 \qquad 7.0 \frac{2.9}{0.49} \frac{9.6}{0.77} \frac{17}{0.77} \frac{0.7}{0.79} \frac{114}{0.08} \frac{1.8}{0.00} \frac{3.4}{0.00} \frac{2.2}{0.00} \frac{0.2}{0.00} \frac{3.3}{0.00} \frac{0.2}{0.00} \frac{3.3}{0.00} 3.$	gation	-1501	11-15-61										9.2			0.08			162	35			- HANG
31N/5W-13D1 11-14-61 424 7.9 144 57.0 62 7.76 0.58 2.77 0.00 2.33 0.00 2.33 0.00 0.00 0.00 0.00	gation	1991-	11-15-61					_					3.4			0.02			134	36			OWR
	gation	31N/5W-13D1	11-14-61										1.64			0.41	칪		998	29			DWR
			1						-	-													

Determined by addition of constituents.
 B. Gravimatric determination.
 B. Gravimatric determination.
 C. Analysis by U.S. Geological Survey, Quality of Water Bronch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 G. Treminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) is indicated.
 G. Treminal Testing Laboratory (T.T.L.) or State Department of Water Resources (M.N.), Zinc (Z.N.), reparted here as G.D.o.

	Anolyzed by c								
				DAR.	DAR	R.	DWR	중 	
Hardness	N CO		ទ	0	∞	0	•	•	
			159	2	25	50	69	8	
<u>.</u>	Da E		<u> </u>	22	33	87	25	<u> </u>	
Tota	mdd ui spilos pevios		313	177	8	220	188	252	
	Silico Other constituented								
.			23	원	17	<u>%</u>	2 38	리 -	
L L	Boron (B)		0-07	70.0	0.53	0.26	0.35	0.21	
E L	Fluo- ride (F)		0.00	0.01	0.00	0.03	0.01	0.0	
volents per milli	NI- trofe (NO ₃)		25.	000	0.24	0.00	0.01	0.02	
equivolents per million	Chio- ride (Ci)	(Cont.)	0.98	0.09	2.0	0.76	27 0.76	0.31	
ni sin	- Sul - fote (SO ₄)	(5-6)	14	2.1	0.03	2.5	0.00	0.79	
Mineral constituents	Bicor- bonote (HCO ₃)	REDDING BASIN	2,98	124 2.03	0.34	2.57	$\frac{131}{2.15}$	2.75	
nerol c	Carbon- ate (CO ₃)	REDDI	000	000	000	0 0	00.00	0.13	
ž	Potos-Carbon- sium ate (K) (CO ₃)		0.06	0.06	0.01	70.0	0.03	0.03	
	Sodium (No)		34	02.0	0.30	3.00	35	2.09	
	Mogne- s.um (Mg)		1.28	3.75	3.4	2.1	89.0	0.59	
	Calcium (Co)		S18.	0.65	4.5	4.7	0.70	1.35	
<u>, , , , , , , , , , , , , , , , , , , </u>	<u> </u>		.1.8	7.7	7.1	8.0	7.9	4.8	
Spacific conduct-	once (micro- mhos at 25° C)		475	203	ま	337	298	3%	
	Temp in °F								
	sompled		8-25-61	11-15-61	19-8-8	8-8-61	11-15-61	8-8-61	
Stote well	number and other number		MDB&M 32N/3W-32J1	32N/3W-35C1	-1681	32N/4W_20Q2	-34F1	32N/5W-26MI	
	Owner ond		C. Soyle domestic	Coldiron irrigation	W. Ross	E. Jones domestic	Columbia School Dist.	H. Snow, Jr. domestic	

Datarminad by addition of constituents.
 Growmatric datarmination.
 Analysis by U.S. Sological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated and accorded terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated and accorded to the Copper (Gu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as accorded to shown

	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
1055			0	0	0	0	0	0	0	0	0	0	0	0	47	0	0	63
Hord	Tatal N.C.		17	SZ.	221	104	79	34	17.	63	33	53	17	105	112	ਹ	56	148
å	Sod		27	15	8	15	45	93	51	8	98	82	8	78	8	69	04	22
Total	salvad solids in pom		137	278	h26	155	149	966	188	120	425	199	280	419	1,630	170	175	263
	Silico Other constituents																	
			34	의	74	의	145	क्ष	ଥା	킈	105	<u>%</u>	₺	37	107	92	ত্ত	174
Hion	Boron (B)		0.05	0.14	0.80	0.02	0.04	6.2	0.19	0.02	0.97	0.09	1.0	0.22	9.1	0.10	0.13	0.11
per mi	Fluo- ride (F)		0.1	0.6	0.3	0.2	0.2	1.0	0.2	0.00	0.00	0.0	0.02	0.1	2.5	0.0	0.2	0.2
aquivalents per million	frate (NO ₃)		0.0	32 0.52	0.12	0.3	1.4	0.3	5.3 0.08	0.00	0.02	0.81	3.0	8.9	0.9	0.02	6.9	μη 0.77
Bquive	Cide (Ci)		1.4	4.8 1.35	3.55	00.0	0.7	302 8.52	0.03	0.00	33	4.6	21 0.59	67 1.89	567 15.99	2.8 0.08	6.6	0.39
ts in	Sul - fote (SO ₄)		0.00	0.00	16	0.00	2.6	182 3.79	9.7	0.3	0.00	0.00	0.00	160	362 7.54	0.00	0.05	0.29
constituents	Bicar- bonate (HCO ₃)	(5-12)	2.02	123	166 2.72	2.39	120 1.97	158 2.59	2700	94	311 5.10	41 0.67	182 2.98	274	46	105	107	145 2.38
Mineral co	Patos-Carbon- sium ate (K) (CO ₃)	VALLEY	0.00	00.00	0.00	00.00	00.00	00.00	00.00	0.00	00.0	0.00	00.00	0.00	0.00	0.00	0.00	00.00
M	Patos- sium (K)	STERRA V	0.10	0.0	0.28	0.02	2.4	6.8	4.8 0.12	0.03	6.1	5.5	2.1	1.3 0.03	20 0.51	3.3	6.6	0.03
	Sodium (Na)	SI	13	3.09	96	0.38	0.52	314 13.66	27	0.33	1114	23 1.00	3.18	176	1,96 21.58	26	20 0.87	0.83
	Mogne- sium (Mg)		6.9	7.0 0.58	16	1.13	9.5	0.09	5.7	7.4	3.3	3.0	0.09	1.60	0.0	0.13	6.9 0.57	0.82
	Colcium (Ca)		17	8.5	23	0.95	0.80	0.75	0.55	13 0.65	0.39	6.6	5.0	0.50	2.20	5.8	0.55	43
	ŧ.	ļ	8.1	7.8	7.9	7.9	8.0	7.9	8.2	8.1	7.8	7.ħ	7.8	ش	7.8	7.2	8.2	8.0
Specific conduct-	ance (micro- mhos of 25°C)		192	154	740	225	198	1,640	235	150	622	184	382	987	2,640	192	216	389
	Temp In °F		56	69	56	99	58		99	59	89	75	48		212	75	65	58
	Dote sampled		9-4-61	19-9-6	19-9-6	6-6-61	19-9-6	19-9-6	19-9-6	19-5-6	9-5-61	9-5-61	19-5-6	6-6-61	19-9-6	9-5-61	19-9-6	19-5-6
State well	other number		20N/14E-4G2	211/14E-15J1	-221.1	-2911	-36KZ	21N/15E-5D1	-963	22N/14E-14F	22N/15E-11F1	-1231	-1703	-26K2	-32F1	22N/16E-5N2	-19E1	23N/14E-25G1
	Owner and use		R. Bradly domestic	G. McMillen domestic	G. Van Vleck domestic	E. Androus domestic	P. A. Torri domestic	E. Filipini domestic	J. D'Andrea domestic and stock	L. Ravey domestic	J. Roberti domestic and stock	Huntley Bros. domestic and stock	P. Scolari domestic and stock	Lucky Hereford Ranch domestic and stock	E. Filipini etock	C. Franchini stock	Lucky Hereford Ranch irrigation	Mervino Air Service domestic

Determined by addition of constituents.
 B. Gravimatric determination.
 C. Analysis by U.S. Soologleoi Survey, Ouglity of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

 Analysis by U.S. Soologleoi Survey, Ouglity of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Termind Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 G. Iron (Fa.), Aluminum (Al.), Arsenic (As.), Copper (Cu.), Lead (Pb.), Mongonese (Mn), Zinc (Zn.), reported here as \$\overline{\text{CO.0}}{\overline{\text{CO.0}}}\$

	Anolyzed by c		DWR	DWR	DWR		DWR	DAR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
858			0	0	0		2	cv .	н	0	0	0	67	117	0	0	0	0
Hordness	as CaC Totol ppm		62	128	37		174	104	62	101	196	63	189	425	91	88	92	156
	Sod		82	15 1	₹ <u>7</u>		25	177	15	707	13	53	01	12	89	15	22	31
Total	dis- solved eolids in ppm		994	224	271		41	135	111	168	249	711	221	537	1,060	126	175	258
	Silica (SiO ₂) Other canstituents																	
	Silico (SiO ₂)		81	821	21		17	77	174	37	취	27	81	의	6.2	91	<u>3</u> 1	M
ign	Boron (B)		1.9	0.07	1.0		0.05	0.16	90.0	0.39	0.12	70.0	0.10	0.16	<u>19</u>	0.07	0.39	0.28
parts per million equivalents per million	Fluo- ride (F)		0.2	0.00	1.2		0.00	0.0	0.00	0.2	0.0	0.00	0.00	0.3	3.0	0.00	0.3	0.03
arts per lents p	Ni- trate (NO ₃)		0.02	11 0.13	38		10 0.16	2.4 0.04	2.6	0.5	3.5	1.6	9.9	0.00	0.03	1.8	0.00	0.02
puive	Chlo- ride (CI)		3.38	2.8	1.18		1.9	4.6 0.13	3.6	3.3	4.5	6.7	7.7	45	448	3.3	1.9	19 0.54
ië.	Sul – fate (SO ₄)		118	0.00	0.00		0.00	9.0	9.9	5.4	10	2.0	13 0.27	2.12	1.8	10 0.21	0.0	12 0.25
constituents	Bicor- banate (HCO ₃)	(Cont)	87	17ti 2.85	75	(5-13)	0.18	124	95	150	25t t.16	97	3.41	379	281	113	2.39	3.69
Mineral cor	Carban- ate (CO ₃)	(5-12)	00.00	0.00	00.00	VALLEY	0.00	00.00	0.00	0.00	00.00	00.00	0.00	0.00	00.00	00.00	0.00	00.0
Σ	Patas-O sium (K)	VALLEY	0.02	4.2	5.2	LAKE	0.6	0.7	0.02	0.0	0.7	1.3	0.00	2.7	1.9	0.02	0.0	0.0
	Sodium (No)	SIERRA	136 5.92	0.48	56	HEPER	2.2	8.0	6.4	15	14	12 0.52	8.8	27	364 15.83	0.32	0.52	1.39
	Magne - sium (Mg)		0.0	0.06	4.5		2.4	10	8.3	13	33	10	22	24 1.95	5.1	9.6	15	23
	Colcium (Ca)		1.20	2.50	7.5		1.7	25	0.30	19	24 1.20	8.3	39	131	28	21	0.60	25
	품		8.0	7.3	9.2		6.1	7.3	7.7	7.8	9.7	7.9	7.5	7.6	8.2	8.0	7.3	7.16
Specific	ance (micro- mhos at 25° C)		797	308	372		45	230	186	253	418	182	393	875,	1,870	210	526	1,38
	Temp in °F		5	56	7/													
	Date		9-5-61	9-5-61	6-2-61		6-21-61	6-21-61	6-20-61	6-20-61	6-20-61	6-21-61	6-21-61	6-22-61	6-22-61	6-20-61	6-22-61	6-22-61
Stote veil	number and other number		23N/14E-35L1	231/15E-28114	-3501		14N/9W-6F2	14N/10W-14E2	15N/9W-6F1	-73	-17P1	-31P1	15N/10W-3C1	-311	-1051	-12K	-13A1	-24III
	Owner and use		A. Folchi domestic and stock	L. benner domestic	stock		Overington	B. Patten irrigation	L. Skaggs	U. Lake Cem. District irrigation	G. Bowers domestic	E. Vehand domestic	E. Lewis, Sr. domestic and stock	L. Pecinovsky domestic	B. Dunton domestic	Lake Co. Cannery, Inc.	C. Davis domestic	H. Jarvis irrikation

o Determined by addition of constituents.

b. Gravimetric determination.
c. Analysis by U.S. Geologicol Survey, Quality of Water Branch (U.S.G.S.), Pacific Cnemical Consultants (P.C.C.),
or State Department of Water Resources (DWR), as indicated
or State Department of Water Resources (DWR), as indicated
to rise Department (AI), Arsenic (Ae), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), and Chramium (Cr).

-251-

	Analyzed by c		OWE		DWR	DWR	OWR	DWR	DWR	OWR	DWR	DWR	DWR	OWR	DWR	OWR	
			0		15	- ω	a	0	0	24	0	0	0	m	0	0	
Hardness	Os CaCC		87		304	174	944	203	17	247	523	511	142	942	365	276	
	cent sod um To		17 8		7 30	7	12 41	10	18 1	50 57	19 23	9 5	त टा	7	ω	ω ω	
Total	solved solved solids in ppm		1119		343	205	528	241	155	374	342	109	173	295	1441	345	
	Silica Other canstituents (SiO ₂)																
	Silica (SiO ₂)		9.6		33	32	컰	25	25	81	73	18	ରା	23	<u>32</u>	65	
lo lo	Baron (B)		0.07		0.17	0.11	97.0	0.28	0.18	0.46	0.67	0.75	0.32	0.08	0.19	0.77	
at mill	Flug- ride (F)		0.2		0.00	0.00	0.03	0.2	0.01	0.2	0.01	0.00	0.00	0.0	0.0	0.03	
parts per millian equivalents per million	Ni- trote (NO ₃)		0.0		5.2	5.6	0.00	4.5	0.0	36	0.02	14	2.3	3.8	2.6	0.00	
gannbe	Chlo- ride (CI)		0.11		12	4.6 0.13	23	5.8	6.0	48 1.35	30	10 0.28	3.8	9.5	12 0.34	8.5	
.i.	Sul - fore (SO ₄)	[;	5.3		18	7.1	30	13	3.1	17	2.1	0.00	7.2	8.6	0.10	0.21	
Mineral constituents	Bicar- bonate (HCO ₃)	3) (Cont	120	(5-15)	352	3.31	542 8.88	249	146	250	278	656	2.87	280	450	330	
arol co	Carbon- ote (CO ₃)	т (5-1	0.00	VALLEY	0.00	00.00	00.0	00.00	0.00	0.00	8	00.00	0.00	7.0.23	00.00	5 0.17	
Min	Patas-Carbon- sium ote (K) (CO ₃)	S VALLE	1.3	KELSEYVILLE	0.03	1.0	0.02	0.0	0.02	13	5.5	2.8	0.0	1.3	0.0	0.02	
	Sadium (Na)	PPER LAKE VALIEY (5-13) (CORt.)	8.6	KELSE	10	6.2	27	100	0.48	30	25	23	8.7	9.2	1 ¹ 4 0.61	0.52	
	Mogne- sium (Mg)	51	6.6		57. 4.72	32 2.63	82 5.71	34 2.76	1.12	34	43	94 7.71	1.59	53	58	3.76	
	Calcium (Ca)		1.20		1.35	0.85	144 2.20	26	22	43	0.90	50	25	<u>n</u>	<u>51</u> 2.54	35	
	표		7.1		7.5	8.3	7.7	8.2	7.8	7.2	4.8	8.3	8.0	4.6	7.8	4.8	
Specific conduct-	ance (micra- mhas at 25°C)		2173		589	346	879	414	252	648	525	922	306	472	695	528	
	Temp n °F																
	Date		6-20-61		6-21-61	6-22-61	6-22-61	6-22-61	6-22-61	6-22-61	6-21-61	6-22-61	6-22-61	6-21-61	19-13-9	6-21-61	
State well	number and ather number		16N/9W-31L3		13N/9W-2K2	-301	-601	-801	-8N1	-81/2	-12MD	-1601	-1602	-2211	1411/94-3231	-3212	
	Owner ond use		A. Santos domestic		R. Pield irrigation	C. Benson irrigation	E. Turner irrigation	Davidson irrigation	H. Marschall domestic	H. Marechall stock and irrigation	L. Wright irrigation	M. Fraser irrigation	M. Fraser domestic	W. Stone irrigation	I. Morrison domestic and irrigation	I. Morrison irrigation	

Determined by addition of constituents.
 Growmaffer detailmoin Survey, Quality of Water Bronch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), and State Deportment of Water Resources (OW.R.), as indicated.
 Growper Consultant (A.), Arsanic (A.), Copper (Col.), Lead (PD), Mongonese (Mn), Zinc (Zn), and Chromium (Cr).

-252-

	P														
	Anolyzed by c		DWR	DWR	DWR	DWR	¥	E	DAR.	DWR	DWR	FE			
Hordness	N.C. Edg		0	0	6	0	19	tı	13	0	0	0			_
	إركنا		118	130	17	215	149	108	134	101	58	105			
å	Par E		ネ	26	28	Z Z	13	14	13	19	31	35			
Totol	aolved solids in ppm		208	202	132	304	212	132	190	160	123	506			
	Sitica Other constituents ^d														
			81	27	87	25	워	A	138	ম -	H H	36	 		
Lion	Boron (B)		0.02	0.25	0.14	0.02	0.06	90.06	0.08	0.06	90.0	50.0			
r millo	Fluo- ride (F)		0.01	0.00	0.0	0.0	0.00	0.00	0.00	0.00	0.01	0.00			
parts per million aquivolents per million	ni- trota (NO ₃)		3.1	1.5	7.4	0.18	14	8.6	12	8.6	0.08	0.02			
q	Chlo- ride (CL)		4.4 0.12	20	0.39	15	6.8	5:5	5.0	3.4	10.04	15			
r <u>i</u>	Sul - fote (SO ₄)	(5-21)	0.14	0.31	2.4	18	27 0.46	13	0.37	4°3	5.4	0.27	 		
constituents	Bicor- bonote (HCO ₃)	A COUNTY	3.28	160 2,62	1.24	263	158 2.59	1.90	2,42	134 2.20	1.48	161			
Minerol c	Corbon- ofe (CO ₃)	TEHANA	0000	0000	00.00	0.20	0.00	0000	0000	0000	0000	0000			•
Mir	Patas-Osium (K)		1.2	0.02	0.0	1.0	0.02	0.02	0.02	0.02	0.0	0.03			
	Sadium (Na)		28	য়ে ত	0.56	26	30°0	0.35	9.2	0.48	0.52	26 1.13			
	Magne - sium (Mg)		শ্র	1.30	8.8	2.50	1.28	1.01	1.28	11 0.92	8,3	0.85		-	
	Calcium (Co)		23	26	14	1.80	1.2%	22.1	1.40	1.10	84.0	1.25			
	£		8.2	8.0	2.6	3. 8	8.2	7.9	8,3	8.0	7.8	8.2	 		
Specific conduct-			338	351	202	508	340	235	5.8	239	168			 	
	Temp in °F		20	92	89	99	65		89	89	89	20			
	Date		6-28-61	6-28-61	6-28-61	6-28-61	6-28-61	1-13-61	6-28-61	6-29-61	6-28-61	6-28-61			
State well	other number		23N/2'N-5A	23N/3W-22G	-3581	24N/2W-30Cl	24N/3W-3P1	DA4.	DA4.	™1-	_20N1	24N/5W-21L3			
	Owner and		Kelsey	W. Angleton irrigation	D. D. Smith domestic & stock	J. Ayres domestic & irrigation	G. Saulsbury domestic & irrigation	H. J. Moran & Son irrigation	H. J. Moran & Son irrigation	Corning High School	W. E. Turner 1rrigation	A. Miller domestic			

a. Determined by addition of constituente.
 b. Growmetric determination.
 c. Analysis by U.S. Seological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chamical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (Al), Arsanic (As), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as 600 axcept as shown.

		Anol; zed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DAR	
	8890		P C E	0	7,7	36	0	0	29	0	10	0	0	0	0	ol	0	0	
	Hord	03 C0CO 3	Toto!	184	102	241	7	158	234	130	23	8.	57	152	65	132	66	8	
Ì	ě	E DO	§ _	검	16	15	ま	ผ	ω	91	18	33	31	25	53	15	73	32	
	Total	salved solids	in ppr	277	205	377	898	239	285	224	190	182	127	1 ηηΖ	225	220	183	182	
		Dates the same	(Sio ₂)		•														
				티	린	65	67	얾	칭	81	36	킈	17	<u>\$</u>	ଞା	23	의	ম	
	Tion	Boron	<u>e</u>	0.09	0.38	0.08	0.15	90.0	0.10	0.00	9:08	0.05	0.05	90.00	0.07	90.00	9.0	90.0	
	parts per millian volents per mill	Fluo-	E (200	0.0	0.0	0.0	0.2	0.2	0.00	0.0	0.2	0.00	0.2	0.2	0.00	0.02	0.0	
	ents per	Z	(NO ₃)	7.00	3.0	8.0	0.0	3.0	12 0.19	2.2	8.8	3.2	6.8	3.2	0.0	12 0.19	3.6	19	
	parts per million equivalents per million	- olfo	(D)	(Cont.)	13	36	% 0.73	1900元	8.3	다. 6.3	1.2 0.34	$\frac{5.1}{0.14}$	5.6	4.8	14	0.31	0.13	3.2	
	nts in		(SO ₄)	2.5 0.05	16 0.33	19 0,40	13 0.27	7.2	27 0.56	6.6	0.25	0.10	4.1 0.08	0.0	7.2	8.2	2.0 0.04	3.1	
	constituents	Bicor	(HCO ₃)	TEHAMA COU	1.7	250	2,41	3.13	3.90	154	2.24	147 2.41	77.	3.64	2.4 2.4	2.te	2.41	2.36 2.36	
		arbon	(CO3)	120	8	0.0	5 0.17	5 0.17	0.20	0.13	00.0	000	00	0.20	0.0	0.0	0.0	0.0	
000	Mineral	otas-C	(X)	3.2	2.9	1.1	2.7	1.3	0.02	2.6 0.07	0.02	0.03	0.3	0.03	3.0	1.8	2.0	1.9	
			(NO)	21 (22 (1,50	19 0.83	3.35	20 0.87	10 0.44	0.52	0.56	21 0.91	12 0.52	24 1.04	36	11. 0.48	15	19 0.83	
			(Mg)	26	의 IS 38	32 2.62	0.0	20	22 1.79	17	13 1.09	9.6	6.0	16 1.29	3.6	13	7.7	9.4	
		Calcium	(CO)	31	21 1.05	1,4 2.20	0.09	30	58 2.89	24 1.20	27	1.05	13 0.65	35	20 1.00	3.1	27 1.35	0.95	
		표		7.9	8,1	7.5	8.5	8.5	8.5	4.8	8,2	8.3	7.9	8.5	8.1	8.2	8,2	8.1	
	Specific	ance (mlcro-		707	254	541	368	38,	₁ +63	307	596	251	158	365	280	596	248	540	
		Temp in of		70	99	43	23	89	さ	89	29	89	29	89	89	89	29	202	
		Date sampled		6-29-61	6-29-61	6-29-61	6-29-61	6-27-61	6-28-61	6-29-61	6-29-61	6-29-61	6-29-61	6-29-61	6-29-61	6-27-61	6-29-61	6-29-61	
	State well	number and other number		MDB&M 25N/1W-31M1	25N/2W-4MD	-77.0	-2101	25N/3W-3NI	-3181	26N/2W-4c1	26N/3W-10D1	-2201	-29E1	26N/4W-10D1	27N/3W-1091	1501	-19A1	2711/4м-1112	
		Owner and	nse	S. R. Pritchett	Los Molínos Cem. domestic	F. B. Wray domestic	E. Clemens Horst Co. 1rrigation	El Camino Irr. Dist. irrigation	L. Clark domestic	J. Munsinger irrigation	Forward Bros, Lumber Sales domestic & industrial	W. K. Merrithew	J. Burch 1rrigation	R. Dewitt domestic	B. Kerstiens irrigation	B. Kerstiens	City of Red Bluff domestic	Wilcox Colf Course irrigation	

Determined by addition of constituents.
 Grovimetric determination.
 Analysis by U.S. Sediagled Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (A1), Areanic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as against shown

Maintain State Catologue Patient Catologue State State Catologue Catologue State Catologue				8, 8	Specific conduct-			2	Mineral	constituents	nts in	oviup.	ents per	equivolents per million	5		Totol	à	Hardness	-
The color of the	Ŧ	Temp once pH in *F (micro- pH mhos of 25° C)	once (micro- mhos of 25°C)	£		80	Colcium Sium (Co)		Carbon- ofe (CO ₃)	Bicor- bonate (HCO ₃)		Cide (Ci)	Ni- trote (NO ₃)			iiO ₂) Other constituents ^d	eolved solids in ppm	T P E	os CoCo otol N.	_
1. 1. 1. 1. 1. 1. 1. 1.	MDB&M								CLENN	COUNTY	(5-21)									
1.	13N/2W-1E1 8-26-61 69 544 8.4 39	69 544 8.4	544 8.4	4.8		100		4.3	0.20	339	13	5.0				ml	338			
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	-7F1 8-30-61 70 1,040 8.3 5.1	70 1,040 8.3	1,040 8.3	8,3		715		0.5	000	\$18 8.49	157 3.27	1 ¹⁴ 0.39				01	677			
56. 18.9 0.0 1.0 <td>18N/3W-10M1 8-30-61 73 524 8.3 31 1.55</td> <td>73 524 8.3</td> <td>524 8.3</td> <td>8.3</td> <td></td> <td>UD.</td> <td></td> <td>0.0</td> <td>0.0</td> <td>275 4.51</td> <td>29</td> <td>17 0.48</td> <td></td> <td></td> <td></td> <td>-#I</td> <td>320</td> <td></td> <td></td> <td></td>	18N/3W-10M1 8-30-61 73 524 8.3 31 1.55	73 524 8.3	524 8.3	8.3		UD.		0.0	0.0	275 4.51	29	17 0.48				-#I	320			
1.5 1.5 1.5 0.02 0.00 0.00 0.01 0.01 0.02 0.0	18N/4w-2r1 8-30-61 73 904 8.3 60 2.99	73 904 8.3	904 8.3	8.3		183		0.0	000	357	19	88 2.43				©]	532			
1.5 1.5	19N/2W-661 8-26-61 70 351 7.6 35 1.55	70 351 7.6	351 7.6	7.6		100		 0.0		200	9.0	4.0 0.14				OI.	210			
26. 28. 1.1 4.1 2.66 1.0 1.1 4.1 2.66 1.1 4.1 2.26 1.1 4.1 2.2 1.1 4.1 2.2 1.1 4.1 2.2 1.1 4.1 2.2 1.1 6.1 6.2 6.1 6.1 6.2 6.1 6.2 6.1 6.2 6.1 6.2 6.1 6.2 6.1 6.2 6.1 6.2<	19N/3W-9J1 8-31-61 71 514 8.0 <u>27</u>	71 514 8.0	514 8.0	8.0	والتناقب فيناف	100		0.0		282	35	6.7				Σ /	315			
1.5 1.7 1.7 1.7 1.7 1.8 1.8 1.8 1.1 1.1 1.1 1.1 1.2 1.2 1.1 1.1 1.2 1.2 1.1 1.2	19N/3W-18P1 8-30-61 68 579 8.4 35 1.75	68 579 8.4	579 8.4	4.8				 0.03	4 0.13	268 4.39	1.04	25 0.62				න	354			
27 17 0.5 6.6 6.6 6.6 1.5 0.14 0.3 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14 0.2 0.14	200/21N-12Q1 8-26-61 69 387 7.5 36 15-80	69 387 7.5	387 7.5	7.5				 0.02		213	20 0.42	8.1				Φ.Ι	240			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-1301 8-26-61 70 444 8.4 41 2.04	70 444 8.4	n.8 htd	4.8			1	 0.0		263	7.7	7.4		0.03		ΩN	566			
18	20N/3M-2D1 8-26-61 70 451 7.9 45 2.24	70 451 7.9	151 7.9	7.9		L-+	1.70	 0.02		3.60	16 0.33	21 0.59				او	262			
24. 2.0. 2.2. 0.0. 0.0. 2.0. 0.0. 2.0. 0.0.	20N/4W-2Q1 8-30-61 74 335 8.2 28 1.40	74 335 8.2	335 8.2	8.2		10		 0.5		167 2.74	9.5	4,6				-₹	210			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	21N/2W-2D1 8-26-61 71 567 7.7 60 5.99	7.7 567 7.7	567 7.7	7.7		100	25.00 20.00	 0.9		296 1.85	25 0.46	21 0.59				ΩI	324			
24, 1.5g 2.1g 0.5g 0.5g 2.5g 2.2g 0.5g	-15c1 8-26-61 71 4.84 8.0 49 2.44	77 484 8.0	1,84 8.0	8.0		1.0		 2.8		3.59	17 0.35	28 0.79		0.01		QI	284			
32 0.0 0.00 1.0 0.00 1.0 0.1 0.1 0.01	21N/3W-2Q1 8-26-61 68 538 7.7 53 2.54	68 538 7.7	538 7.7	7.7		Lo	1.9	 0.00		25t t.16	23 0,48	0.73	0.21	0.01		a l	317			
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	-14F1 8-26-61 68 392 8.1 26 1.30	68 392 8.1	392 8.1	8.1		10	15	 0.0		3.02	8.6 0.18	0.73				1/2	222			
	-20D1 8-30-61 72 357 8.3 <u>21</u>	72 357 8.3	357 8.3	8 .		103		 0.02		158 2.59	0.16	27 0.76		0.0		1	506			

Determined by addition of constituents.
 Crowmetric determination.
 Growmetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

 Aluminum (A1), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 600 except as shown

CHALLTY OF GROUND WATERS IN CALIFORNIA

(
	WATER	
	GROUND	-
	ANALYSES OF	1901

	State well			Specific conduct-					Minerof	Minerol constituents	nita in	Paduivo	ents par	parts per million equivolents per million	LOI				tardness		
Owner and	number and	Date	Ten c		E.	Mo	-		- Corbo				ž	Ftuo-		ileo	solved	1000	os CaCO ₃	\neg	Anolyzed
•						(CO)	muis (gM)	(NO)	Sium ate (K) (CO ₃)	bonate (HCO ₃)	(SO ₄)	rid⊕ (⊡)	trate (NO ₃)	ride (F)	(8)	(SiO ₂) Other constituents ^a		_	Total N.C. Ppm ppm		,
	MINB&M									LENN COUN	NTY (5-2	1) (Copt.	7								
Baker & McGowan irrigation	22N/1W-29C1	8-25-61	88	16th	8,3	2.34 2	2163 2163	21 0.91 0.91	0.8	3.65	28 0.58	26 0.73	8.0 0.13	0.2	0.24	췺	588	81	212 2	29 DWR	o:
C. A. Nickel domestic	22N/2W-3A1	8-24-61		200	8.0 14.	2.24 2.2	21 1.74 1.74	1,09	0.02	3.10	33	34 0.96	19 0.31	0.2	0.20	%I	297	21 1	199 1	14 DWR	ne.
Mills Orchard Inc.	-26B1	8-25-61		538	7.8	58 2.89 22	1:79 0:18	010	0.9 0.00	260	31 0.64	25-0-	7.5	0.00	0.24	%l	318	17 2	234 2	21 DWR	or.
J. C. Wight domestic	22N/3W-4GI	8-24-61		02.17	8,3	52 2.59 II	18 1.47 0.	20 0.87 0.	0.02	235	17	20 0.56	4.8 0.08	0.0	0.26	<u>81</u>	268	18	203	10 DWR	œ
City of Orland municipal	-2201	8-30-61	69	<u>z</u>	8.3 14.	19 2,40 I	1.16 0.1	18 0.78 00	0.8 0.00	3.34	0.33	20 0.56	6.2	0.2	0.23	ଷା	245	18	178 1	II DWR	œ
J. Freitas irrigation	-2581	8-25-61	899	365	8.2 2.8	2.00	1.20	0.78	0.03 0.00	176 2.88	17 0.35	21 0.59	6.8	0.2	0.24	위	†1472	19 1	160	16 DWR	œ
Graves Cemetery irrigation	22N/4W-10B1	8-25-61	20	184	8.4 4.8	2,30	2.50	0.70	0.7	3.75	0.37	24 0.68	4.7 0.08	0.00	0.24	ଞ୍ଚା	±82	13	540	34 DAR	œ
								1	-COLUSA	COUNTY (5	9-21)										
J. Miller domeatic	13N/1E-22H1	19-61-9	5	128 128	8.2	3.49 4	7t 2d 1.18	28 1.22 0	0.03 0.00	415 xo 6.80	52 1.08	32 0.90	21 0.00	0.1	0.23	24	510	13 3	398	58 DWR	œ
M. V. Doherty domestic	13N/1W-35Q1	6-19-61	2	604	8.3	$\frac{23}{1.15}$ $\frac{1}{1}$	1.43	36 1.57 2	2.4 0	3.33	5.6	24 0.68	2.9	0.0	0.36	58	270	37	329 0	O DWR	œ
Grant	13N/2W-10G1	19-61-9	8	1120	7.3 5	2.69	32 2.64 5.12	5.26 0	0.04 0.00	3.21	27 0.56	236	15	0.02	2.2	<u>53</u>	419	641	267	106 DWR	œ
A. Olivetti irrigation	-10MI	19-61-9	19	612	8.0 2	$\frac{25}{1.25}$ $\frac{1}{1}$	1.43	3.35 0	0.02 0.00	3.41	0.21	2:12	18	0.2	1.2	ଧ	355	55 1	134 0	O DWR	OC.
Stapp & Co. domestic	14N/14-2D1	19-61-9	89	1380	8.0	63 5	57 4.69	139 2 6.05 0	0.06 0.00	284	136 2.83	230 6.49	8.0	0.2	0.22	ョ	820	143	392	159 DWR	gr.
H. Charter domestic & irrigation	14n/24-29J1	7-12-61	ST.	250	7.8	0.70	11 0.94	21 0.91 0	0.8 0.00	130	1.8	6.7	0.19	0.2	90.00	ॢ	491	35	 &	O DAYR	pg pg
Watts Bros. domestic	16N/2W-4H1	6-22-61	29	510	8.1 3	$\frac{33}{1.65} = \frac{2}{1}$	1.77	1.91	0.03 0.00	3.64	42 0.87	26	4.5	0.02	0.12	37	319	36	771	O DWR	æ
Dr. Libby irrigatioo	17N/1W-20N1	6-30-61	65	203	7.9	26 1.30	1.08	43 1.87	1.6 0.00	3.80	0.00	15	0.3	0.00	0.18	<u>0</u>	253	₹	611	O DWR	rs.
C. Tuttle domestic	17N/2W-12C1	6-22-61	2	184	8.0 3	38 1.90 1	$\frac{21}{1.72} \begin{vmatrix} 21\\ 1 \end{vmatrix}$	34 1.43	0.03 0.00	260	7.9 0.16	23	0.8	0.00	0.10	캰	288	59	181	O DWR	œ
Maxwell P.U.D. municipal	17N/3W-33F1	6-22-61	2	932	7.9 4	4.8 2.40 2.40	30 1	110 1	0.03 0.00	328	25.12	2.23	3.4	4.0	0.39	<u></u> 6개	584	64	1172	O DWR	rs.
o. Determined by addition of constituents.	of constituents.																	-]

o. Determined by addition of constituents.

b. Growinstric determination.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Analysis by U.S. Geological Survey, Quality of Water Branch of Water Resources (O.W.R.) os indicated.

a. Analysis by U.S. Geological Survey, Cooper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown irran (Fe), Aluminum (Al), Arsanic (As), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown

	Analyzed by c		pr ₄	ps.	tr.	æ	pr	ęs.	ps.	pr.	pr.		ps.	ps	gs.	ps.	br.
			DWR	OWR	OWR	DWR	OWR	DWR	DWR	OWR	DATR		DWR	EMG -	DWR	DWR	DWR
rdness	as CaCO ₃ Total N.C. ppm		0	N	17	0	•	0	e		22		•	0	637	0	0
	كالبارا		15 173	26 125	8 184	90 06	20 86	16 231	13 134	14 199	10 203		18 69	221 62	60 801	75 112	47
- E	dis- solved sod- solids ium in ppm																7 83
۴			263	234	288	1,430	187	315	502	290	287		399	718	2,200	775	247
	Silica (SiO ₂)						-										
			<u>n</u>	<u>[63</u>	~됩	19	0]	25	- 56	- 65	19		91	21	ਹ	9]	홰
on III ion	Boron (B)		0:0	0.0	0:0	5.6	0.0	0.1	0.0	0.0	0.0		0.50	0.87	17.0	0.68	0.72
er milli per m	Flua- ride (F)		0.2	0.1	0.0	0.8	0.2	0.00	0.1	0.0	0.1		0.00	0.00	0.00	0.00	0.00
parts per millian equivalents per million	Ni- trafe (NO ₃)		3.8	0.7	9.9	2.6	13	0.0	8.9	15	28		0.0	1.4	1.3	0.5	0.02
9001	Chio- ride (CI)		5.2	7.6	2.5	88.9 742	6.5	3.2	0.07	0.31	6.5 0.18		64 1.80	270	1,290	60 1.69	166 468
Ē	Sul - fate (SO ₄)		8.0	21 0.44	0.00	11.56	3.0	09 21.0	0.17	7.0	0.17		0.35	0.00	0.00	0,40	0.00
Mineral constituents	Bicar- bonote (HCO ₃)		201	2.34	3.15	2.59	1.84	283 1.90 1.90	2.62	3.70	3.62		265	268	3.28	410	271 1.11
ral cor	Carban-	COUNTY	10	0.07	6 0.20	0.20	0.00	7 0.23	0.00	3 0.10	000	COUNTY	0.00	00.00	00.00	16 14 0.53	0.00
Mine	Potas-Co sium (K) (c	BUTTE	0.02	0.03	1.4	2.2	0.03	0.05	0.01	0.02	0.04	SUTTIER	0.00	3.6	0.04	3.0	0.06
	Sadium F (No)	,	14 0.61	20 0.87	7.9	436 18.97	10 0.44	20 0.87	0.39	0.65	11 0.18		3.05	220	23.79	160	172
	Magne - sium (Mg)		27 2.26 0	1.45	2.23 0	3.2	10 0.82 0	31 2.52	1.58 0	2.23	2.41 0		9.5	1.19	101	1.09	0.63
	Calcium Ma									-							
	Calc C)		5 24 1.20	3 21 1.05	1.45	1.90	2 18 0.90	3 42 2.10	.2 22 1.10	3 35	0 33		2 12 0.60	1 25	0 128	6 23	2 13
ıfıc luct-			353 8.5	317 8.3	355 8.4	20 8.4	208 8.2	469 8.3	273 8.3	414 8.3	410 8.0		637 8.2	60 8.1	1,0 8.0	865 8.	940 8.2
Spacific					m 	2,220			α 	- - -	<i>-</i>		9	1,260	4,140	Φ	<u> </u>
	Temp in °F													-			
	Sampled			9-7-61	8-3-61	9-7-61	19-1-61	9-7-61	9-7-61	9-7-61	9-7-61		6-19-61	6-19-61	6-19-61	6-19-61	6-19-61
Stote well	number ond other number		17N/2E-2D1	17N/4E-20L1	18N/3E-16P2	18N/4E-28M	19N/2E-16R1	21N/1W-26Q1	21N/2E-30C1	22N/1E-9M1	23N/1W-9£1		12N/2E-9B2	-11.11	-1481	-1681	-2301
	Owner and use		J. Davie irrigation	L. Strenner 1rrigation	Butte Farms irrigation	West Coast Orchards irrigation	P. Rose domestic	C. Sprague domestic	Yanich domestic and irrigation	S. Hopkins domestic and stock	M. Bernee domestic and irrigation		C. Richter domestic	Garner domestic	domestic	L. Wright domestic	Havn domestic

a Determined by addition of constituents

b. Growmafric distantiation.

c. Analysis by U.S. Satolatical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.),

fem.notd Testing Laboratory (T.T.L.) ar State Department of Water Resources (D.W.R.) as indicated.

d. tran (Fe.), Alyminum (Al), Arsenic (As), Copper (Cu), Lead (PD), Mongonese (Mn), Zinc (Zn), reported here as Scote cept as shown

	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	N.M.C	DWR
	_		0	18 D	0	0	239 I	993 1	する	0	39 [7	0	19	99	6†г	0
Hardness	as CoC(911	330]	199	61	509	1,260 99	588		178	26	56 ^t	317	348	1458	108
	Sod- Sod- T T T		78 13	2½ 33	55 19	69	25 50	20 1,	36	617	35 17	98	16 20	9	24	56 14	177
Total	salved solids in pppm		632	473	520	258	729	099,	435	166	373	199	353	383	516	069	164
	Silica Other constituents (SiO ₂)	-						<u></u>									
			£43	35	35	크	33	33	의	희	81	티	었	었	의	ᆁ	킈
loi	Baran (B)		0.73	0.13	0.88	0.52	0.04	11.0	0.00	0.15	0.20	0.06	0.11	0.07	0.21	0.13	0.00
million er mil	Fluo- ride (F)		0.00	0.10	0.00	0.2	0.00	0.2	0.00	0.2	0.2	0.2	0.10	0.0	0.00	0.2	0.0
equivalents per million	Ni- trate (NO ₃)		0.7	6.4	0.7	0.1	0.7	0.00	0.7	0.1	11 0.18	2.6	3.1	0.6	0.00	23	0.5
Dyinpa	Cho- ride (CI)		21.7 6.12	1.94	171	28	29 ⁴ 8.29	880 24.82	9.3	1.7 0.48	45 1.27	21 0.59	13 0.37	23 0.65	100	69 1.94	1.4
nts in	Sul – fate (SO ₄)		0.00	24	0.21	2.1	1.3	36	140	2.1	⁵⁸ 1.21	4.3 0.09	0.42 0.42	15	31	1.87	0.11
constituents	Bicor- banate (HCO ₃)	nt.)	282 4.62	356 5.83	246 4.03	3.21	329 5.39	326 5.34	236 3.87	106	170 2.79	107	322 5.28	364	344	499 8.18	2.34
Mineral co	Carbon- ote (CO ₃)	(C0)	0.00	0.40	00.00	00.00	00.0	0.00	00.00	00.00	00.0	00.00	0.20	00.00	00.00	00.00	00.0
M	Potas-C sium (K)	SUTTER COUNTY (cont.)	1.7	0.03	2.9	2.0	1.9	5.7	1.7	1.7	1.7	0.05	0.0	0.0	3.7	1.1	1.4
	Sadium (Na)	SULL	195 8.48	97 5.09	116 5.05	66 2.87	78 3.39	148	32	1.09	44 1.91	15 0.65	23	177	2.26	7 ⁴	8.2 0.36
	Magne- sium (Mg)		17	3.80	2.28	3.9	72 5.88	164	2.51	4.6	1.26	9.0	3.67	3.64	3.71	64 5.26	1.31
	(Ca)		0.90	2.79	34	18	86	234	3.24	14 0.70	2.30	1.10	32 1.60	2.69	3.24	78 3.89	0.85
	£		8.1	8.5	7.9	7.7	8.1	7.7	8.1	8.0	7.7	7.8	4.8	8.0	8.2	8.1	8.0
Specific canduct-	ance (micra- mhos at 25°C)		011,1	804	056	399	1,370	3,230	999	224	260	251	550	627	871	011,1	234
0, -	Temp in °F				•			_								19	
	Sampled		6-19-61	6-16-61	6-26-61	19-61-9	6-16-61	6-19-61	6-19-61	6-19-61	6-19-61	19-61-9	19-61-9	19-61-9	6-6-61	6-8-61	6-20-61
State well	number and other number		12N/2E-26Al	13N/3E-10M2	-1193	-13C1	-16R1	-24D1	13N/4E-21A1	-2301	13N/5E-7R3	-19R2	14N/1E-1A1	-2A1	14n/3E-3C2	-5A3	-1432
	Owner and		D. Mullen domestic	T. Fields domestic	E. Silva irrigation	Boccardo Ranch 1rrigation	L. Hrai irrigation	R. Rouse irrigation	C, Owen lrrigation	J. Jopson irrigation	C. Nelson irrigation	E. Gallegher irrigation	Frye Brothers domestic	S. McKeehan domestic	B. Singh irrigation	C. Srah irrigation and domestic	L. Littlejohn irrigation and domestic

-258-

	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	
			0110	1,28	0		181	311	167	92	901	0	15		71	111	0	
Hardness	as Ca Tatat ppm		136	735	287	259	434	625	352	**************************************	510	1,21	346		127	202	177	
غُ	sad- nm		16	17	₹8	13	23	18	4	22	9	9	17		24 2	58	22	
Tatal	salved salved salved orids		568	846	901	347	809	800	730	655	1119	256	454		217	909	566	
	Silica Other canstituents																	
			<u> </u>	22	98	£]	†å 	31	었	었	31	27	143		설	₫	1 31	
Lian	Boron (B)		0.12	0.12	0.08	0.09	0.10	0.18	0.37	0.08	0.09	0.29	0.10		0.04	0.54	0.01	
million ser mil	Flua- ride (F)		0.2	0.0	0.1	0.00	0.00	0.00	0.00	0.0	0.00	0.1	0.00		0.02	0.2	0.0	
parts per millian equivalents per millian	rrate (NO ₃)		0.6	0.5	0.00	0.8	0.4	1.1	0,7	73 1.18	46	0.5	0.32		0.3	1.9	0.1	
d equiv	Chla- ride (CI)		2.23	330	26	5.9	193	308	317	2.31	0.59	20	16		27 0.76	266	0.32	
5	Sul - fate (SO ₄)		65 1.35	104 2.16	07.40	51 1.06	42 0.87	7.9	3.8	37 0.77	82	0.0	23		7.1	19	0.40	
canstituents	Bicor- banate (HCO ₃)	ont.)	397	374	385	298	309	383	3.70	429	1,93 8.08	3.56	404 6.62		150	11.02	3.57	
Mineral ca	Patas - Carban- sium ote (K) (CO ₃)	SUTTER COUNTY (cont.)	9	00.0	0.00	00.00	0.0	0.00	0.00	0.0	0.00	0.00	14	YUBA COUNTY	000	0.00	00.0	
ž	Patas- sium (K)	TER CO	2.7 0.00	0.07	1.6	1.8	1.3	2.6	6.1	0.03	0.05	2.6	1.4	YUBA	1.9	2.0	0.03	
	Sodium (Na)	Eds	40 1.74	3.09	42 1.83	18	60 2.61	62 2.70	128	2.57	27	40 1.74	32		19 0.83	128 5.57	24 1.04	
	Magne- sium (Mg)		62 5.07	102 8.39	35	36 2.97	60 4.93	7.60	3.49	55	5.55	1.44	50 1.12		13	18	24 1.94	
	Calcium (Ca)		7.3	126 6.29	57 2.84	44 2.20	3.74	98	3.54	87 4.34	93	22	<u>56</u> <u>2.79</u>		29	2.54	32	
	Ŧ		7.8	8.1	8.1	8.1	8.2	8,1	7.6	8	7.9	8.1	8.5		7.9	7.8	8.1	
Specific conduct-	ance (mlcra- mhas at 25°C)		929	1,710	699	540	1,100	1,490	1,360	1,040	196	411	716		340	1,090	1443	
	Temp in °F										59							
	Sampled		6-20-61	6-20-61	6-16-61	6-20-61	6-16-61	6-19-61	6-16-61	19-8-9	6-8-61	6-20-61	6-20-61		9-12-61	9-12-61	9-12-61	
State well	number and ather number		14N/3E-15H1	-16B2	-1842	-23M2	-28D1	-28R1	-31B1	15N/2E-26D2	15N/3E-4C2	-26MI	-2901		13N/4E-18H	13n/5E-4B	14N/45-7M1	
	Owner and use		J. Blevins domestic	E. Best domestic and irrigation	R. Mahon irrigation	Sullivan irrigation	L. Ott irrigation	J. Seger 1rrigation	L. Ott lrrigation	E. Carrothers domestic	A. Eager irrigation	R. Paillex irrigation	W. Glenteer irrigatioo		Dana Brothers	City of Wheatland municipal	E. Anthony domestic	

a Determined by addition of constituents
b Growinstric determination.
c Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Caneultants (PCC),
Ferminal Testing Laboratory (TTL.) or State Department of Water Resources (D.W.R.) as indicated
of Iran (Fe), Aluminum (Al), Arsanic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as \$\overline{\cappa}\in \cappa_0 \in \cappa_0 \in

	Anolyzad by c		DWR	DWR	DWR	DWR	OWR	OWR	DWR	DWR	DWR	DWR	DWR		DWR	OWR	DWR
\$ \$			0	0	0	15	35	16	7	0	0	180	0		0	0	0
Hardn	OS COCO3		8	88	59	83	113	76	145	8	19	310	63		89	52	156
- 3	Sod- Eu		36	85	25	75	54	143	15	13	142	39	8		9	36	8%
Total	dis- solved solids in ppm		180	17 ⁴	148	224	594	560	21.7	148	187	621	155		199	165	297
	Silica Other canstituents (SiO ₂)																
			임	14	9	위	임	75	172	8	13	83	31		91	801	[2]
Illon	Boron (B)		90.00	0.03	0.0	0.07	0.12	0.09	0.01	0.02	0.07	0.49	0.04		0.12	0.05	90.00
r millic	Fluo- ride (F)		0.3	0.2	0.03	0.0	0.0	0.3	0.2	0.0	0.00	0.0	0.0		0.3	0.02	0.3
parts per million equivalents per million	Ni- trofe (NO ₃)		0.02	1.6	3.5	1.6	0.03	1.6	0.0	0.00	0.02	0.9	0.00		3.8	2.2	0.12
Pequiv	Chlo- ride (Ct)		17	13 0.37	8.2	1.38	79 2.23	61 1.72	1.2	5.0 0.14	26	272 7.67	8.1		19 0.54	0.25	28 0.79
ci ci	Sul – fore (SO ₄)		3.4	7.6	3.1	5.3	10	5.4	26 0.54	1.6	5.3	8.6	6.9		2.5	0.0	6.6
canstituents	Bicor- banote (HCG ₃)	(Cont.)	95	83	72	83	1.62	1.62	169	139 2.28	79	2.61	17.77	<u> </u>	2.28	1.29	3.20
Minerol Co	Corban- ate	NTY (O	0000	000	00.00	0.00	0.00	0.00	0.00	0.00	0.00	00.00	0.00	R COUNTY	0.00	0.0	00.0
\ <u>\\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \</u>	Polas- sium (K)	YUBA COUNTY	0.03	1.0	0.0	1.4	1.7	7.6	1.2	1.1	1.8	3.0	0.05	PLACER	1.1	0.02	0.04
	Sodium (No)	Σ	18 0.78	13 0.56	9.2	1.22	43 1.87	34	12 0.52	0.48	0.91	4.04	12 0.52		1.22	0.61	28 1.22
	Magne- sium (Mg)		8.0	7.4	7.7	8.0	9.8	9.6	20 1.65	11 0.91	9.2	26	7.4		8.3	7.0 0.58	20
	Calcium (Co)		14 0.70	15 0.75	11 0.55	20	29	23	25 1.25	21	9.5	81	13		22	9.5	30
	풀		7.9	7.6	7.4	7.6	7.7	7.9	7.9	8.0	7.6	7.9	7.8		8.1	7.9	8.3
Specific	ance (micro- mhos of 25° C)		218	198	158	325	462	384	329	235	230	1130	179		295	167	454
	Temp in °F								65						£9	88	99
	Sompled		9-12-61	9-12-61	9-12-61	9-12-61	9-15-61	9-12-61	9-8-61	9-13-61	9-15-61	9-12-61	9-12-61		8-8-61	8-18-61	8-18-61
Stote well	number ond other number		14N/4E-22H1	1½N/5E-15C1	-1601	-21G	-22M	-301	15N/4E-21J	-31A	TN61-35/1151	16N/3E-11N1	16N/4E-901		10N/5E-6D1	10N/6E-5C	100
	Owner ond		F. Hofman irrigation	E. Booth irrigation	W. Holmee irrigation	Waltz Rench irrigation	Lorenzen irrigation	E. Garcia 1rrigation	Linda Co. Water Dist.	Linda Co. Water Dist. municipal	Deale A.F.B.	LaFinca Orchards irrigation	J. Robel domestic		K. Teraoku irrigation	A. L. Lampen irrigation and domestic	R. Dixon irrightion and domestic

Determined by addition of constituents.
 Gravimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), or Side Department of Worler Resources (D.W.R.), as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Mongonese (Mn), Zinc (Zn), and Chromium (Gr).

1	5	
3	١	
Ī		

	State well			Specific conduct-					Mine	Mingral canstituents	tifuents	i	parts per million equivalents per million	parts per million valents per mill	million	ا		Tatal	å	Hardr	8.50	
Owner and use	number and other number	Date sampled	Tamp in °F		Ŧ	Calcium (Ca)	Magne- sium (Mg)	Sodium (Na)	Potas-Ca sium (K) ((Carban-Bio	Bicar- S bonate f (HCO ₃)	Sul - fate (SO ₄)	Chlo- ride (CI)	NI- trate (NO ₃) (Fluo- ride (F)	Boron Sili (B) (Si	Silica (SiO ₂) Other constituents	solved solids in ppm	sod- sod-	as CaCO ₃ Total N.C.		Analyzed by c
								PLA	PLACER COUNTY	NEY (Cont.	11.)											
R. Vandergrift irrigation	11N/5E-6A1	8-8-61	70	225	0.8	15	7.4	21 0.91	1.8	0.00 01.1	108 2	2.8	14 0.39	3.4	0.03	0.15	69	188	39	8	0	DWR
P. Minarick irrigation	-1811	8-18-61	17	260	8.2	87.0	6.8	27	2.5	0.00	1.93	3.3	25 0.62 0.62	0:01	0.0	0.28	<u>67</u>	506	£4.	73	0	DWR
W. Armstrong Irrigation	-31A1	8-18-61	88	279	8.1	17 0.85	8.4 0.09	30	1.4	0.00 0.00	2.08 2.08	2.8 0.06 0.06	22 0.62 0.62	3.1	0.02	0.23	91	207	45	77	0	DWR
W. Fiddyment irrigation	111/6Е-16М1	8-18-61	88	347	7-3	13	64.0	16.1 1.91	1.6	0.00	1.42	0.21	1.24	110	0.03	9.86	882	256	62	57	0	DWR
Diamond "K" Ranch irrigation and stock	-270	8-18-61	88	261	7.2	1.00	0.80	19 0.83	1.5	0.00	2.03	0.09	0.42	0.05	0.02	0.16	98	220	31	8	0	DWR
Sierra View Land Co. Irrigation	-34B	8-18-61	70	267	7.6	19	0.93	20	1.4	0.00	142 2.33 0	3.0	10 0.28	0.02	0.03	0.05 B	85	221	31	76	0	DWR
R. Mariner Irrigation	12N/5E-2B1	8-24-61	98	184	7.9	0.60	8.3 0.68	0.52	0.0	0.00 1.	85 1.39 0	2.1	5.7	6.9	0.03	0.10	69	159	8	75	0	DWR
F. Bonnfield irrigation	-30	8-24-61	70	216	8.0	11 0.55	7.2	24 1.04	0.03	0.00	107 1.75	0.03	15 0	m.00.0	0.02	0.28	69	183	Lη	57	0	DWR
U.S.A.F. Communication industrial	-23C1	8-25-61	88	222	8.1	0.60	5.4	27	0.03	8 :	98 2	2.8	1 ¹ / _{0.39} 7	0.12	0.02	0.23	177	195	52	52	0	DWR
F. Fullerton domestic and irrigation	12N/6E-16D2	8-18-61	12	695	8.3	0.90	1.14	106	0.02	0.00	152 6 2,49 1	1.29	2.79	0.21	0.03	11:3	75	1997	69	102	0	DWR
G. Blake domestic	13N/5E-13D	8-18-61	17	529	7.1	21	10 0.82	62 2.70	1.5	0.00	83 1-36 0	96.0	83 2	2.3	7.00	0.46	67	347	82	75	56	DWR
W. Brown irrigation	-24Pl	8-24-61	8	256	7.9	1 ¹⁴ 0.70	8.5	24	0.9	0.00 0.00	103 6 1.69 0	6.9	19 0.54	0.02	0.02	0.20	831	194	7,2	70	0	DWR
H. Porter irrigation and domestic	13N/6E-6D	8-24-61	99	811	7.2	5.4	0.11	118 0.78	0.0	0.00	52 0.85 0	3.8	9.4	0.02	7,0	90.0	65	130	99	19	0	DWR
L. Gunther irrigation and domestic	-160	8-18-61	73	138	6.9	7.8	4.7 0.39	12 0.52	0.00	00.00	5 ¹ / ₀ 88 0	0.15	5.1	01.0 0.11.0	0.00	0.07	<u>611</u>	021	39	39	0	DWR
L. Franceschi irrigation	-3301	8-24-61	69	682	0.0	27	1.51	3.57	0.00	0.0 0.00 1.00 1.00 1.00 1.00 1.00 1.00	1.81 2.97 0	38 0.79	2.76	0.03	4.00.0	2.5	67	707	55	143	0	DWR
a. Determined by addition of constituents.	of constituents.										-	-							-			

Observation of constituents.
 Seavinestric determination.
 Seavinestric determination.
 Analysis by U.S. Gaslogical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), or Statis Department of Woter Resources (U.W.R.), as indicated.
 All Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), and Chromium (Cr).

		Analyzad by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
-	_			0	0	0	0	12	0	0	0	0	Φ	0	22	0	17	0	0
	Hardness	as Co Total ppm		111	103	316	403	241	ካቱሪ	274	288	236	258	763	221	283	343	319	544
	Pad	sod- rum		82	79	56	65	73	30	27	75	04	25	5rt	82	29	8	35	33
	Total	solved solved solved mdd ui		309	354	1,48	603	1080	393	1 01	295	954	1119	1050	455	794	541	573	694
		Silica (SiO ₂) Other constituents																	
		Silica (SiO ₂)		絽	의 _	뛰	亦	9	8	37	의	<u>3</u>	8	3	52	37	32	27	65
	ion	Boron (B)		8.0	1:0	0.76	1.0	2.3	0.53	0.50	1.5	1.0	0.70	1:8	0.31	0.57	1.7	2.6	9.0
	er mil	Fiuo- ride (F)		0.00	0.2	0.01	0.0	0.2	0.02	0.02	0.2	0.02	0.0	0.3	0.0	0.05	0.2	0.0	0.0
	aquivalents per million	NI- trote (NO ₃)		00.0	0.0 0.0	0.10	23	0.0	6.2	3.4	3.3	1.6	12 0.19	55	0.0	6.3	7.1	0.29	13 0.21
	Bquive	Chio- ride (Ci)		27	53	0.02	34	503 14.18	30	0.51	55	1.30	1.21	60 1.69	164	43 1.21	76	1.80	80 2.26
	s in	Sul - fote (SO ₄)		24	24	33	50 1.04	0.03	39	800	78	47	1.60	2.35	000	41 0.85	41 0.85	39	42 0.87
	constituents	Bicor- banote (HCO ₃)	5-1	228 3.74	240 3.93	410	551	232	315	382	420 6.83	349	549	892 14.62	174	358	398	427	9.83
	Mineral co	Carbon- ote (CO ₃)	COUNTRY	000	0.00	14 0.47	0.0	0.00	0.00	00.00	0000	0.00	0000	19	0.00	0.0	0.0	00	000
	∑	Potas- Sium (K)	XOLO	1.7	2.0	0.03	1.1	8.1	2.4	0.02	0.00	2.1	0.03	0.03	5.5	0.8	0.02	0.03	0.02
		Sodium (Na)		95	85 3.70	51 2.22	3.26	312	49	47 2.04	4.31	3.20	3.09	11.4	64 2.78	2.35	63 2.74	81 3.52	101
		Magne- sium (Mg)		2.2 0.18	1.26	61 5.01	73	15	3.23	67	51	3.47	83 6.81	151 12.40	5.2	1.26	22 1.81	0.38	78
		Calcium (Ca)		14	0.80	26 1.30	41 2.04	3.59	33	28	31	25	47	57 2.84	3.99	88	101	120 5.99	50
		Ŧ		8.2	8.0	4.8	8.3	4.8	8.0	8.2	8.2	8.2	7.9	8.4	8.1	8.2	8.2	8.2	8.2
	Spacific	ance (micro- mhos at 25°C)		691	260	727	958	1900	429	637	895	71.8	1010	1600	692	713	859	891	1130
		Temp In °F		72	20	75	81	69	7	† L	47	69	20	80	82	77	17	70	70
		Sampled		8-1-61	8-11-61	7-27-61	7-27-61	8-11-61	7-28-61	7-27-61	7-27-61	7-27-61	7-27-61	7-27-61	8-11-61	8-9-61	8-3-61	8-11-61	7-21-61
	State well	number and other number		6N/3E-25Al	-25A2	TN/3E-911	-31M	7N/4E-33G1	8n/1E-9El	8N/2E-13F2	8N/3E-5P1	-501	-1901	-19%2	8N/4E-3B1	8N/1W-13G1	9N/1E-12A1	9N/2E-4L1	-10DI
		Owner and use		Hollenbeck domestic	T. Sakata domestic	Glide Ranch domestic and stock	Uhul domestic	Anderson & Selbring domestic	B. Nobel irrigation	Willowbank Corp. domestic and irrigation	B. Howatt 1rrigation	B. Howatt irrigation	W. Hamel trrigation	Wilber domestic	Rice Growers Assoc.	irrigation	Dumars irrigation	T. Barrios 1rrigation	R. Stadtmueller 1rrigation

a. Determined by addition of constituents.

b. Gravimatric determination.

c. Anniysts by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

c. Anniysts by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

d. Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), and Chromium (Cr).

-262-

	State well			Specific conduct-					Mine	rol con	Mineral constituents	ē	pd	parts per million equivolents per million	milition er mill	uo		Ţ.	Total		Hordness	
Owner and use	number and ather number	Dofe sampled	Temp in °F	ance (micro- mhas at 25° C)	£	Calcium M(Ca)	Magne - S	Sadium P (No)	Potas - Carbon- sium ofe (K) (CO ₃)	Carbon- E ofe b (CO ₃) (H	Bicar- bonate (HCO ₃)	Sul - fate (SO ₄)	Chlo- ride (CI)	Ni- trate (NO ₃)	Fluo- ride (F)	Boron S (B) (c	Silico (SiQ2) Other constituents			sod- tum Total	CaCO ₃	Analyzed by c
									P41	TOLO COL	YOLO COUNTY (cont.)	ont.)										
E. Chiles domestic & irriga- tion	9N/2E-35D1	7-27-61	70	863	2,8	33 (96:1	72 3.13	0.0	000	393	50 1.04	72 2.03	0.00	0.03	1.3	<u></u>	520		32 328	9	DWR
Woodland Farms domestic	9N/3E-7D1	8-9-61	7.1	560	8.1	3.94	0,40	1.74	1.5	0000	288	16 0.33	39	2.5	0.00	1.8	73	351		28 217	0	A.M.O
Failor domestic	9N/4E-33L1	8-11-61	92	1540	7.9	3.89	2.06	202 8.79	5.0	000	3.87	0.03	381 10.74	0.0	0.00	1.8	742	853		862 69	104	DWR
Dumars domestic	1491-WI/N6	7-28-61	10	803	0.8	3.54	2.07	66	0.0	000	338 2	0.87	2.12	6.03	0.03	0.51	29	181		34 281	-2	DWR
Chapman Bros. irrigation	-30L1	7-24-61	7.1	811	8.1	2.84	34	3.22	0.05	000	312	63	73	14	0.05	0.89	<u></u>	200		36 282	56	DWR
Scarlett & Owens irrigation	10N/1E-1C1	7-26-61	202	167	0.0	2.84	3.63	60°2	1.8	000	372	26 0.54	1.64	0.19	0.0	2.1	23	557		24 324	19	EMO
N. Corcoran domestic	-1561	8-9-61	78	168	8.3	4.44	23	3.92	0.0	000	436	71	25	4.4 0.07	0.03	1.3	<u>3</u> 2	585		38 319	0	DWR
A. Summ irrigation	-2CA	8-10-61	88	699	8.1 8	88	12	1.91	2.1 0.00	00	5.30	26 0.54	50	4.1	0.00	2.1	<u>1ť</u>	901		26 271	6	DWR
W. Lowe domestic	10N/2E-1Q1	7-26-61	17	2580	7.8	172 8.58	153	19c 8.53	3.8	0000	509 8.3 ⁴	381	470	2.7	0.00	6.9	- 1-2	1660		59 1060	643	DWR
Spreckles Sugar industrial	-1681	8-3-61	2	906	E • 8	10c 5.29	27.5	61 2.65	0.00	00.0	7.74	37 0.77	60 1.69	15	0.0	3.0	21	995		25 386	0	DWR
City of Woudland domestic	-27#1	8-3-61	74	785	8.3	3.29	1.09	1:7	2.2	00.0	275	16	53	0.05	0.0	2.0	27	362		31 219	0	EMG
Clark Davis irrigation	10N/1W-4B1	7-24-61	70	540	ю г.	31	25.63 63.63	2.00	0.0	0000	318	0.29	20 0.56	3.8	0.03	0.41	37	342		32 209	0	EMG
Ferro and Ganepa irrigation	-36K2	7-24-61	70	1460	8.1	88 1-39	59 1.36	141	2.8	00.0	8.08	122 2.54	166	5.5	0.0	5.3	21	853		140 463	59	DWR
J. Monroe irrigation	10N/2W-14A1	7-20-61	7.1	944	ري د.	30	1.94	37	0.05	0000	269	12 0.25	10	8.5	0.02	0.24	58	283		32 172	-24	DWR
J. Peterson domestic and irrigation	-1611	7-20-61	72	1200	7.9	3.44	3.81	142	1.3	000	56.6	96.0	2.54	13	0.0	2.2	73	732		46 363	0	A.W.
																		\dashv	\dashv			

o Defermined by addition of constituents

b. Growmetric determination

c. Analysis by U.S. Seodogical Survey, Quality of Water Branch' (U.S.G.S.), Pacific Chemical Consultants (PC.C.),

c. Analysis by U.S. Seodogical Survey, Quality of Water Branch of Water Resources (D.W.R.) as indicated

c. Irannial Testing Laboratory (T.L.) or State Department of Water Resources (D.W.R.) as indicated

d. Iran (Fs.), Aluminum (Al.), Arsenic (As.), Copper (Cu.), Lead (PD), Mangonese (Mn), Zinc (Zn.), reparted here as \$\overline{GO}_0 \text{ except os shown}\$

d. Iran (Fs.)

⁻²⁶³⁻

	State well			Specific conduct-					Mineral	ral cans	constituents	ے ۔	Bquival	ants pr	equivalents per million	uo		Total	Per -	Hardness		
Owner and	number and other number	Date sampled	Temp in °F	ance (micro- mhos at 25° C)	Hd.	Calcium Mc	Magne - Sc sium (Mg)	Sodium s	Potas - Cal sium (K) (C	Carbon-Bi ate bo (CO ₃) (H	Bicar- bonate (HCO ₃)	Sul - fate (SO ₄)	Ci)	rote (NO ₃)	Fluo-B ride (F)	Boron S (B) (t)	Sitico Other constituents	mdd ui spilos penios	sod- ium	Tatal Ppm		Anaiyzed by c
									×	YOLO COUNTY		(cont.)										
Howard	10N/2W-17J1	7-20-61	74	701	7.9	0.70	8.8	139 1	1.7	0.00	307 3	35	63	2.5	0.03	0.76	위	944	8	77	0	DWR
Myrtle Brothers domestic	-1881	7-20-61	82	1540	8.0 7	3.59	31.	231 0.01	0.0	0.00	7.33	63 1.31	254	15	0.05	1.0	<u></u>	938	39	309	0	DWR
W. McClary domestic and irrigation	-1872	7-20-61	73	1650	7.9	143	52 1 4.25 2	148	1.4	00.00	7 05.50	205	255	0.16	\$0.05	1.2	34	1050	36	570	24,0	DWR
C. Kuteuris domestic	-23A1	7-20-61	80	1485	8.0	39 5	22 1	1.78	0.03	000	29,4	12 0.25	10 0.28	7.6	0.03	0.56	<u> </u>	306	32	187	0	DWR
V. White domestic	-181	7-20-61	80	1390	7.5	105	50 1	5.92	0.0	0.00	4.58 1 7.51 3	3.73	148	6.3	0.03	1.7	- 	873	39	69т	93	DWR
D. Schlissor domestic	11N/1E-4R	8-3-61	78	931	8.3	1.35	3.84	5.52	7.00	0.00	8.44	5 ⁴ 1.12	1.24	0.01	0.03	3.2	31	589	51	560	0	DWR
J. Slaven irrigation	-17M	8-9-61	72	906 .	8.2	3.69	6.7	35	0.03	0.00	326 8	8.2	10 0.28	3.6	0.00	0.67	35	334	56	212	0	DWR
D. Miller domestic	11N/2E-22A1	7-26-61	73	1760	8.1	54 2.69	80	238	2.2	0.00	620 10.16	3.21	208 5.86	16	0.0	6.9	36	1100	53	794	0	DWR
W. Kirmelshue and Son irrigation	-320	8-9-61	70	630	8.2	81 4.04	9.0	2.22	1.7	0,00	325 2	21.0	1.18	3.0	0.00	1.9	<u>₹</u>	396	32	239	0	DWR
O. Durst domestic	11N/2W-35J1	7-20-61	73	52 ⁴	8.1	43	2.18	36	0.05	0.00	288 1	0.31	12 0.34	26.42	0.03	0.21	27	329	92	516	0	DWR
R. Bloom domestic and irrigation	11N/3W-9Q1	8-2-61	78	ή89	2.5	58 2.89	2.34	1.87	0.0	0.00	3.87	μ ₀ 0.83	2.17	7.2	0.0	0.38	27	398	92	592	8	DWR
H. Everett 1rrigation	-10E2	7-20-61	73	892	8.2	26	3.6	176 7.66	1.0	0000	$\frac{327}{5.36} \mid \frac{8}{1}$	86 1.79	80 2.26	1.1	0.05	3.4	31	570	85	90	0	DWR
Brooks irrigation	-26M3	7-20-61	22	462	7.5	3.69	38	47	0.02	00.00	377	35	65	4.5	0.0	1.0	30	L177	23	342	88	DWR
Sauthern Pacific R.R.	12N/1W-15N2	8-3-61	987	515	8.2	86	8.6	17	0.02	0.00	274 5	5.1	24 0.68	26.0	0.0	0.12	<u>8</u>	332	13	250	52	DWR
M. Dobkins domestic	12N/2W-2A1	8-3-61	74	763	1.	2.79 2.79	3.04	57 2.48	0.0	00.00	369	5.3	67 1.89	14	0.00	0.67	53	844	30	292	0	DWR
																	_					

Defermined by addition of constituente.
 Defermined by addition of constituente.
 Defermined by additional constraints of the constituent of the co

	Pez J																
	Analyzed by c			OWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
dness	ŏ L	m dd		0	0	0	0	0	0	-	0	0	0	0	5	0	0
		Edd		73	52	39	94	25	182	491	102	92	92	62	51	84	82
_ å	S Sod-	E		8	36	39	35	92	90	35	8	35	2	79	23	27	53
Togo.	solids beylos	4		504	119	100	106	157	318	820	196	177	196	325	168	132	159
	Silico (SiO.) Other constituents			As 0.01 Fe 0.12	Al 0.01 Pb 0.02 Mn 1.0 Fe 6.5 Zn 0.02	Fe 5.8 Mn 0.61 Zn 0.02 d	Al 0.02 Fe 3.1 Mn 0.67 Zn 0.03	Al 0.02 As 0.02 Cu 0.01 Fe 1.6 Zn 1.1	As 0.03 Cu 0.01 Fe 3.2 Pb 0.01 Mn 0.42 Zn 0.01	Al 0.02 As 0.03 Fe 0.43 Mn 0.25 Zn 0.01							
	Silico (SiO.)	20.02		92	웨	웨	웨	98	25	ઝા	<u>\$</u>	8	73	881	ri R	34	4
Tion	Boron (B)			1.5	0.08	0.10	0.07	0.12	0.27	0.41	0.05	9.08	90.0	0.17	0.04	0.04	0.03
millio er mi	Fluo-	(F)		0.00	0.2	0.0	0.00	0.0	0.0	0.0	0.2	0.2	0.03	0.3	0.03	0.0	0.0
ports per million aquivolents per million	Ní- trote	(NO ₃)		0.00	1.4	0.7	1.2	0.0	4.6 0.07	8.9	0.0	7.6	5.4	2.1	0.16	0.0	0.00
poving	Chio-	(CI)		2.76	7.3 0.20	6.8	6.5	0.28	24 0.68	180 5.08	6.0	0.28	0.23	15	8.9	5.3	12 0.34
nts in	Sui - fote	- 1	È	28	8.4	8.6	8.6	0.21	0.02	6.1	2.1	0.03	1.8	2.10	3.3	0.05	0.0
nstitus	Bicor~ bonote	(HCO ₃)	NO COUN	335 5.49	79	58	64	105	267	55 ⁴	2.79	86	106	75	56 0.92	111	2.00
Mineral constituents	Corbon	(00)	SACRAMENTO COUNTY	00.00	0.00	0.00	0.00	000	000	118	0.00	00.00	5 0.17	0.00	00.00	0.00	00.0
Æ	Potos-	3	SAS	1.6	2.0	1.6	1.9	0.0	4.0	3.0	1.4	1.7	1.5	5.1	2.8 0.07	2.1	2.1
	EnipoS (oN)			160	14	0.52	12 0.52	39	37	123 5.35	21 0.91	15	16	57	7.4	0.33	0.70
	- aubom	(Mg)		9.2	6.0	5.1	6.1	3.0	22 1.79	78	0.99	5.6	9.2 0.76	7.8	5.7	0.88	9.6
	Colcium			14 0.70	0.55	7.3	8.5	5.0	37	3.39	21	14	16	0.60	0.55	16 0.80	0.85
	王			8.1	7.8	1°t	7.8	7.8	7.8	8.5	8.1	8.0	9.6	7.8	7.7	8.0	8.1
Specific conduct-	once (micro- mhos	ot 25° C)		198	170	138	148	219	1487	1320	282	188	229	1,000	152	194	237
	Temp In °F			88	83	99	999		99				999	55	20	59	19
	sompled			8-31-61	8-31-61	9-13-61	8-31-61	9-13-61	8-31-61	7-12-61	10-3-61	8-24-61	9-12-61	7-13-61	7-13-61	8-17-61	8-30-61
Stote well	other number			4N/3E-14F1	-21G	-22L1	-2212	-520	-2361	4N/4Ε-18J	5N/5E-3F1	5N/TE-TE2	6N/6E-29J1	6N/7E-23A1	6N/8E-15J1	7N/4E-4R1	7N/5E-7C1
	Owner and			Reclamation District 3 domestic	I. Craven spring	Wilmoss Land Co. spring	I. Craven spring	G. Rosellini domestic	W. Langheart drainage	J. Borba irrigation	H. Alberg irrigation	H. Douglas irrigation and domestic	Hart Ranch irrigation	R. Whittemore irrigation	F. Ovesto domestic	M. Perry	Department of Public Works.

Determined by addition of constituents.
 Growmestic determination.
 Analysis by U.S. Geological Survey, Quality of Water Broach (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Ferminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Atuminum (AI), Areanic (As), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reparted here as 600 except as shown

	9			Spacific					Mine	Mineral constituents		ة. 1 ا	parts per million equivalents per million	parts per million valents per mill	lion			Totot		Hardy	2	
Owner and use	other number	Date	Temp in °F	conduct- once (micro- mhas	표	Calcium (Co)	Magne - Sc sium (Mg)	Sodium S (Na)	Potas-Ca sium (K) ((Carbon- Bic ate bon (CO ₃) (HC	Bicar- bonote fa (HCO ₃)	Sul - Ch fate (SO ₄)	Chia- ride tre (CI) (NO	Ni- trate (NO ₃) (F)	Boron (B)		Silica Other canstituents	solved solids n ppm	Sod - Fer	as CoCO ₃ Tatal N.C.		Analyzed by c
									01	SACRAMENTO COUNTY (cont.)	O COUNT	Y (cont.	7									
H. Sutter irrigation	7N/5E-32J2	9-12-61	88	307	8.2	2 ⁴ 1.20	1.18	20 1	0.05	0.00	174 2.85 0.04		10 0.28 0.0	5.0	0.0	128 129		222	92	119	0	DWR
W. Mouser domestic and irrigation	7N/6E-22Rl	9-12-61	99	223	8.5	0.80	0.82	14 0.61	1.5	0.10	115 2.6 1.88 0.05		6.5	2.2 0.04 0.04	0.03	0.03 79		192	27	81	0	DWR
G. Rothfelden irrigation	7N/7E-27B1	8-24-61		300	8	25	1.27	13 0.56	1.4	0.00	2.49 0.0	0.00	0.48	0.13	0.02	<u>8</u>		217	18	126	н	DWR
Land Park Water Maintenance District municipal	8N/4E-26D1	8-10-61	69	352	8.3	32	1.36	13 0.56 0.56	3.4	0.00	2.79 4.	0.08	23 0.65	0.04	0.2	67 60.0		227	16	148	0	DWR
Department of Public Works domestic	8N/5E-15Hl	9-12-61	99	397	ω, ω,	2.24	1.02	15 0.65	0.12	0.00	3.03	3.8 0.08 	010	0.01	0.00	0.03 53		257	16	163	11	DWR
F. Uneda domestic and irrigation	8N/6E-21N1	9-12-61	19	157	7.9	15 0.75	4.5	9.2	1.6	00.00	80 1.31 0.	0.03	μ ₂ 6 0.13 0.13	0000	0.0	70.0		143	56	95	0	DWR
E. Pilliken domestic	8N/8E-29K1	8-25-61		197	7.7	13	5.2	15 1	1.0	000	⁴¹ / _{0.67} 3 ⁴ / _{0.6}	34 1/0	1 th 0.	0.01	0.03	9.08		167	37	54	50	DWR
Hoffart irrigation	9N/4E-1R1	8-11-61	8	844	0.8	31 1.55	22 1.85	25 1.09	1.9	0.00	193 3.16 0.	11 0.23 1.	37 3	3.6	0.0 0.0	0.11		589	75	170	12	DWR
K. Kimura irrigation	-8L1	8-2-61	62	920	8.5	22	50	97	2.3	8 0.27	252 4,13 2.	108 10	2.90	0.13	0.00	0,40		1995	77 77	592	43	DWR
L. Swalley irrigation	-27F1	9-7-61	61	785	φ.	2.30	1.58	3.57	4.1 0.10	0.00	3.54 0.	0.0	143 0 1-03 0	0.6	0.00	0.41 45		944	747	194	17	DWR
Citizens Utility Company domestic	9N/5E-21E1	9-13-61	72	382	0	1.10	13 1.04	33	3.1 0.08	00.0	2.20 0.	0.10	1.32	00.0	0.00	0.26 76		265	39	107	0	DWR
Air Products Inc. domestic and industrial	9N/7E-21D1	8-24-61		328	7.2	31 , 1.55	13	13 0.56	0.12	0.00	164 12 2.69 0.	0.25	0.28	0.04	0.0	0.03 65		232	17	130	0	DWR
F. E. Olson domestic	-26нл	8-24-61		971	9.9	10 0.50	3.6	7.4	0.02	00.0	μ ₁ 5.	5.6	5.4 0	0.16	0.0	0.02		125	28	07	9	DWR
Aerojet General Corp. industrial	-28K1	8-16-61		241	7.1	20	9.7	170 0.01	0.06	0.00	135 1. 2.21 0.	0.03	5.7 1	0.02 0	0.0	0.02		194	25	8	0	DWR
a Determined by addition of constituents	of constituents.																					

Defermined by addition of constituents.
 Grovimatric determination.
 Analysis by U.S. Geloglacal Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Cansultants (P.C.C.), Ferminal Testing Labbralary (T.T.L.) or Slate Department of Water Resources (D.W.R.) as indicated.
 Iran (Fe), Aluminum (AI), Arsenic (As), Capper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reparted here as 800 except as shawn.

	Analyzed by c		æ	ps.	ps.	æ		Æ	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
		·	DWR	DWR	DWR	DWR		DWR			21 Di	35 Di		62 Dt			
rdness	as CaCO ₃		m 	ω	77	0		0	0 2	0			0	398	0 294	344	335 0
	sod- sod- ium Total		7 82	188	32 134	24 129		73 112	62 345	29 643	31 265	30 294	31 207	35	21 46	30 30 30 30 30 30 30 30 30 30 30 30 30 3	25
2	dis- solved co solids so in ppm in		3 17	я п					1010 6								
2	-		153	548	257	546		76 17	10	टा6	1,55	887	373	562	620	11 56	627
	Silica (SiO ₂) Other constituents																
			<u>a</u>	123	잃	인		33	577	81	<u>ه</u>	92	22	977	1 35	933	8
Hion	Boran (B)		0.04	0.02	0.12	0.02		1.2	1.3	0.81	0.24	3 0.46	0.20	0.36	0.81	0.56	0.59
r millic	Fluo- ride (F)		0.0	0.00	0.2	0.01		0.02	1.6	0.02	0.03	0.5	0.03	0.3	0.3	0.0	0.0
parts per millian equivalents per million	rote (NO ₃)		7.0	0.0	3.1	0.00		7.2	0.5	2.7	13 0.21	15	3.9	7.7	9.0	6.4	0.16
o d	Chia- ride (CI)	ont.)	5.0	16	1,16	0.82		2.00	236	0.31	38	45	16	88 2.43	27 0.76	27 0.76	16
.E	Sul – fate (SO ₄)	CCUNTY (cont.)	6.6	7.1	6.4	0.04	刮	31	135 2.81	19	73	78	1,8 1.00	52 1.08	29	35 0.73	36
Mineral constituents	Bicar- banote (HCO ₃)	SINTO CO	96	3.60	160	155	SOLANO COUNTY	352	510	1070	298	316	279	390	10.06	434	7.21
ard co	Carban- ate (CO ₃)	SACRAMENTO	0.00	00.00	0.0	0.00	SOLL	0.0	0.00	0.0	0.00	000	00	10	6 0.20	0.00	000
Æ	Patas-O sium (K)		0.02	0.02	1.4	1.5		1.7	0.8	1.7	0.6	0.6	3.0	0.6	0.02	1.2	0.03
	Sadium (No)		8.0	11 0.48	30	19 0.83		143	261 11.35	123 5.35	56	57 2.48	1.91	2.52	2.48	1.78	1.91
	Magne- sium (Mg)		10	23	1.18	15		19	5.24	121 9.96	2,00	27	21 1.70	5.11	53	60	27.25
	Calcium (Ca)		16	38	30	1.35		1 ¹ 4 0.70	33	2.89	3.29	7.3	49	2.84	100	39	89 1, 44
	Ŧ		6.8	6.9	7.6	8.0		8.3	8.3	7.8	7.7	8.0	7.8	8.5	4.00	8.1	8.2
Specific			201	1,03	1,10	344		830	1720	1460	747	797	574	950	066	777	755
	Temp nºF				88	72		55	52	90	90	57	55			19	
	Date		8-24-61	8-24-61	9-12-61	8-11-61		5-19-61	5-19-61	5-19-61	5-19-61	5-19-61	5-22-61	6-26-61	6-26-61	5-21-61	6-26-61
atotic series	number and other number		9N/7E-32B1	-3321	10N/4E-13P1	10N/6E-27L		4N/3E-31F2	SN/1E-1N1	5N/2E-25K	6N/1E-19	-1912	6N/1W-23L	6N/2E-20112	7N/2E-2D1	-34c2	8N/1E-26F1
	Owner and use		J. Rodgers domestic	B. Petrucci industrial and domestic	irrigation	H. Sorensen irrigation and domestic		City of Rio Vista	stock	California Packing Corporation domestic	City of Vacaville municipal	Bimira Fire District municipal	City of Vacaville municipal and domestic	Priddy irrigation	Bulkley irrigation	T. Rose irrigation	R. Schulze

Determined by addition of constituents.
 Growinstric determination.
 Andysis b U.S. Sodiogled Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Departmen of Water Resources (D.W.R.) as indicated.
 d. Iran (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as One shown

Open and Public and Public and Public and Public and Angelia and Public and Angelia and Public and Angelia and Public and Angelia and Angel				Ì		-							2000	llim sou							l	
Party cont. 10, 10, 10, 10, 10, 10, 10, 10, 10, 10,		State well		0, 0	Specific sonduct-				Miner			be	uivalents	per m	Illian			Tatal	Pag	Hardn		
	Owner and use	number and ather number	Date		ance (mlcra- mhas it 25° C)		(Ca)		ium a (K)								Other canstituents	solved solved solids in ppm	sod- num	0 1		Analyzed by c
opposition of the part of the p								SAR	JOAQUI	CCUNTY												
Part	in Joaquin County Righway Department	ln/4E-3N1	7-26-61.					 									-	947		212	0	DWA
This where the court of the cou	California Water Service municipal	IN/CE-4D1	7-25-61	7.1		ci		 								61		377	84	5	0	OWR
	breboard Products Company industrial	-10P1	7-17-61					 										1540		113	385	DWR
Figure 1, 19/78-1311 S-2-61 G-5 S-5	alifornia Water Service municipal	-1483	7-26-61	72				 								\$		307	82	39	0	DWR
	industrial	1N/7E-11J1	8-2-61	:3														199	27	68	0	DWR
	R. Duarte irrigation	-12C1	8-8-61	99				 										223		211	0	DWR
Fig. 18, No.	Slang irrigation	1N/9E-18C1	7-26-61	3									- 1					174	88	63	0	DWR
	alifornia Water Service	2N/6E-27LI	7-27-61	99							100					₹ <u></u>		216		108	0	DWR
Debendet if the parameter if the paramet	inden Water Service domes.ic	2N/8E-15L1	7-26-61	67				 										178	02	82	0	DWR
Laftery HW/NE-14c1 HW/	. DeBenedet:i irrigation and domestic	2N/9E-7G1	7-26-61	19	258	C)												196	16	110	0	DWR
Callagher with Face of the MySe-Bill (66 M830) 7.8 E37 E383 M93 E3.7 E3.7 E3.7 E3.7 E3.7 E3.7 E3.7 E3.	. Laffery domestic	4N/4E-14C1	8-5-61	80	1766	8.1										웨		695	88	95	0	OWR
and stock hW/6E-11P1 8-1-01 t3 228 6.2 19 6.39 6.73 6.00 1.35 6.10 6.00 1.35 6.10 6.00 1.45 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	. Gallagher domestic	4N/5E-8111	8-5-61		14830													2620			.325	DWR
$ \frac{100}{100} = \frac{100}{100} =$	ahant Ranch domestic and stock	4N/6E-11P1	8-1-01	æ	228	6.2		 										185	₹	48	0	DWR
11	. Pritchard domectic and irrigation	1 N/TE-23B2	8-1-01	8	515			 										340	27	192	17	DWR
	. Sins irrigation	5n/8E-3111	8-8-01	69	176			 										177	35	57	0	DWR

Destinition of yourselvance or sometimes.

6. Analysis by U.S. Geofacial Strategy Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

6. Analysis by U.S. Geofacial Strategy Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

6. Iran (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), and Chramium (Cr).

Owner and units and uni	Minaral constituents in equivolents per million	ě	
15/18-14/M	Bicor Sui – Chio – Irole Piuo – Baran Silico Other constituents (HCO $_3$) (SQ $_3$) (C1) (NO $_3$) (F) (F) (SQ $_3$)	dis- solived s	Anolyzed by c
15/B-14M1 7-26-61 66 1420 8.4 28 16 273 11.8 1.0 0.077	N COUNTY (cont.)		
15/5E-10H1 7-26-61 71 1440 7.7 6.74 3.65 4.45 0.07 0.00 15/5E-10H1 7-26-61 71 1440 7.7 6.44 3.65 4.45 0.07 0.00 15/6E-4A1 7-26-61 71 1790 8.4 163 3.60 5.77 0.01 0.00 15/6E-4A1 7-26-61 76 604 8.1 15/9E-8H1 8-4-61 76 604 8.1 15/9E 3.34 3.03 3.77 0.03 0.00 15/9E-1P1 7-27-61 76 604 8.1 15/9E 3.34 3.03 3.77 0.03 0.00 15/9E-22Q1 7-27-61 71 1290 8.0 677 3.34 3.03 5.77 0.03 0.00 15/9E-22Q1 7-27-61 66 1750 8.1 15/9E 3.34 3.03 14/3 0.03 0.00 15/9E-2Q1 7-27-61 66 1750 8.1 15/9E 3.34 14.25 0.03 0.00 15/9E-2Q1 7-27-61 66 1750 8.1 15/9E 3.34 14.25 0.03 0.00 0.00 15/9E-2Q1 7-27-61 72 700 8.2 12/9E 3.34 14.25 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	916 81 134 0	DWR
15/9E-4A1 7-26-61 1790 8.4 163 3.60 5.75 0.07 0.07 0.07 15/9E-811 8-4-61 69 212 8.1 15/9E 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.0	$\frac{113}{2 \cdot 35} \frac{302}{8 \cdot 52} \frac{1.2}{0.02} \frac{0.2}{0.01} \frac{0.15}{0.01} \frac{43}{4}$	852 31 504 315	OWR
15/9E-8	$\frac{17}{0.35}$ $\frac{497}{14.02}$ $\frac{0.9}{0.01}$ $\frac{0.4}{0.02}$ $\frac{0.16}{0.02}$ $\frac{18}{19}$	950 34 557 424	DWR
25/46-1P1	2.0 12 7.7 0.3 0.13 80 0.3 0.3 0.13 80	192 33 68 0	DWR
28/58-22Q1	128 50 5.3 0.2 0.61 24 2.65 1.41 0.08 0.01	384 64 104 19	DWR
28/5E-2EQ1	288 136 10 0.1 1.3 25 6.00 3.381 0.16 0.00 1.3 25	777 4,9 319 192	DWR
-2901 7-27-61 66 1920 7.7 132 7.95 1774 0.05 0.00 0.00 0.00 0.00 0.00 0.00 0.0	175 222 24 0.39 0.01 1.3 32 32 3.55 6.26 0.39 0.01	794 48 327 182	DWR
28/6E-2014	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	1060 42 534 275	DWR
25/68-2014 8-7-61 72 700 8.2 27 16 93 2.2 0.00 0.00 0.00 0.00 0.00 0.00 0.00	$\frac{192}{1.00}$ $\frac{331}{9.33}$ $\frac{69}{1.11}$ $\frac{0.2}{0.01}$ $\frac{1.6}{1.6}$ $\frac{16}{1.6}$	1210 39 629 327	DWR
7-31-61 72 440 8.2 26 10 38 3.0 0.08 0.00 1 1.65 0.08 0.00 1 1.27 0.00 1 1.65 0.00 0.00 1 1.27 0.00 1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	456 60 132 9	DWR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{27}{0.55} \frac{15}{0.42} \frac{2.2}{0.01} \frac{0.2}{0.01} \frac{0.10}{0.01} \frac{51}{2}$	266 43 106 0	DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	152 92 92 274 547 0.07 0.08 28 28 24 2.74 0.07 0.08 28 28	539 38 247 119	OWR
8-7-61 77 1150 8.0 76 42 108 2.6 0 0.07 0.00	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	686 35 360 200	OWR
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	791 39 365 233	DWR
Puseell Park Develop3581 8-7-61 76 1690 7.9 105 66 186 3.3 0.00 1.66 ment Company domestic and the settle a	166 686 65 35 0.56 0.01 30 30 30 30 30 30 30 30 30 30 30 30 30	1260 43 536 400	OWR

a Defermination.

D. Growmetric determination.

C. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

C. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Terminal Esting Labbratory (T.L.L.) or State Department of Water Resources (D.W.R.), as indicated.

G. Iron (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as 600 except as 800mm.

OUALITY OF GROUND WATERS IN CALIFORNIA

ANALYSES OF GROUND WATER

1961

	Anolyzed by c		DWR	DWR	
Hardness	N.C.		35	36	
			8,14	192	
å	- Sod		13	147	
Totol	salved solved in ppm		1100	412	
	Silica Other constituents				
	Silica (SiO ₂		141	[56	
Tion	Boron (B)		1.4	0.62	
millio Ser mi	Fluo- ride (F)		0.02	0.0	
ents per	rrate (NO ₃)		0.27	0.18	
ports per million equivalents per million	Chlo- ride (CI)	(cont.)	322	34 0.96	
ıts in	Sul - fote: (SO ₄)	SAN JDAQUIN COUNTY (203	11.7 2.44	
Mineral canstituents	Bicar- banate (HCO ₃)	AQUIN	305	3.11	
eral co	Carbon- ate (CO ₃)	SAN J	00.0	000	
Min	Potas-(Sium (K)		2.6	0.05	
	Sodium (No)		220 9.57	62 2.70	
	Mogne- sium (Mg)		55	15	
	Colcium (Ca)		8.9	52 2.59	
	표		8.0	8.2	
Specific conduct-	ance (micro- mhas at 25°C)		1800	869	
	Temp in °F		99	72	
	Dote sompled		8-7-61	8-7-61	
State well	other number		3S/6E-7F1	-2201	
	Owner and use		Banta-Carbons I. D. irrigation	J. Hamilton irrigation	

o Defermined by addition of constituents.

b. Grovimetric determination:
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
d. Iramial Testing Laboratory (T.T.L.) or State Deportment of Water Resources (D.W.R.) as indicated.
d. Iram (Fe), Aluminum (Al), Arsenic (As), Capper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as <u>600</u>except as shown

-270-

Salum Salu	9				0 +				Σ	nerol	Mineral constituents	ts in	Ainba	arts per	parts per millian equivolents per millian	ligh		Total dis-	ď	Hordness os CoCO		3
1.00 1.00	temp ance pH Calcium Magne-sid (micro-mhos sum mhos of 25° C)	I emp once DH Calcium Magne- n of Calcium mhas (Ca) (Mg)	ance (micro-mhos (Ca) (Mg)	pH Calcium Magne-	Calcium Magna- (Ca) (Mg)	Magne- srum (Mg)		Sadium (No)		Carbon- ate (CO ₃)	Bicar- banate (HCO ₃)	L	CE)	rote (NO ₃)			SiO ₂) Other constituents		Pog.	Total		Anglyzed by c
1.0	W380W							ان 	PANISLAU	S COUNT	됩											
14	1N/10E-17G 9-8-61 264 7.9 22 10 0.86	264 7.9 22	7.9 22 1.10	7.9 22 1.10	22 1.10				0.09	0.0	122 2.00	5.8	0.39	0.12	0.0	0.14		192	777	98	0	DWR
17. 1.44 0.00 1.43 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0.00 0.14 0	15/10E-33R1 8-30-61 222 7.6 16 8 8	222 7.6 16	7.6 16	7.6 16	16 03°0		200		3.4	000	1.46	0.23	0.34	0.10	0.3	0.11	7.5	194	28	7.4	7	DWR
6.4 2.8 0.0 13.4 0.0 <td>15/11E-36E1 8-16-61 303 8.2 27 17.35</td> <td>303 8.2 27</td> <td>8.2 27</td> <td>8.2 27</td> <td>27</td> <td></td> <td>0.99</td> <td></td> <td>1.4</td> <td>000</td> <td>2.34</td> <td>18 0.37</td> <td>9.8</td> <td>0.03</td> <td>0.00</td> <td>0.0</td> <td>99</td> <td>223</td> <td>77</td> <td>117</td> <td>0</td> <td>DWR</td>	15/11E-36E1 8-16-61 303 8.2 27 17.35	303 8.2 27	8.2 27	8.2 27	27		0.99		1.4	000	2.34	18 0.37	9.8	0.03	0.00	0.0	99	223	77	117	0	DWR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	25/105-1001 8-30-61 138 7.5 12 0.60	138 7.5 12	7.5 12 0.60	7.5 12 0.60	0.60		5.6		2.8	000	1.23	0.11	1.6	2.9	0.0	0.05	9	134	20	53	0	DWR
20. 2.5 3. 134, 6.0 6.0 0.0 1.3 0.0 1.2 0.0 1.3 1.8 1.3 1.8 6.0 0.06 0.06 0.10 0.12 0.10 0.17 2. 0.17 2. 0.17 2. 0.17 2. 0.17 2. 0.17 0.17 2. 0.17 0.17 0.17 2. 0.17 0.18 0.18 0.18 0.18 0.18 0.18 0.18 0.19 0.19 0.11 0.19 0.19 0.11 0.19 0.19 0.11 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19 0.19<	-27G1 9-16-61 65 - <u>5.6</u> 0.28	- 69	1	1			2.9		0.6		34 0.56	3.0	0.05	0.00	0.0	0.0	TI TI	777	77	56	0	DWR
69 3.00 2.44 6.06 0.00 2.77 6.06 16 0.05 13 0.51 0.11 0.05 2.22 0.00 0.12 0.05 2.22 0.00 0.12 0.00 2.22 0.00 0.12 0.00 2.22 0.00 2.13 0.00 0.12 0.00 0.12 0.00 2.13 0.00 0.12 0.00 0.13 0.00 0.14 0.00	-36N1 8-16-61 352 8.3 <u>28</u> 1.90	352 8.3	۳ ش	۳ ش		12	9.1		2.5	0.10	134	6.0	0.85	0.13	0.0	0.0	<u>77</u>	226	277	133	18	DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	35/7E-24J1 7-28-61 68 672 7.7 <u>54,</u>	68 672 7.7	672 7.7	7.7		65	1.5		0.09		377_6.18	16 0.33	18 0.51	0.21	0.00	0.17	25	759	4.1	211	0	DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	-3301 8-2-61 1,040 7.9 48 2.40	1,040 7.9	7.9	7.9		0	1.90		0.05		3.52	19	213	0.03	0.00	0.2	12	267	57	215	39	DWR
$ \frac{2.4}{1.04}, \frac{3.6}{0.09} \stackrel{\bigcirc}{0.00} \frac{229}{3.75}, \frac{2.7}{0.20} \frac{9.7}{0.28}, \frac{18}{0.29}, \frac{0.1}{0.00} \frac{0.1}{0.00} \stackrel{\bigcirc}{0.00} \stackrel{\bigcirc}{0.1} \stackrel{0.1}{0.1} \stackrel{0.1}{0.1} \stackrel{0.1}{0.1} \stackrel{0.1}{0.1} \stackrel{0.1}{0.1} 0.$	35/8E-6N1 7-28-61 66 64.8 7.7 62 3.09	66 64.8 7.7	64.8 7.7	7.7		18	1.61		3.8	_	353	0.25	24 0.68	0.16	0.0	0.14	22	412	32	235	0	DWR
$ \frac{33}{1.44} \frac{1.9}{0.05} \frac{0}{0.00} \frac{272}{4.51} \frac{13}{0.27} \frac{16}{0.45} \frac{25}{0.55} \frac{0.1}{0.05} \frac{0.10}{0.05} \frac{22}{0.00} \frac{2.10}{0.10} \frac{2.1}{2.24} 0 \frac{0.10}{0.05} \frac{2.1}{0.00} \frac{2.1}{0.00} \frac{2.10}{0.00} \frac{2.1}{0.00} 2$	-901 7-28-61 67 437 7.9 4 <u>5</u> 2.214	67 437 7.9	437 7.9	7.9		772	1.20		3.6		3.75	9.7	9.8	18 0.29	0.0	0.10	22	293	23	172	0	DWR
$\frac{31}{1.35} \frac{2.6}{0.07} \frac{9}{0.00} \frac{253}{4.15} \frac{20}{0.42} \frac{16}{0.45} \frac{32}{0.52} \frac{0.1}{0.00} \frac{9.12}{0.19} \frac{52}{5} \frac{354}{0.00} \frac{24}{20} \frac{3}{3}$	-20J1 7-28-61 66 560 7.8 <u>65</u> 3.2 <u>4</u>	66 560 7.8	560 7.8	7.8		57	1.21		0.05		275	0.27	16	35	0.00	0.10	23	367	77	224	0	DWR
	-23E1 7-28-61 67 533 8.0 <u>63</u>	67 533 8.0 63	533 8.0 63	8.0 63	3.14		13		0.07		253	20	16	0.52	0.0	0.13	252	354	77	210	m	DWR

Determined by addition of constituents

B. Growmairic determination

C. Analysis by U.S. Geological Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Terminal Tissing Laboratory (T.L.) or State Department of Water Resources (U.W.R.) os indicated.

G. Iron (Fis.), Aluminum (A.I.), Arsanic (As), Lopper (Q.I.), Lead (P.D.), Managinese (M.N.), Zinc (Zn),

-271-

	77														
	Anolyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
26.55	os.CaCO ₃	N.C.		17	0	~	~	958	78	161	388	272	225	0	13
Hard	05.Cc	Tatai		183	257	36	46	1020	237	341	643	167	194	206	170
	sod-	Ē		25	34	16	31	73	77	17	77	77	777	78	947
Tatal	solvad			327	587	9	227	2,150	504	269	1,400	980	766	124	398
		(SiO ₂) Other constituents													
				23	31	71	77.	임	23	28	87	27	67	থ	12
uoil	Boron	(8)		0.09	0.12	0.0	0.08	7.0	9.0	2.0	4.1	2.5	2.7	0.23	0.1
mullion er mil	Ftuo-	ĒŒ.		0.2	0.0	0.0	0.2	0.0	0.01	0.0	0.0	0.0	0.0	0.3	0.01
ports per million equivalents per million	ij	(NO ₃)		79.0	30	0.12	0.13	0.00	0.27	14	29 0.47	0.35	0.39	0.18	18 0.29
Panive	CHO -	\$(j)		16	30	3.2	0.68	1280 36.11	52	3.89	376	286 8.06	268 7.56	3.02	2.62
t c	Sul -	(SQ ₄)		20	28	0.06	7.4	80.0	3.08	3.83	360	3.77	195	8.2	0,25 0,25
Mineral constituents		(HCO ₃)	•	3.31	6.11	99.0	117	1.23	3.18	3.60	311 5.10	267 4.83	295	277	181 2.97
neral c	Corbon	(CO ₃)	ATM/TPV	00	000	9	000	.00	000	000	0.00	00.00	00.00	00.00	0.17
ž	Potas-	Sium (K)	VENANTE: AHE CONTINUE	2.6	0.07	1.3	3.5	25	1.7	0.03	0.02	1.4	1.4	0.08	0.07
	Codium	(NO)	PAMARO	28	63	3.3	21 0.91	360	3.39	110	246	7.09	172	3.83	2.96
	- Magne -	(Mg)		16	23	2.9	11 0.94	3.79	13	38	78	3.92	3.74	$\frac{14}{1.18}$	1.20
	E La	(00)		2.30	3.24	9.6	20	332	3.14	3.64	6.39	5.89	5.59	2.94	2.28
	표			7.6	7.7	7.7	7.8	7.6	8.0	7.8	7.7	7.7	7.6	7.8	7*8
Specific	ance falcro-	mhos of 25°C)		887	477	77	292	4,170	803	1,140	2,290	1,670	1,680	809	6779
	Temp			89	20						99	29	99	89	999
	Oate			7-28-61	7-28-61	8-30-61	8-30-61	8-1-61	8-2-61	7-28-61	7-28-61	7-28-61	7-28-61	7-28-61	8-5-61
Stote well	number and			3S/9E-6R1	-16F1	3S/10E-13A1	35/11E-901	35/12 E- 26F1	4S/6E-15E1	45/7E-8L1	-1651	-17K1	-1841	45/8E-5L1	-24.81
	Owner ond	951		Modesto Irrigation District #54	Irrigation Modesto Irrigation District #70 irrigation and drainage	Atlas Olympia Company irrlgation	V. A. Rodden Ranch irrigation	H. E. Ketcham irrigation	J. J. Raspo irrigation	Jones irrigation	West Stanislaus Irrigation District drainage	West Stanislaus Irrigation District irrigation	West Stanislaus Irrigation District irrigation	Modesto Irrigation District #40 irrigation	Turlock Irrigation District #73 irrigation and drainage

Determined by oddition of constituents.
 Groymeric distantionation.
 Groymeric distantionation.
 Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.I.L.) or State Department of Water Resources (W.W.R.) as indicated.
 Groyper(Cu). Laad Pbb). Management Mil. Arsenic Les).

	P													
	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
l se ss	os CaCO 3 Fotot N.C. ppm ppm		18	0	St	0	0	27	0	0	253	275	0	277
HOTO	os C Totot ppm		168	155	139	151	ਡੋਂ ਹ	130	69	159	541	750	206	530
	Sod		2	17	34	52	51	8	34	32	22	97	97	38
Totoi	dis- solved solids in ppm		798	349	285	398	564	337	182	312	752	925	874	996
	Silica (SiO ₂) Other constituents ^d													
			4	52	77	21	83 83	Zi	59	61	23	읬	25	32
Lion	Boron (B)		0.3	0.10	0.0	0.10	0.3	0.0	0.0	0.0	0.68	0.64	0.1	0 8
nellia per mi	Fluo- ride (F)		0.01	0.0	0.0	0.01	0.0	0.0	0.02	0.01	0.0	0.2	0.03	0.04
ports per millian equivalents per million	Ni- frate (NO ₃)		90.0	28	0.61	0.34	0.00	0.02	0.11	0.34	0.24	3.7	07.0	16 0.26
Adnive	Chlo- ride (CI)		305	1.24	23	1.24	64 1.81	3.07	5.2 0.15	0.37	173	283 7.98	2.09	7.68
nts in	Sul - tate (SO ₄)		1.52	0.31	0.31	0.33	0.04	6.0	0.0	0.50	2.85	234	26 0.54	6.19
Mineral constituents	Bicor- bonote (HCO ₃)	STANISLAUS GOUNTY (Cont.)	3.06	3.28	2.36	268	1.97	126 2.07	119	3.13	351	2.90	264	308
nerol c	Carbon- afe (CO ₃)	OUNTY	000	9.00	0.23	00.0	000	0.00	000	0.27	000	000	0.33	000
Σ	Patas- sium (K)	SLAUS (0.10	0.07	0.05	0.08	0.19	0.03	3.9	0.01	2.2	2.1	0.06	0.05
	Sodium (No)	STANI	9.57	2.18	33	3.31	1.91	2.61	18 0.78	35	3.04	163 7.09	3.57	150
	Mogne- sium (Mg)		1.31	1.10	0.99	1.09	2.7	8.4	9.9	1.13	7.57	5.95	1.22	7.71
	Calcium (Ca)		41 2.05	2.00	36	39	1.05	38	0.85	41 2.05	3.24	2.44	58 2.86	2.89
	Ŧ		8.2	8.2	۵ گ	8	8.2	8.2	8.2	4.8	7.8	7.9	8.4	0,0
Spacific	mhos of 25°C)		1,410	521	117	613	395	576	221	437	1,310	1,590	742	1,620
	Temp In °F		99	99	99	99			29	99	799	89	99	
	Sampled		8-18-61	8~18-61	8-18-61	8-18-61	8-1-61	8-1-61	8-17-61	8-17-61	7-28-61	7-28-61	9-18-61	7-31-61
State well	number and other number	MDB&M	45/85-2711	45/9E-20A1	-2541	-30R1	45/105-101	45/11E-5M1	-2101	-3151	5S/7E-1M1	5S/7E-9H1	5S/8E-1R1	-801
	Owner and use		Turlock Irrigation District#161 drainage	Turlock Irrigation District #115 drainage	Turlock Irrigation District #25 irrigation and drainage	Turlock Irrigation District # 34 drainage	American Sand and Gravel Company industrial	J. W. Short irrigation	Turlock Irrigation District #175 drainage	Turlock Irrigation District #14.2 drainage	H. O. Wood irripation	H. Raines irrigation	Turlock Irrigation Oistrict #183 drainage	1 & T Ranch irrigation

Oefermined by addition of constituents.
 Gravimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Terminal Testing Labardory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (Pb), Managness (Mn), Zinc (Zn),

⁻²⁷³⁻

	pez/				~	~	~4	~	~				~		
	Anotyzed	à		DWR	DWR	OWR	DWR	OWR	DWR	DWB	DWR	DWR	Ewo	PWG	OWR
	Hardness as CoCO ₃	N.C.		296	0	0	0	0	0	9	0	26	8	12	907
		Total		957	153	199	164	115	171	193	77	24.7	385	259	274
H	Cent			36	3	35	34	73	65	56	07	26	27	64	775
	dis- solved			906	337	374	341	266	531	367	193	397	578	528	825
		Other constituents ^d													
	1 6	(SiO ₂)		27	22	53	79	51	56	ଥ	54	গ্ৰ	27	77	ଥ
Hion		(B)		4.0	0.1	0.1	0.1	0:0	0.1	0.1	0.2	0,40	0.39	0.46	97.0
millio	<u> </u>	(F)		0.2	0.0	0.0	0.2	0.2	0.01	0.0	0.0	0.2	0.0	0.3	0.03
1 2 1	1 .	trate (NO ₃)		7.4	0.16	0.23	29 0.47	0,21	30	4.2 0.69	16 0,26	0.16	16	0.21	0.15
۱		- (i)		1.21	25 0.71	28 0.79	20 0.56	17	45	13 0.37	16	14 0.39	81 2.28	80 2.26	307.8
nts in		101e (SO ₄)		9.62	0.23	0.19	0.31	0.21	1.25	0.50	3.0	23 1.94	1.83	86 1.79	2.54
constituents	Bicor	bonote (HCO ₃)	Cont.)	3.00	257	298	3.39	2.90	332	2.34	105	270	3.60	301	161 2.64
Minerol C		(CO ₃)) YIM	0.20	00.00	000	0.33	0.20	00.0	00.00	000	00.00	000	000	00.0
\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	Dotor	Sign Sign Sign Sign Sign Sign Sign Sign	AUS COUNTY (0.05	0.03	0.06	2.1	2.0	2.0	1.4	1.4	1.6	2.4	21 0.05	0.07
		(ON)	STAN13L	118 5.13	<u>53</u> 2.31	50 2.18	40	1.74	116 5.05	32 1.39	24 1.04	41 1.78	65 2.83	4.00	137 5.96
		(Mg)		51 4.23	15	1.39	1.18	0.75	1.36	1.32	9.6	27.25	3.45	32 2.67	3.27
		(Co)		98	37	2.59	42 2.10	31	2.05	53	1.00	2.69	85 4.24	2.50	1.84
	吾			e.3	8.2	8.0	8.5	9.4	6.5	8 2	8.1	7.7	7.6	7.9	0.0
Specific	canduct- ance	mhas of 25° C)		1,340	567	573	475	384	814	507	261	612	977	875	1,440
	Temp				59	65	99	99	65	59					
	Date	naidans adams		7-31-61	8-21-61	8-21-61	8-21-61	8-16-61	8-16-61	8-17-61	8-3-61	7-6-61	7-6-61	7-27-61	7-6-61
	number and		MDB&M	55/8E-27Ml	5S/9E-9A1	-1361	5S/10E-4F1	-28H1	-30F1	5S/11 E- 7P1	5S/12E-601	6S/9E-18F1	7S/8 E- 12P1	-13F1	-23R1
	Owner and	esn		R. Davis irrigation and domestic	Turlock Irrigation District #97 drainage	Turlock Irrigation District #56 irrigation and drainage	Turlock Irrigation District #116 drainage	Turlock Irrigation District #94 drainage	Turlock Irrigation District #126 drainage	Turlock Irrigation District #129 irrigation and drainage	R. Perkins irrigation	J. W. Campbell irrigation	Central California Irrigation District #4 irrigation	Simon Newman Company irrigation	Central California Irrigation District #2 irrigation

Determined by addition of constituents.
 Growmetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Cepatrinen of Water Resources (O.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Monaonese (Mn), Zinc (Zn),

	P												
	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hardness	N.C. Ppm		0	0	0	0	0	0	0	25	0	0	ıı
			92	36	183	727	89	105	891	160	56	87	148
å	s sod-		32	173	30	58	58	63	73	31	77	38	35
Tota	eolved solids nn ppm		219	126	348	375	274	354	413	337	179	229	343
	Silico Other constituents ^d												
			72	777	77	28	14	왜	89	62	19	69	67
Lion	Boron (B)		01	0.09	0.1	0.0	0.0	0.1	0:0	0.1	0.08	90.00	0
millia Ser mil	Fluo- ride (F)		0.01	0.0	0.0	0.02	0.0	0.02	0.03	0.03	0.2	0.02	0.01
ports per millian valents per mill	Ni- trote (NO ₃)		20	3.4	0.37	16	2.5	3.6	47.0	47 0.77	0.22	20 0.32	0.93
ports per millian equivalents per million	Chlo- ride (CI)		0.28	8.8	21 0.59	1.13	27.0	52	27.0	17	5.0	0.23	0.45
i s	Sul - fote (SO ₄)		0.21	3.8	0.31	0.40	0.35	0.35	45	37_0	0.25	0.29	0.60
Mingrof constituents	Bicar- bonate (HCO ₃)		112	1.06	3.67	3.85	2.97	3.74	3.31	159 2.61	1.44	2.02	2.74
aro! co	ate (CO ₃)	COUNTY	00.00	00.00	0.23	0.13	5.17	6.20	0.23	0.1	0.0	000	00.0
Ā	Polas- sium (K)	MERCED	0.03	3.6	0.05	2.5	0.06	0.04	1.4	2.4	3.6	3.4	0.04
	Sodium (Na)	ΣI	20 0.87	14 0.61	36	3.39	2.52	3.65	2.52	34	20 0.87	25	38 1.65
	Magne - sium (Mg)		9.0	14 0.12	16 1.31	13	6.4	0.60	0.86	0.94	0.32	6.4	0.86
	Colcium (Ca)		22 1.10	0.50	2.35	28 1.40	1.25	30	2.50	2.25	16 0.80	1.15	2,10
	五		8.2	7.9	8.4	8.3	8.5	8.5	8.4	8,3	9,0	8.1	ω
Specific conduct-	ance (micro- mhos ot 25° C)		270	157	067	561	77.7	999	579	459	210	286	757
	Temp in °F		99	75	99	99	59	99	99	99	99	29	
	Sampled		8-16-61	6-22-61	8-15-61	8-15-61	8-15-61	6-31-61	8-14-61	6-6-61	6-26-61	7-12-61	8-8-61
Stote well	number and other number	MDBCM	5S/11E-29F1	5S/12E-32P1	6S/10E-2H1	-981	-2411	-28K1	6S/11E-3B1	-901	-27K1	-36P1	68/12 E-6 1.1
	Owner and use		Turlock Irrigation District #150 drainage	W. S. Batterman irrigation	Turlock Irrigation District #15 drainage	Turlock Irrigation District #107 drainage	Turlock lrrigation District #162 drainage	Riverside School	Turlock Irrigation District #228 drainage	Turlock Irrigation District #201A drainage	Merced Irrigation District #133 irrigation	Merced Irrigation District #109 irrigation	Turlock Irrigation District #213 drainage

Determined by addition of constituents.
 Graymatric ditermination.
 Analysis b U.S. Galogical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (PD), Manaonese (Mn), Zinc (Zn),

	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
80			0	0	0	0	٦	0	0	0	0	0	0
Hord	os CoCO ₃ Total N.C. ppm		57	29	52	95	1119	511	66	161	89	14.9	128
	Sod- Eugl		39	36	87	58	32	28	34	21	32	32	52
Total	eolved solved in ppm		173	192	504	322	274	240	237	278	199	767	210
	Silica (SiO ₂) Other constituents ^d												
			91	89	36	. 25	72	99	의 -	79	79	29 5	75
Hion	Boron (B)		0.07	20.07	0.26	0.11	0.08	0.08	0.07	0.05	0.05	0.06	0.07
r millic	Fluo- ride (F)		0.2	0.0	0.07	0.02	0.0	0.02	0.2	0.0	0.0	0.0	0.01
ports per million equivolents per million	NI- trote (NO ₃)		0.18	20 0.32	0.02	0.27	0.27	0.21	0.34	0.19	0.18	0.12	0.15
A Ainbe			0.12	3.2	2.79	0.62	0.42	5.2 0.15	9.7	0.31	0.27	0.20	20 0.56
i i	Sul - fate (SO ₄)		12 0.25	16	34	0.35	22 0.46	8.6	7.2	0.16	5.1	8.6	22 0.46
constituents	Bicor- bonote (HCO ₃)	(90	17.1	279	3.38	2.36	164 2.69	138 2.26	3.42	122 2,00	3.95	5.52
Minerol co	Carbon- ate (CO ₃)	COUNTY (Codt.)	000	0.00	8	6.20	0.00	0.00	00.0	000	0.00	000	00.
.E	Potos-C sium (K)		3.9	1.7	2.4 0.c6	5.3	1.9	0.11	2.9	0.00	2.2	0.08	0.07
	Sodium (Na)	MERCED	18 0.78	18 0.78	169 7.35	2.78	26 1.13	21 0.91	24 1.04	0.87	19 0.83	33	1.87
	Mogne- sium (Mg)		4.7 0.39	5.4 0.44	2.4	5.5	8.9	6.8	0.68	1.32	9.0	1.38	2.07
	Calcium (Co)		15 0.75	18 0.90	12	29	33	34	26 1.30	38	1.00	32	2.69
	F		8.1	7.9	8.5	8.4	0.00	8.2	 	7.3	8.1	.3 .3	7.8
Specific	once (micra- mhas at 25°C)		205	220	821	790	347	308	298	392		107	909
	Temp In °F		89	89		29	29	99	89	29	89	29	63
	Oore		6-26-61	7-12-61	7-8-61	7-12-61	7-12-61	7-12-61	7-12-61	7-12-61	7-26-61	6-28-61	7-19-61
Stote well	number and ather number	MDBGM	65/12E_21N1	6S/13E-31F1	7S/10E-7M1	75/11E-4M1	7S/12E-1Q1	7S/12E-19A1	7S/13E-4F1	-22 C1	75/14 E -9R1	-28J1	-319/1
	Owner and use		Merced Irrigation District #1 Irrigation	Merced Irrigation District #70 irrigation	C. C. Fawcett irrigation	Merced Irrigation District #115 irrigation	Merced Irrigation District #135 irrigation	Merced Irrigation District #49 irrigation	Merced Irrigation District #9 Irrigation	Merced Irrigation District #35 irrigation	Merced Irrigation District #105 1rrigation	Merced Irrigation District #86 irrigation	Merced Irrigation District #106 irrigation

a. Determined by addition of constituents.
 b. Growmetric determination.
 c. Amolysis by U.S. Geological Survey, Ouality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) os indicated.
 d. Iron (Fe), Atuminum (A1), Arsenic (As), Copper (Cu), Lead (Pb), Managonese (Mn), Zinc (Zn),

	- J													
	Analyzad by c		DWR	OWR	DWR	DWR	OWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR
0 € \$ 8	os CoCO ₃ Fotal N.C. Ppm ppm		0	50	0	211	28	163	0	0	43	0	01	171
			66	309	128	333	299	293	8	133	198	288	208	309
	sod- ium		52	. 26	0 22	7 61	1 35	22	07	2 25	52	£3	877	32
Totol	solved solved solved in ppm		222	705	210	1,137	175	1,560	206	262	574	576	127	550
	Silica (SiO ₂) Other constituents ^d													
			77.	25	왜		18	<u></u> 위	읰	65	의	#	77	् <u>र</u>
Tion	Boron (B)		0.05	0.08	70.0	3.0	0.53	2.9	90.0	70.0	1.2	0.93	1.2	0.64
r millo	Fluo- ride (F)		0.2	0.2	0.03	0.00	0.03	0.3	0.01	0.07	0.0	0.03	0.02	0.0
ports per million equivalents per million	Ni- trate (NO ₃)		5.2	35.0	4.1 0.07	0.05	0.21	0.07	6.3	0.10	0.02	0.16	0.19	0.02
d	Chto- ride (CI)		8.0 0.22	0.37	0.21	202 5.70	1.30	324	8.1	0.14	150	2.23	2.76	2.74
ants in	Sul- fote (SO ₄)		0.20	<u>26</u> 1.58	0.37	9.83	102 2,12	603	0.19	0.15	108 2,25	80	1.14	3.41
Minarol constituents	Bicor- bonote (HCO ₃)	() 	2.33	352	162 2.66	2.44	331	158 2.59	160	3.39	3.10	362	3.97	2.75
narol	Corbon- afe (CO ₃)	COUNTY (Cont.)	000	00.0	00.00	000	00.00	00.00	000	00.0	00	00.0	000	0.0
Σ	Potas- sium (K)		5.7	0.06	1.4	3.0	0.02	3.1	2.4	6.3	2.1	0.03	0.04	0.05
	Sodium (No)	MERCED	0.70	2.18	0.74	24.2 10.53	3.18	418 18,18	1.26	0.96	123 5.35	100 4.35	3.83	2.91
	Mogne sium (Mg)		0.88	32 2.63	1:11	35 2.91	0.73	27.26	7.9	1.21	23	33	21 1.76	3.33
	Calcium (Co)		22 1.10	3.54	29	3.74	105	3.59	23	29	2.10	61 3.04	2.40	2.84
	£		8.0	8.0	7.5	7.8	7.6	7.9	7.8	7.9	7.8	7.9	8.0	8.0
Specific conduct-	once (micro- mhos of 25°C)		274	779	317	1,720	823	2,400	296	348	796	924	824	888
	Temp in °F		70	29	99			76	69	69				
	Date		7-12-61	7-12-61	7-19-61	7-8-61	7-25-61	6-22-61	7-18-61	7-19-61	7-25-61	7-25-61	7-8-61	7-19-61
State well	number and ather number	MDB&M	7S/15E-18K1	-30E1	-34R1	8S/9E-12E1	-16E1	8S/10E-290	8S/14 E- 201	-24A1	98/9E-211	-581	-21F1	9S/10E-36R1
	Owner and use		Merced Irrigation District #124 irrigation	Merced Irrigation District #98 Irrigation	Merced Irrigation District #95 Irrigation	Lone Tree Cattle Company irrigation	Gustine Drainage District #15 irrigation	F. Harrison irrigation	Marced Irrigation District #138 irrigation	Merced Irrigation District #122 irrigation	Wolfson Brothers irrigation	Gustine Drainage District #6 Irrigation	Central California Irrigation Oistrict #1 Irrigation	State Game Refuge irrigation and domestic

Optermined by addition of constituents
 Growmetric determination.
 Growmetric determination.
 Amolyse by U.S. Geological Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Oppariment of Water Resources (D.W.R.) as indicated.
 Iran (Fe), Alyminum (AI), Arsenic (As), Copper (Cu), Lead (PD), Monoonese (Mn), Zinc (Zn),

ſ		D						_	-	-						
		Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	RWC
	Hardness	N.C.		0	0	0	0	117	0	89	0	53	н	209	260	27
				85	727	09	6	261	195	269	207	250	139	367	707	215
-	å	sod- ium		89	72	83	799	3 43	55	3 27	79 0	3 25	09 2	26	09	3 25
	Tatal	dis- solved solved in ppm		1,020	247	727	366	543	067	459	089	607	422	786	1,170	388
		Silica (SiO ₂) Other constituents ^d														
		Silica (SiO ₂)		না	%	#	21	3	21	22	27	38	27	88	28	임
İ	Lion	Boron (B)		2.6	0.36	0.10	0.08	0.10	70.0	0.10	1.8	0.49	0.31	0.45	<u>47.0</u>	0.02
	r million per mi	Fluo- ride (F)		0.02	0.2	0.03	0.02	0.5	0.01	0.2	0.02	0.0	0.2	0.0	0.0	0.00
	parts per million equivolents per million	Ni- trofe (NO ₃)		0.0	0.7	0.0	3.6	0.0	0.0	0.13	15 0.24	12 0.19	0.0	0.03	0.0	24 0.39
	adnin	Chio- ride (C!)		3.61	165	3.67	0,82	221	3.33	3.13	201	26 1.58	3.02	415 11.70	510 14.38	0.99
	nts in	Sul - fate (SO ₄)		410 8.54	70	62 1.29	25.0	5.4 0.11	25 0.52	0.23	1.29	1.14	1.21	1.87	2.58	30
	canstituents	Bicor- bonote (HCO ₃)	(Cont.)	3.33	3.03	161	244	2.87	258	24.5	273	3.93	169	3.16	173 2.84	3.75
	Mineral co	Carban- ate (CO ₃)		00.00	0.00	000	00.00	000	00.0	0.00	0.00	00.00	000	00.0	00.00	000
	Σ	Potas-Carban- sium ate (K) (CO ₃)	MERCED COUNTY	0.03	1.6	1.5	0.03	0.00	1.0	0.11	1.7	2.6	1.6	3.0	3.6	0.11
İ		Sadium (Na)	봐	320 13.92	150 6.52	144 6.26	3.52	4.04	96	2.00	169 7.35	1.70	96	9.57	276 12.01	34 1.48
		Magne- sium (Mg)		3.6	11 0.93	1.8	9.6	1.52	1.21	13.08	22	2.26	1.18	3.24	3.24	0.91
		Calcium (Ca)		1.40	31/1-55	21 1.05	1.15	3.69	54 2.69	86	2.30	2.74	32	82 4.09	96	3.39
		£		8.1	7.8	8.2	ı	8.1	8.0	7.8	7.9	8.1	7.2	8.2	7.9	2.6
	Specific canduct-	ance (micra- mhas at 25° C)		1,660	1196	815	•	066	782	759	1,190	631	720	1,750	2,060	795
		Temp in °F		7.1	89	1/2	11	74		89	72					
		Sampled		6-22-61	6-22-61	6-22-61	6-21-61	6-21-61	7-19-61	6-22-61	6-22-61	7-25-61	7-19-61	7-7-61	7-7-61	7-8-61
	State well	number and other number	MDB&M	9S/11E-7N1	-26N1	9S/12E-17B	9S/13E-8G	-29L	-3101	9S/14E-20B	10S/9E-2D	10S/10E-28D1	10S/12E-6K1	-27K1	-35K1	105/13 E-1A1
		Owner and use		R. Mueller domestic and stock	Delta Ranch domestic	Newhall Land Company irrigation	Newhall Land Company irrigation	Newhall Land Company irrigation	Miller and Lux irrigation	M. M. Cotta irrigation	E. R. Dias 1rrigation	Central California Irrigation District#8 irrigation	Bisignani Bros. irrigation	Central California Irrigation District #5 Irrigation and domestic	Central California Irrigation District #6 irrigation	Ewing Farms irrigation

Determined by addition of constituente.
 Growmetric determination.
 Amolysis b U.S. Geological Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (PCC.), Terminal Testing Laboratory (T.T.L.) or State Decartment of Water Resources (D.W.R.) as indicated.
 Iran (Fe), Aluminum (AI), Arsanic (Ae), Capper (Cu), Lead (Pb), Manaanses (Mn), Zinc (Zn),

	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				~	~	D*	me.	ď	· ·	оч.	n.	œ	œ	œ	œ.	O.S.	
	Analyzed by c		E DWR		DWR.	O DWR	O DWR	2 DWR	O DWR	O DWR	O DWR	O DWR	5 DWR	5 DWR	O DWR	O DWR	O DWR	
Hordness	S O D W G		1,299		0			82					86	75				
	المكال		1430		69	09	136	235	- 89	1115	17	254	162	178	124	740	130	
وُ	S sod-		077		1 31	3 36	0 37	92 99	7 28	5 32	34	554 43	319 28	77 73	272 34	305 34	272 30	
	solved solids mdd ui		2,980		181	173	300	416	207	225	205	55	3	354	57	3	27	
	Silica (SiO ₂) Other constituents ^d																	
			21		ଥ	8	99	22 23	59 2	3	[8] [8]	02 20	17	22 23	77 77	57 59	22	
llion	Baron (B)		2.2		0.00	0,0	0.0	0.05	0.05	0.06	0.05	0.09	0°0	0.05	0.07	90.0	0.05	
parts per million equivalents per million	Fluo- ride (F)		0.07		0.0	0.00	0.0	0.00	0.01	0.0	0.01	0.0	0.0	0.01	0.01	0.0	0.0	
ourts pe	Ni- trate (NO ₃)		108		0.07	3.0	15 0.24	7.3	0.27	0.10	0.24	3.1	0.03	0.13	0.12	3.6	0.15	
vinbe	Chlo- ride (CI)		800 22,56		20 0.56	18 0.51	31 0.87	3.10	0.31	0.70	16	2.96	2.79	2.57	21 0.59	36	28 0.79	
is in	Sul – fate (SO ₄)		1050 21.86		1.8	3.0	6.1	0.16	01.0	3.0	0.10	25 0.46	5.6	12 0.25	0.12	0.17	6.9	
Minerol constituents	Bicor- bonote (HCO ₃)	ont.)	160	≻ıt	1.42	$\frac{81}{1.33}$	3.11	3.06	112	2.46	1.42	340	1.52	126	3.00	3.08	2.61	
arot c	Corban- ofa (CO ₃)	VTY (C	0.00	COUNT	0.0	000	0.00	0.00	0.00	00.00	0.00	0.00	00.00	000	000	00	0.07	
M	Potas - Corbon- sium ote (K) (CO ₃)	MERCED COUNTY (Cont.)	3.3	MADERA	2.4	0.07	3.5	4.5	2.5	2.6	0.07	0.11	3.2	0.10	2.8	2.8	3.7	
	Sodium (No)	MERC	455 19.79		15	16	38	38 1.65	16 0.70	25 1.09	18 0.78	3.96	29	34	30	34	26 1.13	
	Magne- sium (Mg)		171 14.05		0.38	0.35	10	15	6.4	0.60	6.3	1,38	9.0	0.97	0.83	10	11	
	Calcium (Co)		291		20	17 0.85	1.35	3.49	25	34	0.90	3.69	2.50	<u>52</u> 2.59	33	39	34	
	Ŧ		8,1		7.8	8.2	8.0	7.4	7.5	8,5	8.1	8	89	8.3	8,3	80	8.4	
Specific			4,350		216	198	0777	999	257	339	235	877	906	539	365	756	372	
	Temp In %F				72	72	72	72	23	23	73	89	72	72	73	20	72	
	Sompled		7-18-61		7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	7-26-61	7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	
State well	nymber and other number	MDBCM	11S/10E-23Kl		9S/15E-24F1	95/16E-3001	10S/14E-881	10S/15E-31A1	10S/16E-24H1	-30K1	10S/17E-25N1	115/14E-1A1	-581	-1641	115/15E-23L1	-29н1	11S/16E-22K1	
	Owner and use		Lindemann		Jessup 1rrigation	ty of Chowchilla municipal	d Top Ranch	Probert irrigation	P. Lillies irrigation	Haynes 1rrigation	dera Country Club irrigation and domestic	d Top Ranch irrigation	. O. Turnbrow, Ent.	. O. Turnbrow, Ent.	, B. Sheln 1rrigation	d Top Ranch irrigation	. J. Peatman irrigation	

a. Determined by addition of constituents.
 b. Growmetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (A1), Arsenic (As), Copper (Cu), Lead (Pb), Managness (Mn), Zinc (Zn),

QUALITY OF GROUND WATERS IN CALIFORNIA ANALYSES OF GROUND WATER

		Anolyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	
ŀ	88		D Mdd		0	0	833	0	07	0	0	0	32	0	16	0	0	0	0	CV	
	Horde	os CoCO ₃	p mdd		87	57	897	32	169	92	35	54	180	99	42	52	8.4	5.1	701	229	
		200			17	£ 1	07	16	29	775	97	37	30	33	36	35	75	76	38	31	
-	Total	solved solids	in ppm		162	169	1,780	495	330	236	258	183	378	174	229	777	14.9	152	253	429	
		Other constituents ^d																			
		Silico	(2015)		59	73	22	31	21	গ্ৰ	81	କ୍ଷ	ബ	3 1	हा हा	77	8	#	<u>85</u>	27	
	Ligh	Boron	<u>e</u>		0.05	0.06	0.08	7.0	0.05	0.05	0.05	0.05	0.08	0.06	90.0	0.06	1 7.0	0.11	0.05	0.16	
	millio er mi	Fluo-	E		0.02	0.2	0.3	0.2	0.2	0.00	0.2	0.2	0.0	0.2	0.0	0.2	0.02	0.3	0.0	0.2	
	ports per million equivalents per million	- IN	(NO ₃)		1.6	2.5	3.5	0.00	1.6	1.2	1.2	2.3	21.0	3.8	21 0.34	2.7	0.00	0.00	2.7	21 0.34	
	edniko		(<u>0</u>		0.37	16	24.22	3.13	72 2.03	24 0.68	29 0.82	17 0.48	32 0.90	13 0.37	26 0.73	7 <u>-7</u> 0 <u>.22</u>	14 0.39	17 0.48	18 0.51	1:13	
	its in	l	(\$0\$)		3.6	3.3	195	1.52	11 0.23	6.2	9.9	0.08	<u>63</u> 1.31	5.8 0.12	11 0.23	3.6	3.3	3.8	4.8 0.10	27 0.56	
	constituents	Bicor	(HCO ₃)	ont,)	1.31	1.23	78 1.28	156 2.56	2.57	2.39	150	1.28	171 2.80	1.51	1.26	1.28	3.44	1.39	165 2.70	277	
106	Minarol c	Corbon-	(00)	NTY (C	000	0.00	000	0.07	0.00	0.00	000	000	5.17	000	0.00	0.00	0.13	0.00	000	0.00	
2	Min	Potos-	£	MADERA COUNTY (Cont.)	0.11	4.5	6.1	1.4	3.4	1.8	3.0	3.5	5.0	0.11	3.6	3.5	0.00	0.7	2.1	2,1	
		Sodium		MADE	17 <u>.0</u>	18 0.78	273	154 6.70	33.	3.2 1.39	37,	16 0.70	37,	15 0.65	22 0.96	0.61	1.91	42 1.83	30	48 2.09	
		Mogne-	(Mg)		3.8	3.6	3.45	0.09	1.08	5.4	4.7 0.39	3.4	13	5.7	3.4	4.1	0.02	0.2	8.3	13	
		Calcium	(O)		13	112	290	11 0.55	2.30	3.40	29	16 0.80	2.50	17 0.85	26 1.30	02.0	0.08	1.6	28	3.49	
		Ξ			7.6	8.0	7.9	4.8	88	8.2	8.1	8.0	8,5	7.9	7.7	8.0	7.8	8.3	8,1	8.0	
	Specific conduct-	once (mlcro-	mhas at 25°C)		184	187	3,120	783	906	321	348	195	524	205	275	172	205	195	328	869	
		Temp in °F			72	75	78	78	72	72	72	72	73	89	72	72			72	77	
		Date			7-26-61	7-26-61	7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	7-25-61	7-26-61	7-26-61	7-26-61	7-20-61	7-20-61	7-25-61	7-25-61	
	State well	number and other number		MDB&M	115/17 E- 2581	11S/18E-20E1	12S/14E-10N1	-16K1	12S/15E-4KI	-22F1	-2761	12S/17E-5R1	-781	12S/18E-7L1	-14,71	12S/19 E- 3281	13S/15E-22J1	-2501	13S/16E-2C1	i3s/17E-5P1	
		Owner and	200		City of Madera municipal	W. Jay domestic	Guy Houk Ranch irrigation	Guy Houk Ranch irrigation	Red Top Ranch irrigation	Red Top Ranch irrigation	W. Gill irrigation	G. Weer lrrigation	S. Thomas irrigation	Mordecali irrigation	Iverson and Carlton irrigation	E. Jones lrrigation	Columbia Canal Company irrigation	Columbia Canal Company irrigation	D. Mendrin irrigation	G. Roberts irrigation	

Determined by addition of constituents.
 Graymatric determination.
 Anolysis by U.S. Gaolgical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Lobarology (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn),

	P		~	~	~	~		~		~	~d			~	~4	~	
	Analyzed by c		DWR	DWR	OWR	DWR	DWR	DWB	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWB	
Iness	as CaCO ₃ Fatal N.C. ppm ppm		4	97	10	0	39	N	0	41	0	0	0	0	0	0	
	ز سنا س		150	219	242	252	191	202	67	212	8	1.7	78	172	89	54	
å	Sod- ium		56	53	ನೆ	17	25	78	58	34	7.	5	2	31	3	54	
Total	dis- calved solids in ppm		276	207	607	512	333	355	777	775	154	122	125	310	268	161	
	Silica (SiO ₂) Other canstituents ^d																
			7 7	58	প্র	23	3	ল	77	ର	ଯା	13	81	28	77	위	
High	Baron (B)		77.0	0.05	20.07	0.09	0.07	0.07	0.0	0.07	0.04	0.03	0.03	80.0	77.0	0.08	
millia ser mi	Flug- ride (F)		0.2	0.2	0.0	0.00	0.2	0.2	0.00	0.2	0.00	0.0	0.00	0.3	0.2	0.0	
parts per millian equivalents per millian	Ni- trate (NO ₃)		0.19	34	14,0,22	19 0.31	12 0.19	16 0.26	0.02	78	90.0	0.00	3.6	0.18	0.21	5.3	
q	Chlo- ride (CI)		29 0.82	68 1.92	34 0.96	2.20	1.35	35	0.20	23	0.20	5.6	0.08	36	1.32	7.8	
nnts in	Sul - fate (SO ₄)		0.25	0.46	0.40	0.50	0.33	0.31	0.03	1.02	3.6	0.10	1.8	18 0.37	0.31	0.20	
constituents	Bicar- banate (HCO ₃)		178 2.92	3.46	283	329	3.24	77.00	126 2.06	3.42	2.13	9.6	112	3.51	167	1.88	
Mineral	Carbon- ate (CO ₃)	TULARE COUNT	0.00	000	0.00	000	0.00	0.00	000	000	000	000	000	00	000	00_	
2	Potas- sium (K)	TULARE	2.6	4.8 0.12	3.7	2.5	3.2	2.8	0.3	0.07	0.3	0.03	0.03	2.7	1.8 0.05	0.0	
	Sodium (Na)		25 1.09	1.87	36	3.52	30	1.61	31	2.18	14	22 0.96	11 0.48	1.61	64 2.78	1.30	
	Magne- stum (Mg)		112 0.96	24 1.94	$\frac{21}{1.70}$	22	20	0.65	0.03	1.90	1.7	0.5	1.9	0.70	111 0.93	000	
	Calcium (Ca)		41 2.04	2.44	3.14	3.19	2.20	68 3.39	19 0.95	2.34	36	18	28	2.74	17	1.10	
	Hd		7.8	8,2	7.9	8.3	8.2	8,3	8.1	8.0	7.9	8.1	8.2	8.2	80	8.3	
Specific	ance (mlcro- mhos at 25° C)		1756	669	583	164	505	529	221	617	238	190	195	887	797	233	
	Temp in °F		29	59	79	99	22	23	72	29	72	89	7.1	72	7.7	20	
	Oate		7-7-9	4-4-61	6-6-61	6-6-61	6-23-61	6-6-61	6-6-61	6-23-61	6-6-61	6-16-61	6-6-61	6-5-61	6-6-61	6-16-61	
State well	number and other number	MDB&M	16S/23E-21A1	168/24.E-3J1	16S/25E-32N	175/23Е-вн1	17S/24E-15A2	17S/25E-34P	18S/24E-19M1	18S/26E-10N	195/23 E- 24G1	195/24E-22C1	198/25E-31J1	19S/26E-3Kl	-26M1	20S/23E_27P	
	Owner and use		Pearl Ranch 1rrlgation	N. Kalender 1rrigation	California Grower Winerica industrial	J. Aguiav domestic	R. E. Stapleton irrigation	Yasuda Brothers irrigation and domestic	A. Castro domestic	D. Shannon 1rrigation	Jinett Brothers domestie	Pacific States Corp. 1rrigation	J. Lewis domestic	City of Exeter domestic	R. Montgomery irrigation	Harrie & Cade irrigation	

Determined by addition of constituents.
 Grownwatric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iran (Fe.), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Managerse (Mn), Zinc (Zn),

	Anolyzed	٥		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DAR	DWR	
-		T		159 1	2	218	0	0	0	0	0	0	0	0	0	0	0	0	
	Hardness os CoCO ₃	ol N.C.			2		٧.	77	8	170	57	30	210	13	51	7	50	244	
-		Totol PPm		6 279	38 132	36 334	95	89	17	60 17		62	22 2	92	95	96	35	50	
	dis cent	S E do		529 36	287 3	634 3	135 9	162 8	382 7	9 587	155 5	176 7		221 5	172	384	365	354 3	
L																			
		Other constituents ^d				en!	101	101	O.I.	7	O/I	0.1	201	7	QI	sat	-24	QI.	
		(SiO ₂)		, 	왜	£7	27	<u>ال</u>	32	22	23 1	전 		# H	야	%	<u>.</u> ∃	33	
UC C	uo l	(B)		0.13	01.0	0.20	77-0	0.17	0.13	0.26	0.02	0.22	1 0.13	0.24	70.0	0.72	09.0	1 0.13	
r millié		Ş.E.		0.0	0.02	0.2	0.0	0.0	0.3	0.5	0.0	0.02	0.0	0.09	0.02	0.0	0.0	0.0	
parts per million	Nin	trote (NO ₃)		0.22	23	47 0.76	0.0	0.00	5.2 0.84	3.2	0.07	2.3	9.9	0.00	4.5	0.01	0.03	0.24	
4	AID B	음 (의 (의		190 5.36	36	228	8.6	10	34°0 0.96	3.78	11 0.31	0.39	0.34	28 0.79	18	3.61	2.17	24 0.68	
ofs in	-	1016 (SO ₄)		50 1.04	0.50	4.5	8.6	7.0	1.12	24 0.50	0.09	10 0.21	9.7	22 0.46	12 0.25	0.31	96.0	12 0,25	
canstituents	6	bonate (HCO ₃)	t.)	2.41	2.47	142 2.33	85 1.39	1.70	164 2.69	3.82	120	133 2,18	289	11.95	1.54	2.13	2.24	299	
Minerol		ofe (CO ₃)	Y (Cor	000	00	000	0.13	0.13	0.07	000	0.0	000	000	000	000	5.17	000	0.17	
Ž.		Sium ofe (K) (CO ₃)	TULARE COUNTY (Cont.)	3.7	3.0	0.12	0.00	0.0	2.9	0.02	1.7	0.0	2.4	0.5	0.0	0.02	0.05	2.3	
		Sodium (No)	TULAR	3.26	38	3.78	1.91	2.09	25 4.13	118 5.13	31	2,30	1.17	68 2.96	1.35	139.	118 5.13	28	
		sium (Mg)		3.13	11 0.94	3.13	0.0	0.03	0,00	7.4	1.7	0.0	15.1	0.0	0.07	0.01	0.02	1,29	
		Calcium (Co)		2.44	1.70	3.54	2.0	0.21	1.20	7.9 56	1.00	0.55	2.99	4°8 0°54	0.95	0.21	0.38	3.59	
	, =			8.1	8.2	8.1	8.5	8.6	8.4		8.1	8	8.3	8,2	8,0	8.5	8.2	8.4	
Specific	conduct	(micro- mhos of 25°C)		77.26	864	1,140	11.9	222	578	86,3	240	283	267	345	7772	700	570	561	
	Temp	<u> </u>		72	89	99	23	72	72	69	73	78	8	77	72	90.5	92	79	
	Oate	sompled		6-16-61	6-16-61	8-22-61	6-16-61	6-16-61	7-26-61	6-16-61	19-91-9	4-5-61	8-23-61	4-5-61	8-23-61	79-5-4	6-26-61	7-26-61	
	Stote well	ather number	HDBGH	205/26E-5R1	-19F	20S/27E-13A1	21S/23E-36P1	21S/24E-10N1	21S/27E-15P2	22S/23E-6A1	22S/25E-22A	22S/26E-16M1	22S/27E-11C1	23S/24E-32P	23S/25E-9FI	23S/26E-1J1	23S/27E-£1H	-2761	
		n see		A. W. Furze irrigation	Rogers Farms 1rrigation	H. G. Carr 1rrigation	J. G. Boswell irrigation	J. Torrez, Jr.	W. Harness domestic and irrigation	W. Murray irrigation	J. G. Schott irrigation	Schenley Ranch 1rrigation	J. Pemberton domestic	irrigation	T. Kirksey irrigation	Maze Farms irrigation	R. Burke irrigation	G. Classen irrigation	

Obelemine by dational or constituents.
 Growinstric determination.
 Ambrists by U.S. Galadicei Strucky Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Tashing Laboratory (T.T.L.) or State Opportment of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (Al), Arsenic (As), Capper (Cu), Lead (Pb), Managase (Mn), Zinc (Zn),

-282-

	2	Τ.																	
	Anolyzed by c			DWR	OWR	DWR	DWR		DWR	DWR	OWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	
Hardness	N.C.	E da		0	7		0		11	Ö	Ö	01	0	0	0	0	0	117	
Hard	S Total	E da		63	117	72	ន		77	107	7.1	76	182	17	77	13	ನ	225	
Ž	Sod E	1		92	35	8	776		7	88	26	27	73	76	8	83	75	55	
Totol	solids in ppm			308	266	374	336		126	786	282	171	992	356	188	100	558	577	
	Silica Other constituented																		
				ଷ	¤	91	99		27	77	웨	위	31	77	97	티	7.7	ଧ 	-
lion	Boron (B)			0.30	90.0	0.57	0.31		0.00	17	0.78	0.0	1.8	양	0.36	0.0	7-7	0.21	
million er mil	Fluo-			0.0	0.0	0.0	0.0		0.00	0.07	0.09	0.0	0.02	0.03	0.05	0.0	0.02	0.02	
ports per million equivalents per million	trate	1603/		0.0	36	25	0.02		0.22	0.01	0.01	0.02	00.0	2.8	0.00	0.02	0.09	0.0	
guiv	- oko - oko	3		2.03	20 0.56	34	1.30		3.4	2.57	28	0.31	149	34 0.96	4.3	5.3	34,00.96	163	
s in	Sul - fate	1904		0.02	20.42	25 0.46	32 0.67		6.1	5.66	3.3	26	321	0.29	7.0	0.10	270	1,10	*
constituents	Bicor- banote	(HCO ₃)	(<u>t</u>	3,02	126 2,06	3.90	163		80 1.31	27.1	3.64	102	284	275	2.33	21.1	7.33	254	
		10037	Y (Co	00.00	0.00	0.0	00.0		000	00.00	0.27	000	00.00	6 0.20	000	000	12 0.40	000	
Minsral	Patos-C		TULARE COUNTY (Cont.)	3.5	2.4	2.1	1.7		10.0	0.02	0.0	0.0	1.6	0.02	0.0	0.01	1.6	0.7	
	Sadium (Na)		TULAR	97.22	1,30	111 4.83	103	_	5.7	231	109	0.70	278	131	2.35	1.17	206 8.96	3.44	
	Mogne- sium	+		96°0	6.6	0.10	000		6.6	0.59	000	2.8	0.50	000	0.02	0.02	000	1.26	
	Calcium (Ca)			18 0.90	36	7.6	0.26		1.00	31 1.55	2.8	33	3.14	0.34	4.5	4.9	9.7	3.24	
	Ŧ	1		7.3	8° 1	7.9	89		7.6	8.3	9.	8.7	7.8	6,3	8,1	80	80	7.7	
Specific	once (micro- mhos	ot 25° ದ		556	374	513	181		186	1,220	797	260	1,490	571	253	143	830	1,000	
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Temp in °F			78	72	8	2		69	29	89	49	78	72	70	11	#	74	
	Date			7-26-61	7-26-61	4-5-61	7-26-61		8-8-61	8-11-61	8-14-61	8-8-61	8-10-61	8-8-61	8-8-61	8-8-61	8-10-61	8-8-61	
Stote well	number and other number		MDB&M	245/23E-8D	245/25E-23H1	245/26E-31L2	24S/27E-32P1		17S/22E-2H	18S/19E-6G1	-26нд	18S/21E-14F1	19S/19E-15N1	19S/20E-33A1	19S/21E-381	19S/23E-8H1	20S/20E-10L1	20S/21E-12A1	
	Owner ond			H. Mitchell irrigation	M. Hall irrigation	Schenley Ranch irrigation	M. Gutinich irrigation		R. Hallsten domestic	H. I. Brown 1rr1gation	D. Johne 1rrigation	W. Verboon irrigation	Weddeburn Brothers irrigation	Serpe domestic	Mussel Slough Farms irrigation	Manzanillo Ranch irrigation	C. Orton irrigation and domestic	H. L. Yokum and Sone	

Defermined by addition of constituents.
 Growmetric determination.
 Amolysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.
 Iron (Fe), Aluminum (A1), Arsanic (Ae), Copper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn),

	Anolyzed by c		DWR	DWR	E MA	DWR	DWR	DWR	DWR	DWR	DWR	DWR.	DWR	DWR		
20.00			0		310	283	0	0	0	3	8	0	0	274		
Hordness	Os CoC Tatal Ppm		77	32	385	371	2 8	62	112	114	63	779	1,060	767	 	
å	Sod Eur		8		67	39	88	779	08	82	68	69	82	39		
Tatot	solved solids in ppm		294	137	1,030	840	863	207	643	931	724	292	6,920	1,040		
	Silico Other constituents ^d (SiO ₂)				•											
	Silico (SiO ₂)		귅	বা	77	<u></u>	77	ᆌ	27	23	32	21	임	32		
ion	Baron (B)		0.35	50.05	0.59	0.46	위	0.09	0.35	1 7-0	0.96	0.23	2.2	2.0		
milition er mil	Fluo- ride (F)		1.0	0.2	0.0	0.0	0.3	0.3	0.01	0.03	0.2	0.0	0.0	0.02		
ports per million equivolents per million	Ni- trote (NO ₃)		0.00	3.8	0.19	6.9	0.5	0.00	0.00	0.0	1.0	30	0.0	20		
oviupe	Cho-		54 1.52	6.8 0.19	1.92	26 0.73	101 2.85	0.48	77.7	1.32	5.75	25	3300	2.20		
ë	Sul - fote (SO ₄)		0.02	2.4	578 12.03	10.08	29	0.27	000	524, 10,91	1.00	0.02	0.03	9.91		
Mineral constituents	Bicar- bonate (HCO ₃)	-1	3.21	1:70	1.49	1.75	662 10.85	2.61	7.15	90*1	335	3.20	1800	268 4.39		
arol cc	Corbon- ofe (CO ₃)	Cont	8.0	00.0	00.00	00	29 0.97	00.00	000	200	00	00	00	00.0		
Æ	Potas-C sium (K)) XINDO	1.2	0.0	1.4	2.3	3.0	0.0	1.4	0.00	1.3	3.8	15 0.38	3.0		
	Sodium (No)	KINGS COUNTY (Cont.)	100	1.48	7.48	111	304	2.18	9.22	246	246 10.70	3.13	2310	1778		
	Magne- sium (Mg)		0.02	40°0	3.30	35	0.83	0.04	3.5	2.2	0.01	2.7	153	81 6.63		
	Colcium (Co)		9.3	0.60	4.39	8.2 91	8.6 17	24 1.20	8.0 39	42 2.10	25	13	172 8.58	3.24		
	£		8.1	8.3	8.0	8.2	8.6	8*1		8.1	8.2	8,1	7.8	60		
Specific	ance (micro- mhas at 25°C)		124	509	1,440	1,140	1,410	324	1,070	1,340	1,260	677	10,400	1,470		
	Temp in °F		92	20	. 75	78	89	29		82	79	78	69	72		
	Sompled		8-18-61	8-8-61	8-10-61	8-10-61	8-8-61	8-8-61	8-8-61	8-10-61	8-10-61	8-8-61	8-10-61	8-10-61		
Stote weil	number and ather number	KDB&M	20S/21E-16D	20S/22E-1A1	215/185-1D1	-17M1	215/215-142	21S/22E-13G1	21S/22E-22M2	22S/17E-15M2	22S/19E-20N	22S/22E-10A1	23S/21E-1801	245/18E-1901		
	Owner ond		Selyer Land Company	J. Hahsey domestic and irrigation	J. G. Stone Land Co. irrigation	E. H. Aldrin	J, Verboon	J. B. Boyett stock and trefoation	P. Rictkerk	Avenal High School	W. F. Prouty	P. Hansen domestic	South Lake Farms irrigation and domestic	P. Rowe irrigation		

Defermined by addition of constituents.
 Grovimestic determination.
 Grovimestic determination.
 Grovimestic determination.
 Grovimestic by U.S. Gadlogicol Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Terminal Testing Loboralorly (T.L.) or Slate Deportment of Water Resources (WM.) to sindicated.
 G. F. Aluminum (Al), Arsanic (As), Copper (Ca), Lead (Pb), Monobrase (WM), Zinc (Z.D.)

	ŋ																		
	Anolyzed	5		DWR	DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWB	DWR	DWR	DWR	DWR
888	os CoCO 3	N.C. Ppm		07	0	426	688	0	548		1,450 1,250	1,220	0	27	0	0	0	7.00	0
Hard	S S	Total		239	198	555	780	101	929		1,450	1,600	-4	52	109	777	64	777	16
	000	Ē		16	28	35	38	7	52		31	50	76	9	38	3	69	2	8
Total	eolved			334	762	1,120	1,690	71.2	1,150		2,580	4,170	121	265	286	199	252	3,930	0777
;		(SiO ₂) Other constituents																	
	Cillog	(SiO ₂)		웨	ឌ	ম ্	21	ଥା	23		21	গ্ৰ	12	ଷ	% I	ম	77	35	23
Lion		(8)		0,28	6.3	9.0	0.5	0.17	94.0		2.5	7.8	0.06	0.0	0.08	0.07	0.08	2.7	0.05
millo		g.C.		0.3	0.5	0.0	0.0	0.03	0.06		0.03	0.02	0.0	0.02	0.01	0.2	0.02	0.3	0.02
ports per million equivalents per million	Z	(NO ₃)		2.0 1.0	0.07	0.15	38	0.04	0.22		0.16	0.19	0.0	0.18	12 0.19	30	0.22	0.0	0.07
d	100	<u>\$</u>		0.34	21 0.59	1.35	1.55	6.19	33		5.83	11.42	5.5 0.16	0.48	24 0.68	22 0.62	21 0.59	32.15	0.24
ă E	- 100	101e (SO ₄)		1.21	0.83	610 12.76	20.82	33	686		1070	2230	9.4	1.52	26	23	36	5.73	0.60
Mineral constituents	Biror-	bonote (HCO ₃)		3.98	3.62	2.57	11.84	2.69	124 2.03		777	7.64	1.24	47	2.18	1.49	1.75	3.34	99.0
erol co	orbon	ate (CO ₃)	COUNTY	000	000	000	0000	0.00	0.00		000	000	000	8	00	000	00	00.0	0.33
ž	Potos -	sium (K)	KERN	2.8	0.07	2.3	0.28	3.1	8.0		5.8	0.31	0.3	0.03	2.2	3.1	2.2	3.2	0.02
		(No)		21 0.91	34	147 51.5	228 9.92	34	100		307	750 32.62	35	1.91	32 1.39	2.00	2.30	34.80	36
	Moone	sium (Mg)		22 1.79	1.41	3.62	27.	0.77	5.36		210	283	000	0.08	5.8	0.08	0.13	126	0.02
		(Co)		600	2.35	150	219 10.93	1.25	153		235	174	0.08	1.20	34	0.80	17	67:4	0.30
	표			7.8	8,1	8.1	8.1	8.1	7.9		7.6	7.5	80	80	8,3	4.9	8.1	8.1	9.5
Specific	ance			534	909	1,520	2,120	352	1,510		3,740	5,180	191	356	381	322	357	07247	207
	Temp			23	70	78	82	75	78		72	78	83	72	72	78	78	76	92
	Dote			7-31-61	7-31-61	7-31-61	7-31-61	7-25-61	7-31-61		6-20-61	6-20-61	6-28-61	6-28-61	6-29-61	6-28-61	6-28-61	7-19-61	6-28-61
State well	number ond		2700	11N/18W-14M1	11N/19W-25F1	11N/2CW-8R1	-25K1	12N/19W-33R1	12N/21W-33N1	MDB&M	25S/18E-3N2	25S/19E-7P1	255/23E-11J1	25S/24E-27R1	255/255-401	255/265-1R1	-1631	265/18E-1A	26S/24E-3R1
	Owner and	use		Tejon Ranch domestic	Tejon Ranch domestic and irrigation	W. O. Fry 1rrlgation	Kern Rock Company industrial	R. Hildebrand irrigation	Parks Brothers 1rrigation		Gilland Oil Company industrial	K. K. Ranch #29 1rrdgation	Tulare Gun Club 1rrigation	C. Fairini irrigation	1rrl gation	Mid-State Hort. Co.	M. Caratan irrigation	lrrlgation	R. Heltzig 1rrigation

Determined by oddition of constituents.
 Grovimatric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manaonese (Mn), Zinc (Zn),

1 1 1 1 1 1 1 1 1 1		State well			Specific conduct-			M.	eral co	Mineral constituents	ië.	pd loviupe	rts per	parts per million equivolents per million	100	-		Total	\$	Hardness	$\overline{}$	
84 2.399 7.4 2266 80.0	number and ather number			Temp in °F a			 - 1			Bicor- bonote (HCO ₃)	Sul - fote (SO ₄)	CCI)	Ni- trote (NO ₃)			Silico (SiO ₂)	r constituents ^d	solved solids in ppm	sod ium	ة ا	_	Analyzed by c
Colored Colo	MDB&M						KE	N COUN	TY (Cor	<u>nt.)</u>												
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	26S/27E_9G1		6-28-61										0.03	0.02	51.0	91		1,730		6776	880	DWR
Caracter 777 2,450 777 810 222 1457 9 9 9 9 9 9 9 9 9	27S/20 E- 34G1	19	19-61-2										79.0	0.2	7.8	53		3,010		128	0	DWR
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,	27 5/ 22 E- 202	2	6-28-61										0.0	1.3	0.90	81		1,410		211	162	DWR
1	7	17.1	6-21-61				 						0.02	0.02	1.4	ম		1,860		635	501	DWR
1.5-54 88 150 10 10 10 10 10 10 1	-5	862	6-21-61										0.0	0.02	0.71	ম		1,290		363	230	DWR
1.5-61 84 150 8.0 6.11 0.02 1.13 0.02 0.00 0.	75/23 E- 2	נגלי	7-5-61	82									0.01	0.02	0.09	25		159		10	0	DWR
6-28-61 80 316 8.2 2.6 0.05 1.75 0.05 0.05 1.75 0.05 0	275/24 5- 5R1	58.1	19-5-2	ಹೆ		 							6.07	0.0	0.05	디		105		16	0	DWR
6-28-61 76 1,230 7.4 156 2.5 2.03 1.70	:73/25 E -	FE.	6-28-61	8									21 0.34	0.2	0.0	%l		202		92	0	DWR
6-26-61 67 2,420 7.8 65 5.44 0.00 0.00 0.00 0.00 0.00 0.00 0.0	75/26 E -	.27R1	6-29-61										34	0.0	90.0	32		789		167	382	E ME
6-26-61 67 2,420 7.9 144 6.1 397 1.0 0.00 0.00 0.00 0.00 0.00 0.00 0.00	75/27 E -	-2931	6-28-61										0.0	0.0	34.0	33		638		245	175	DWR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	8S/22E	-4A1	6-26-61										0.0	0.02	0.91	রা		1,510		310	261	DWR
6-21-61 67 1,140 7.0 85 12 0.57 6.26 0.01 2.44 0.00 0.00 0.80 1.10 7.0 0.00 0.80 1.10 7.0 0.00 0.80 1.10 7.0 0.00 0.80 1.10 1.13 0.00 0.00 0.00 0.00 0.00 0.0		1081	6-21-61										0.00	0.3	0.52	ৱা		783		235	त्र	DWB
7-5-61 69 358 7.6 3.65 0.01 2.44 0.00 0.00 0.00 1.10 1.13 0.00 0.00 0.00	·	LN96-	6-21-61										0.0	0.02	0.54	138		745		261	18	DWR
	8S/23E	-25P1	7-5-61	69							•••••		3.7	0.02	0.13	श		509		8	0	DWR
																				_		

Determined by addition of canetituents.
 Growmatric determination
 Analysis by U.S. Geological Survey Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), analysis by U.S. Geological Survey Quality of Water Resources (C) With Total Stating Laboration (T.L.L.) or State Department of Water Resources (C) in indicated.
 d. Iron (Fe), Automam (Al), Arsanic (Ae), Copper (Co), Lead (Pb), Managers (Mn), Zinc (Zn), indicated.

	Anolyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	D WR
Hardness		Pod Edd		0	19	221	0	0	ιχ	0	0	7,00	0	0	81	4.5	0
	, ,	E DOLO		56	62	286	12	65	116	76	19	015,1	95	23	200	506	160
à	og G			72	71	8	95	92	36	32	89	52	69	8	3	56	38
Totot	solids solids			124	286	240	313	261	235	14.7	259	2,450	398	298	767	339	353
	Sitico Other constituents																
				গ্ৰ	RI.	କ୍ଷ	킈	H	মা	श्र	81	81	8	77	33	리	81
Lion	Boron	<u> </u>		0.11	0.05	77.0	이	51.0	0.11	이	77.0	0.19	0.18	17.0	0.2	0.2	0,21
millio ser mil	Ffuo-	(F)		0.0	0.0	0.03	0.02	0.02	0.0	0.2	0.00	0.00	0.00	0.0	0.1	0.0	0.02
parts per million equivolents per million	-i N	(NO ₃)		1.6	1.4	0,10	0.00	0.0	4-4	0.0	0.03	2.10	0.0	0.01	000	5.3	0.04
oviupa	Chío-			6.5	81 2.28	81 2.28	1.44	23	51 1.44	9.0	15	520 14.66	43 1.21	138 3.89	26 0.73	1.13	30 0.85
ints in	Sul	- 1		0.20	60 1.25	216	2.00	86 1.79	0,83	0.35	47 0.98	19.70	000	15 0.31	219	1.15	11.06
Mineral constituents	Bicar- bonate	(HCO ₃		1.48	53 0.87	1.29	1.34	96	$\frac{79}{1.29}$	101	160 2.62	2.29	344	32 0.52	122	3.15	3.47
sral c	Corbon-	(00)	(Cont	00	000	000	000	000	000	00	000	00	000	0.07	000	0.07	000
, Ki	Potas-Corbon-	ŝ	KERN COUNTY (Cont.	0.02	1.1	2.6	0.5	0.01	1.5	0.0	2.8	0.31	0.07	0.01	1.1	2.3	0.12
	Sodium	(ON)	KERN	32	3.13	2.48	106	2.78	1.30	17.0	2.78	8.61	108	29	3.18	33	47 2.04
	Magne	(Mg)		0.8	0.5	4.5	0.00	0.08	1.0	0.4	1.4	7.67	5.5	000	0.0	1.03	1.00
	Calcium	(00)		9.1	24 1.20	5.34	4.8	$\frac{22}{1.10}$	2.24	$\frac{24}{1.20}$	22	451 22.50	31 1.55	23.0	3.99	3.09	2.20
	£			8,1	7.8	7.9		8.1	8,1	8.1	8.2	7.6	8.1	8.4	8.1	8.	8 2
Spacific conduct-	(mlcro-	at 25° C)		188	507	878	521	077	407	223	412	3,330	632	561	715	538	529
	Temp in °F			75	78	72		99	72	99	92	83	79	20	72	76	92
	sampled			7-5-61	6-28-61	6-29-61	10-5-61	6-21-61	6-29-61	8-1-61	7-5-61	7-17-61	7-31-61	6-21-61	8-1-61	8-7-61	8-7-61
State well	number ond other number		MDB&M	28S/25E-17L1	28S/26E-11A1	-3041	28S/27E-23D1	295/23Е-24Н	295/25E-10N1	295/26E-35K1	29S/28E-12E1	-36J1	295/29E-34N1	30s/23E-1C1	308/24Е-14Н	30S/27 E- 21D1	305/28 5-11 R2
	Owner and			B. Issoc 1rrlgation	S. A. Camp #12 1rrigation	Kern County Land Co.	irrigation	Houchin Ranch domestic	B. Curtle 1rrigation	M. F. Grimes irrigation	D. C. McCann lrrigation	Kern Growers Exch. domestic and irrigation	Kern Oil Company irrigation	L and P Dadini domestic	State of California irrigation	Kern County Land Co. domestic and irrigation	C. Samuels domestic and irrigation

Obstermined by addition of constituents
 Grovimatic determined by addition of constituents
 Grovimatic determined Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
 Terminel Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsanic (As), Copper (Cu), Lead (Pb), Manaconse (Mn), Zinc (Zn),

	Sept.			Specific					Min	eral car	Mineral canstituents	Ē	parts per million	parts per million valents per mill	million er milli	uo		Total		Horde		
Owner and use	nymber and ather	Date	Temp in °F	once (micro-	Ŧ.	Calcium	Magne- sium	Sodium F	Potos-C	Carbon-	Bicor- bonote	Sul -	Chlo- rida	-i Z t	- opir	5_	Silica Other constituents ^d	dis- solved colids	- Sod	es CaCO ₃ Total N.C.		Analyzed by c
				ot 25° C)			+		3	(co)	(E 00H)	(804)								mdd	E dd	
	HDBGH							KER		COUNTY (Cent.)	<u> </u>											
Douglas Oil Company domestic and industrial	305/28E-25A1	8-7-61	78	697	8.1	1.85	0.91	1:91	0.12	000	3.54 0	36	0.51	0.03	0.0	0.23	%	285	04	138	0	DWR
T. Panella domestic	30S/29E-5D2	7-17-61	46	1,510	7.4	7.34	3.45	112	7.6	8	3.59	200	1777	2.44	0.00	90.0	9% 9%	981	08		360	DMR
E. Pressler irrigation	-1561	7-28-61	17	1,050	7.9	102 5.09	25.04	3.09	6.1	00	1.90	225	3.67	0.18	0.03	0.14	18	949	30	357	262	DWR
H. Porter irrigation	-20A1	7-18-61	12	731	7.8	3.24	2.05	48 2.09	5.6	000	3.16	1.75	62	37.0	0.02	म्र-०	<u></u> 22	157	7 58	265	107	OWB
F. Alexis irrigation and domestic	-27J1	7-17-61	79	892	£.	42.7	2.21	2,52	0.13	000	750	1.89	1.47	1.69	0.02	<u> </u>	22	579	38	323	118	DWR
R. Banduchi irrigation	315/245-2881	7-21-61	92	5,590	7.8	522 26.05	150	725 31.54	0.31	000	1.49	2160	24.03	0.31	0.00	3.4	25	7,540	45	1920	1840	DAR
Houchin Parms 1rrigation	31S/25E-25Н1	6-22-61	23	141	8.2	0.85	0.0	3.22	1.2	000	1.84	1.98	6.3	0.0	0.21	05.0	- FE	293	77	9,1	0	DWR
Palm Dairy domestic	31S/28E=7R3	7-18-61	71	516	8.2	2.40	9.9	52 2.26	2.0	000	2,32	1.37	31	0.0	0.02	0.2	ଥ	323	3	139	0	DWR
J. Bueby domestic and irrigation	31S/30E-16A1	7-31-61	ਲੈ	167	7.5	1.05	6.4	3.18	4.4 0.11	8	3.08	0.31	1.13	0.22	0.07	3.6	21	291	59 1	79	0	DWR
L. A. Atheltic Club irrigation	325/27 E -6D1	6-22-61	1/4	381	8.2	0.55	0.03	3.13	0.02	8	2.02	1.33	0.28	0.0	2.6	0.31	ଥ	252	78	53	0	DWR
Kern County Land Co. irrigation and domestic	-1681	8-7-61		952	8.1	5.74	99.0	3.92	3.1	00	3.64	271	27.0	0.12	0.05	3.0	ন্ন	587	38	320	138	DWR
H. M. Harford irrigation and domestic	32S/28E-12F1	7-25-61	75	807	8 .2	1.45	5.7	2.13	2.2	00.0	2.70	68.0	18 0.51	0.01	0.0	0.15		246	52	8	0	DWR
C. B. Dickey irrigation	32S/29E-11R1	7-25-61	\$	2,050	7.7	131 6.54	2.57	246 10.70	5.04	000	2,98	2,66	501	0.03	0.0	72.0	না না	1,160	3,	726	307	DWR
Option of constituents	of constituents																		1			

a. Determined by addition of constituents.
b. Grovimetric determination.
c. Analysie by U.S. Galoglect Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Analysie by U.S. Galoglect Survey, Quality of Water Resources (O.W.R.) as indicated. Terminal Testing Laboratory (T.T.L.) or State Opportment of Water Resources (O.W.R.) as indicated.
d. Iran (Fe), Aluminum (A1), Arsenic (As), Capper (Cu), Lead (Pb), Managnese (Mn), Zinc (Zn),

	D .						
	Anolyzed by c		DWR	OWR	DWR	DWR	
Hardness	N.C.		158	24.5	320	194	
L	1, 1		433	7778	529	412	
å	Sod in		35	37	32	38	
Tatal	eolved eolids in ppm		84.7	2716	1,010	872	
	Silica (SiO ₂) Other canstituents ^d						
	Sifica (SiO ₂)		#	#	갦	24	
Lion	Boron (B)		1.7	77	77	7.1	
millar ser mil	Flua- ride (F)		0.02	0.03	0.0	0.02	
parts per millan valents per mill	Ni- trafe (NO ₃)		6.3	20 0.32	9.6	0.0	
parts per millan aquivalents per million	Chia- ride (CI)		1.39	1.27	1.27	1.18	
ats in	Sul – fate (SO ₄)		331	438 9.12	493 10.26	389 8.10	
nstitue	Bicar- banate (HCO ₃)	EX	335	248	255	266	
Mineral constituents	Carbon- ate (CO ₃)	PANOCHE VALLEY	000	000	00.0	00	
Σ	Potas-(sium (K)	PANOC	3.1	3.4	3.1	2.8	
	Sodium (Na)		108	5.35	113	116 5.05	
	Magne- sium (Mg)		49.01	<u>54</u> 4.41	52 4.28	3.49	
	Calcium (Ca)		23	91 4.54	126	4.74	
	PH		7.9	7.9	7.8	7,7	
Specific conduct-	ance (micra- mhas at 25° C)		1,240	1,340	1,410	1,260	
	Temp in °F		78	87	75	73	
	Sampled		7-18-61	7-18-61	7-18-61	7-18-61	
State well	nymber and other number	MDB&M	15S/10E-200	-2IL1	-22D1	158/11E-30F	
	Owner and		Rey Brothers irrigation	S. Serirsen domestic	Rey Brothers irrigation	H. Berg irrigation	

Determined by addition of constituents.
 Crowmetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.L.) or State Department of Water Resources (T.W.R.) or Indicated.
 G. Handley A. Aluminum (Al), Assaile (As), Capper (Cu), Lead (Pb), Managness (Mn), Zine (Zn),

⁻²⁸⁹⁻

	yzed c																_			
	Anolyzed by c			TATE	TATE	TWE	TATE	TWE	DATE	EWR	DWR	DATE	DWR	DWR	DATE	DWR	DWR	DWR	TWE	DWR
Hardness	5000	o Eda		0	0	•	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		Tata P mgg		98	68	137	%	7	81	152	125	=	ᅜ	13	79	13	72	133	76	151
	sod-sod-sod-sod-sod-sod-sod-sod-sod-sod-			140 24	20	69	94 0.	34	0 78	γ ₂ ο _γ	52	9 39	63	8	- 28	95	76 91	17. 44	1,4	320 38
į.	solved solids			74	157	229	270	143	140	242	194	159	188	181	186	9£†	336	19	174	-
	Silica Other constituents					AB 0.00									AB 0.00	A8 0.02				
				121	4	91	57	7 27	133	었	씱	81	<u>%</u>	52	52	81	2 23	21	121 121	[23
il ian	Baran			0.00	0.05	0.0T	0.22	0.07	0.2T	0.10	0.04	0.09	0.12	0.12	0.12	5.4	0.45	0.09	0.00	0.33
parts per million squivalents per million	Flug			0.0	0.00	0.0	0.02	0.0	0.0	0.00	0.00	0.00	0.00	0.0	0.00	0.0	2.3	0.00	0.2	0.02
gents p	Z	(NO ₃)		1.2	1.4	0.02	0.0	0.5	0.00	14	1.4	0.0	0.00	0.10	0.10	0.02	4.2 0.07	7.0	0.03	0.0
a squiy	- old	(C)	(6-1)	1.9	0.05	0.08	25 0.70	0.06	6.5	7.8	0.00	0.06	2.8	0.01	0.0	1:9	1.4	3.7	0.0	12 0.34
nts in		(\$00,	VALLEY (6	0.0	0.5	8.1	41	3.4	16	0.29	6.9	0.0	1.2	3.3	0.08	0.00	0.0	0.03	6.6	26
canstituents	Bicar	\rightarrow	SURFRISE V	132 2.16	2.20	3.31	133 2.18	128 2.10	83	3.24	3.03	142 2.33	170 2.79	163 2.67	172 2.82	276 4.52	294	176 2.88	2.11	4.24
Mineral	Carban	(CO ₃)		000	0.00	0.13	000	0000	0.00	00.0	00.00	0.00	0000	00.0	00.0	00.0	200	00.0	8	8
Σ	Potas	(X)	(No. 6)	1.7	3.7	2.6 0.07	5.8	0.0	2.1	0.02	0.03	0.0	2.7	0.02	0.0	2.9	1.7	2.3	6.1	5.6
	Sadium	-	N REGION	13	11 0.43	23	4.1 1.78	18 0.73	34 1.18	8.0	16 0.70	1:00	42 1.83	60	42 1.83	148	120 5.22	10	14 0.61	1.91
		(Mg)	LAHONTAN	5.1	6.4	11.14	6.9 0.57	0.23	0.08	0:04	6.7	0.24	0.22	0.0	3.4	0.0	000	10	8.8	14
	Calcium	(Ca)		26	25	32 1.60	27 1.35	25 1.25	5.6 0.28	44 2.20	39	26 1-30	16	4.9	1.00	4.8 0.24	2.1	36	0.80	37
υ 1	표 :	6		8.0	8.3	8.5	8.3	8.3	8	8.3	8.1	8.3	8.3	ω. ω.	8.3	8.3	8.4	8.3	7.4	7.9
Spacific	ance (micra	at 25°C)	•	ង	214	336	385	210	189	378	307	230	267	274	289	641	864	280	217	994
	Temp in °F			咒	95	99	82	9	63	75	27	57	8	65	62	75		63	65	65
	Date			8-22-61	8-22-61	8-22-61	8-22-61	3-22-61	8-22-61	8-23-61	8-23-61	8-22-61	8-22-61	8-23-61	8-23-61	8-22-61	8-23-61	8-23-61	8-22-61	8-22-61
State well	number and other number		MIBSW	40N/16E-11G1	-13R1	-36FI	40N/17E-20C1	41N/16E-4G1	2503	42N/16E-4F1	risl -6R2	-2111	-34FI	43N/16E-20B1	-33M3	44N/16E-6E2	-29N1	45N/16E-17D1	46N/16E-4KI	-1301
	Owner and	457		L. Cockrell, domestic	H. J. Powers, 1rrigation	D. I. Grove, domestic	B. Cambron, stock & flsh pond	L. Heryford	H. Malitz, domestic	M. Urrels, irrigation	Surprise Valley Lumber	L. B. Lexague, domestic & stock	E. Cook, domestic	G. W. Warren, domestic	F. Arreche, domestic & stock	M. Quirk, irrigetion	B. Patch, irrigation	L. Eanks, domestic	C. A. Youngman, domestic	R. W. Peterson, domestic

Obtermined by addition of constituents.
 Growimstric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Caneuttants (P.C.C.),
 Emmissis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Caneuttants (P.C.C.),
 Erminol Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.

 d. Iran (Fe), Atuminum (AI), Arsanic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown

⁻²⁹⁰⁻

	77	_																				
	Analyzed by c		DANS.		DWR		DAR	DWR	DATR	DAR	TATE	DAR	DAR	DAR	DWR	DWR	DAR	DATA E	DWR	DAR	EM	
0.655	05 CoCO ₃	S Edd	0		0		0	0	0	0	0	0	0	0	0	0	560	0	0	0	0	
	1	mdd.	89	S .	<i>a</i>		218	122	106	1,8	911	221	227	8	99	184	580	120	п	99	135	
	P P P		57		% 		27	23	8	65	82	26	8	প্র	55		3	33	8/	39	47	
Totol	dis- solved solids		312	1	360	(378	186	169	93	202	899	244	169	176	303	1220	267	186	777	335	
	Silica Other constituents				As 0.01								AB 0.01				As 0.01					
	Silica	2010	62	4	었	,	8	일!	35	23	64	55	킈	의	77.	91	57	23	25	ଛା	38	
le le	<u>۾</u>		0.45		0.76		90.0	10.0	0.02	0.0	0.05	0.19	0.14	0.08	10.0	90.0	0.15	0.03	0.97	0.04	0.34	
parts per million equivalents per millian	Flua-		2.0	0.03	0.12		0.00	0.00	0.00	0.0	0.2	0.02	0.0	0.02	0.02	0.2	0.3	0.2	3.5	0.2	0.0	
arts per	- i Z	(NO ₃)	ued)	0.03	3.2		0.0	1.2	5.3	0.02	5.1	0.0	37	2.6	0.00	0.02	0.19	20	0.7	0.6	3.3	
dinbe	Chia -	B(C)	\sim	0.82	20 0.56	_	17 0.18	3.9	2.4	0.03	3.1	1.30	0.51	4.1	6.0	6.5	522	10 0.28	13 0.37	3.0	17 0.43	
ri si		~	141	0.75	4.6 0.10	NE PLAINS (6-2	26 0.54	15	3.1	2.3	2.8	2.06	18	0.10	7.1	12 0.25	362	: valley (6-4) 6.4 10	39	12 0.25	1:46	
Mineral constituents	Bicar	(HCO ₃)	07	2,82	287	NE PLAI	314	173 2.84	2.44	72	173 2.84	1.90 7.90	373	2.29	157	270	388	197 3.2	1.39	011	3.24	
neral co	Potas - Carban-	(00)	SURPR	0.00	8	MADEL.	0.00	0.00	00	000	00	00	00.0	00	000	000	00.0	RONEY 0 0.00	0.00	0.00	000	
Ž	Potas-	(X	(ND. 6),	0.22	1.7		7.6	4.6	0.07	3.9	3.8	19	8.8	0.11	0.10	5.6	15 0.38	2.7 0.07	0.5	4.60.0	0.03	
	Sadtum	(S)		2.61	133 5•T8		339	18 0.78	13	20 0.87	16 0.70	145	66 2.87	13	3.7	25	188	36	57 2.43	19	2.4	
	Mogna-	(Mg)	2	0.68	0.1		28 2.32	1,14	12 1.02	1.7	15	34 2.82	3.04	12 0.97	6.7	22 1.78	83 6.85	0.30	0.5	3.6	10 0.85	
	Calcium	(00)	3 8	01:10	1.4		41 2.04	26	1,10	4.4	1.10	32	30	19 0.95	13	38	95	32	3.6	0.90	37 1.85	
	五		α		8.5		0.8	7.6	7.5	7.3	8.0	8.3	φ.3	ω. ω.	0.8	8.3	ω α	7.7	0.8	7.8	7.5	
Spacific	once (mlcra-	at 25°C)	ניקיין	7	775		578	321	257	128	282	1030	169	236	270	452	1880	393	292	214	526	
	Tamp in °F		87	8	26		26	26	1 79	62	2				72			67	61	88	9	
	Dote		0 00 63	19-22-0	8-22-61		8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-9-61	8-10-61	8-7-61	8-7-61	8-7-61	
e do o	number and ather number		MIBSM	46N/16E-25R2	-29E1		34N/13E-18B1	34N/14E-15H1	-22A1	34N/15E-21L1	35N/12E-20B1	-24R1	35K/13E-26J1	35N/14E-15N1	-2405	36N/12E-29E1	37N/13E-20Q1	22N/17E-4KI	25N/17E-21N3	26N/15E-3F1	26N/16E-15E1	
	Owner and	980		J. Stooksberry, stock	H. Talbots, irrigstion		E. Williems, stock	G. Drumand, domestic	Southern Pacific R.R., domestic & industrial	T. Garate, stock	Rock Hill Ranch, stock	Vacant property	State of California, domestic	F. Jonea, stock	R. Marr, stock	Unknown	Pit River Ranch, domestic	R. Brasher, domestic	P. Hall, unused	F. Flux, irrigation	Lora Garnder, 1rrigation	

	of C			Specific					Mine	Mineral constituents	tifuents	. <u>.</u>	equivolents per million	parts per million volents per mill	million	ا		Tote	10		dness	
Ownsr and	number and other number	Sompled	Temp F or	conduct- ance (micra- mhas at 25°C)	E .	Calcium (Co)	Magne S sium (Mg)	Sadium P (Na)	Patos-Co sium (K) (C	Carbon Bi ote bo (CO ₃) (H)	Bicor- bonate ((HCO ₃)	Sul – fate (SO ₄)	Chlo- cide (C)	Ni- trota (NO ₃)	Fluo - Bo ride (F)	Boron Sit (B) (Si	Silica Other constituents ^d	1	solved sod- solids ium in ppm	المكارية	as CoCO ₃ fatal N.C. ppm ppm	Analyzed by c
	MDB&M						LAFONTAN	TAN REGION	ON (NO.	- (9	HONEY LAK	LAKE VALLEY (6-4)(Continued)	((-9) X	Contin	(pən							
R. Slaughter	27N/14E-26E1	8-7-61	8	198	9.9	1.00	0.08	0.65	0.05	00 8 8	1.18 0.0	0.27	5.4	0.18	0.00	₹I 70°0	48 0.00	150	36	- ↑	0	DAR
U. S. Army domestic	27N/16E-11E1	8-8-61	58	880	7.8	93.44 1	1.85	3.57	5.3	000	201 3.29 F.	7 29: 1:62		0.02	0.5	0.36	 2	595	<u>ş</u>	. 265	001	DAR
U. S. Army domestic	-3692	8-8-61		1080	7.3	% = 1	33	% %	5.2	000	3.49	343	30	0.24	o. 다. 이 다. 이 다. 이 다. 이 다. 이 다. 이 다. 이 다.	0.32	~	760	1 8	376	501	DAR
City of Jamesville comercial	28N/13E-9E1	8-7-61	57	412	0.7	1:10	6.6 0.54	9.0 0.39	7,00	00.0	93 1.52 0.	1.8	3.1	24 0.39 7	0.2	20.0	<u>\$1</u>	162	61	8	9	DWR
State of California irrigation	28N/14E-2G1	8-8-61	26	1040	8.3	811	9.0	198 8.61	0.12	0000	100 2,01 2,01 2,01 1,00 1,00 1,00 1,00 1	1.4	021 33.33 34.33	2.7 0.0	0.6	95.0	<u></u>	949	81	8	0	DWR
D. Base domestic	-1781	8-8-61		984	7.6	8,1 8,2	9.7 0.80	67 2.91	9.0	000	305 1-95 00	8.4	0.12	0.00	7.0	11.0	87	319	55	î î	0	DWR
Tenner Ranch domestic	28N/15E-6KI	8-8-61	58	983	4°L	2.30	2.06	127 5.52	2.4	0.00	7.11	2,00		0.7	0.8 0.04 0.04	74.0	45 As 0.05	583	3 26	977	0	DWR
J. Rumphrey hot springs	28N/16E-8B	8-8-61	217	1260	8.2	0.85	1.3 0.11	9.88	5.5	900	0.75	6.10	157 1.13	2-5-0 10-0	3.6	0.4	101 As 0.22	₹£8 ———	8	<u>3</u>	9	DWR
Hooper and Thusley public fountain	28N/17E-18KL	8-8-61	₫	250	9.1	94.0	ήτ.°	1.78	9.4	100	1.66	24.0	0.28	2.6	0.02	60.00	38	176	23	27	0	EAR.
Fruit Growers Supply Co.29N/12E-4G1	60.29N/12E-4G1	8-10-61	78	751	7.8	10 12:0	91.0	2.36	90.0	0.00	85 1.39 3	3.58	1.72	0.00	0.0		39 As 0.02	14.73		143	0	DWR
M. A. Mallery domestic	-1541	8-7-61	59		7.0	8:1	0.52	15 0.52	0.03	00.0	00.0	0.00	0.06	4.50	0.00	57	~~	156	5 25	<u>ه</u>	0	DWR
Johnston Ranch domestic	29N/13E-1N1	8-8-61	69	709	9.7	0.24	0.0	120 5.22 5.23	0.10	000	2.95	1.64	21 0.59	27 0.44	0.9	0.81	<u>65</u>	111	1 93	41	0	DAR.
D. Mathisen irrigation	-6kg	8-8-61	59	307	7°t	1.20	8.5 0.70	1.00	6.0	000	24.7 5.41	16 0.33	4.4	0.07	4.0 0.0	<u>।</u>	- 		33	88	0	DAR
G. Brabham domestic	-1461	8-10-61	8	246	7.7	0.50	3.9	103	2.9	0.00	198 3.24 0	0.15 0.15	23	250 40.00	0.0 10.0	0.31	66 As 0.03	381	1 83	17	0	EM.
Nemo	-3 ⁴ NI	8-8-61	đ	359	7.4	31	10.1	0.65	10°0	0.00	1.13	0.16	0.51	1.42	0.0	- T	<u></u>	265	200	921	ध्य	DAR
C. L. Curtis domestic & garden	29N/14E-4N1	8-8-61	62	797	7.7	08.0	0.34	6.05	0,31	0 0 0 0 0	328 5.38 1	55.1 55.1		0.08	0.03	0 1 0	29	564	5 81	1 57	0	DWR
	of constituents									-						\exists						

Determined by obtaining of constituents.
 Growmaric determinations.
 Growmaric determinations.
 Analysis by U.S. Geslooplack Survey, Quality of Water Bronch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
 Termiyals by U.S. Gobological Survey, Quality of Water Bronch (Water Resources, IQ.W.R.) as indicated.
 Consultant (P.C.C.), An expert (C.U.), Lead (P.D.), Water Bronch (W.R.), Sinc (Z.N.), reported here as 500except as shown at the form of the consultant of the consult

	73						
	Analyzed by c		DWR	DWR	DWR	DWR	RA RA
dne ss	as CaCO ₃ Total N.C.		0	0	0	0	0
	1 '		ಪೆ	<u></u>	180	%	4
à	S C C C C C C C C C C C C C C C C C C C		8	8	\$	3	69
Total	solved solids in ppm		#	530	Lot	210	351
	Silica (SiO ₂) Other constituents ^d						
	Silica (SiO ₂)		<u>હા</u>	25	55	길	최
Ligil	Baron (B)		귀	84.0	0.20	0.26	
aquivolents per million	Fluo- ride (F)		0.08	0.0	0.0	0.0	0.00
olents pe	Ni- trote (NO ₃)		80 0.35	0.00	0.0	3.3	0.03
Viupa	Chlo- ride (CI)	ntimed	0.70	45	0.37	18 0.51	$\frac{\mu_1}{1.16}$
i i	Sul - fote (SO ₄)	(6-4)(continued)	211	8.6 0.18	1.21	28	हा: इ::2
Mineral constituents	Bicar- bonote (HCO ₃)	LAKE VALLEY	7.72	439 7.20	236 4.85	1.74	일년
neral co	Carbon- ota (CO 3)	LAKE	00.0	00.0	0.0	0.0	8
×	Potas- sium (K)	HONE	5.7	4.7	0.10	8.0	୍ଷ ଓ ୯୧୦
	Sadium (Na)	м (жо. б),	11.22	186 8.03	2°.8	2.13	다. 라.
	Magne- sium (Mg)	N REGION	0.73	5.5	16 1.30	0.18	o.4.3
	Calcium (Co)	LAHONTAN	ध ७.९%	7.0	1.6 2.30	6.9	21 1.05
	Ŧ.		8	7.7	7.0	7.4	7.7
Spacific	ance (mlcro- mhas at 25° C)		1240	870	630	326	₹
	Temp in °F		22	75	63		₹
	Sompled		8-10-61	8-8-61	8-8-61	8-8-61	8-10-61
State well	nymber and ather number	MDB&M	29N/14E-18RI	29N/15E-21N1	-30 A 2	29N/16E-30L1	30v/12E-33N2
	Owner and use		F. C. Couper domestic	State of California irrigation	J. Dewitt domestic	Southern Pacific R.R. domestic and industrial	California Pacific Utility Company industrial

Octownelized by addition of constituents.

B. Growmetric determination.

C. Analysis by U.S. Gaological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.L.) or State Department of Water Resources (D.W.R.) os indicated.

G. fron (Fe.), Aluminum (A1), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as \$\overline{\text{GOO}}{\text{GOO}} \overline{\text{GOO}} \overli

	o total		0)	Specific					Mineral		constituents	ء.	od	ports per million	illion	-				3		
Owner ond	pun per oud	Oote	Temp	once once	£		-	1	Dioe C	Proporting B		1 11 7	3	- I	- 0			Solved Solved	Cent	os CoCO 3		Anolyzed
950	January January	paidings	-	mhos of 25°C)		(CO)	(Mg)	(ON)	(X)	ote bo	bonote (HCO ₃)	fote (SO ₄)	(S (S (S (S (S (S (S (S (S (S	(NO ₃)	(F)	(B) (S	(SiO ₂) Other constituents			Totol	N.C. PPB	o ka
										HIMOS	TAHOE VALLEY	ALLEY (0	(6-5.01)									
F. Parker domestic	12N/18E-3C1	9-15-61	54	65	7.3	5.6	2.2 0.18	4.0	0.0	000	39 0.64	0.05	0.0	0.5	0.01	0.0	<u>- 25</u>	82	27	23	0	DWR
C. Hoffman domestic	3FI	9-12-61	57	621	8.0	16	3.6	5.5	0.0	0.0	82 1.34	0:0	0.00	00.0	0.00	0:0	33	%	18	55	0	DWR
R. Doud domestic	517	9-12-61	179	95	9.2	5.6	0,10	0.22	0.02	0.0	0.93	0.0	0.0	0.5	0.00	0.0		98	†₹	34	0	DWR
Gardner Mt. Water Co. domestic	5P1	19-21-6	25	69	7.5	6.4	0.16	0.19	0.0	00.00	μ ₁ 0.67	0.0	0.00	0.5	0.01	0:0	 	99	&	72	0	DWR
State of California domestic	291.1	19-21-6	 	81	7.7	7.6	0.0	6.8	0.03	00.00	¹ 2 0.69 0	0.00	1.2	00.0	0.01		ଧ	59	39	83	0	DWR
										NORTH	TAHOE V	VALLEY (6	(6-5.02)									
R. E. Rauscher domestic	14N/16E-101	10-18-61		143	7.4	1 ⁴ 0.70	6.1	0.22	0.02	000	1.39	0.0	1.6	0.01	0.0	0.1	31 A1 0.06 Cu 0.01 Fe 1.4 Pb 0.03 Ma 0.07 Zh 1.0	101	15	8	o	DWR
G. Minor domestic	ВП	10-17-61		141	7.3	13	0.63	0.18	1.4	0.00	91.49	0.0	0.00	00.0	0.00	00.0	38 Cu 0.03 Fe 0.46	110	12	†9	0	DWR
T. L. Quinn domestic .	14N/17E-8N1	10-18-61		103	7.3	0.60	1.7	5.1	1.4	00.00	0.90	0.0	2.3	0.02	0.00	0.02	30 A1 0.16 cu 0.01 Fe 0.15 Zn 0.20	81	N	37	0	DWR
Douglas Dale Lodge domestic	15N/16E-24A1	10-18-61		158	7.3	17	6.2	3.8	1.4	00.00	85 1 39	0.00	3.3	4.3 0.07	0.00	0.02	33 A1 0.04 Cu 0.01 Fe 0.17 Zn 1.7	77	10	88	0	DWR
Town and Country Lodge domestic	2501	10-18-61		109	7.3	05.00	3.9	3.8	0.03	000	1.06	0.00	0.02	0.0	0.00	0.00	40 A1 0.05 Cu 0.02	- 1 6	41	917	0	DWR
State of California domestic	15N/17E-6/1	19-61-01	64	171	7.9	15	8.6	5.2	3.3	00.00	106	0.0	0.02	4.00	0.00	0.01	38 A1 0.05 Zn 0.01	124	13	73	0	DWR
Tahoe City Lumber Co.	781	10-17-61		611	7.4	10 0.50	0.40	6.3	2.4	00.00	69	2.6	1.6	9.0	0.00	0,03	34 A1 0.01 Cu 0.03 Fe 0.81 Zn 6.0	96	8	45	0	DWR
Winding Creek Mutual Water Company domestic	16N/16E-28E1	10-19-61	64	L ₁₁ 2	9.4	22 1.10	0.38	6.1	0.08	00.00	00.00	2.02	0.05	0.0	0.01	00.00	37 A1 3.4 Fe 0.12 Mn 0.14 Zn 0.24	173	थ	74	42	DWR
																-						

o. Determined by addition of constituents.

b. Growinstric desemination.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.).

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.).

Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.

d. Iran (Fe). Aluminum (AI), Arsanic (Ae), Copper (Cu), Lead (Pb), Manganase (Mn), Zinc (Zn), reported here as 600 except as shown

				Specific					. ₹ip	ıral con	Mineral constituents	Ë	parts per million	parts per million	nolllion million	_		100			-	
	State well	0		conduct-		-	-		-	-	-	-	- Anna		-	-		dis-		os CoCO a		hervi
Owner and	other number	sompled	dra ri	micro- mhos ot 25°C)	표	Colcium N	Mogns- sium (Mg)	Sodium (No)	Patas-Carbon- sium ate (K) (CO ₃)	orbon- for ore co.	Bicor- bonate (HCO ₃)	Sul – fote (SO ₄)	Chlo- rids (Ct.)	Ni- trote (NO ₃)	Fluo-Bride (F)	Boron Sili (B) (Si	Silica (SiO ₂) Other constituents	solved solids in ppm	E S C	Total N.C.		by c
									NORTH	NORTH TAHOR VALLEY	VALLEY	(6-5.02)(cont.)	(Cont.)									
State of California domestic	16N/16E-32D1	10-19-61	84	232	7.7	33	3.3	5.2	0.02	0.0	1.15	09.0	12 0.34	2.1	0.00	0.02	12 A1 0.03 Fe 0.30 Zn 0.02	131	01		39 D	DWR
State of California domestic	3202	10-19-61	84	108	7.5	0.75	0.00	3.0	†°0.0	0.00	69.0	0.18	0.05	2.2	0100	ار ان	11 A1 0.12 cu 0.01 Fe 1.1 Fb 0.01 Zn 0.02	79	13	1,2 8		DWR
Riolo Club domestic	16N/17E-13H1	10-18-61	84	104	4.5	8.1	6.6	4.0	0.5	000	63	0.0	0.0	0.05	0 0	20°0	49 Cu 0.02 Fe 0.32 Zn 5.1	101	15	0 74		DWR
H. Chanda domestic	1481	10-18-61		195	4.9	21	6.7	9.2	3.4	0.00	121 <u>186-1</u>	0.0	1.6	2.0	0.00	0.03	47 A1 0.01 Cu 0.03 Fe 0.01 Zn 1.7	150	19	90		DWR
M. Martin domestic	1401	10-18-61		248	8.0	26	9.5 0.78	9.4	4.5	00.00	150	0.0	2.9 0.08	0.03	0 0 0	20.0	39 A1 0.01 Cu 0.02 Fe 0.05 Zn 3.3	167	16	101 0		DWR
Brockway Hotel Spring	16N/18E-30B1	10-18-61		629	8.5	3.3	0.0	5.18	3.1	η 0.13	1.18	39 0.81	3.21	2.00	3.5	3.4	81 As 0.28 Fe 0.02	904	95	10 0		DWR
									20	CARSON WALLEY	(9-9) TIEX	(9)										
A. Riggs domestic	11N/19E-24B1	19-21-6		143	7.3	1 ¹ 4 0.70	2.9	9.2	1.4	000	80 1.31	0.00	0.03	0.07	0.01	0.0	- 왕	102	53	0 24		DWR
Alpine County Schools domestic	3502	9-12-61		124	7.1	11 0.55	2.8	8.3	1.5	00.00	11:11	0.02	0.2	000	0.01	0:0	31	89	31	39 0		DWR
Alpine County Road Department domestic	35K1	19-21-6		82	7.8	0.30	2.9	0.22	0.0	000	46 0.75	0.0	0.5	000	0.01	0.0	34	73	80	27 0		EWIC .
Alpine County Schools domestic	11N/20E-7MI	19-21-6		112	7.2	0.55	2.8	5.1	1.8	0.0	52 0.85	0.00	1.5	0.12	0.01	0	13	82	23	39 0		DWR
									AT .	TRUCKER VALLEY		(29-9)										
Donner Lake Develop- ment Company domestic	TN/16E-7NT	10-19-61	64	1 5	6.9	5.6	0.08	3.8	0.03	000	27 0.44	0.5	3.0	0.01	000	<u>ار</u>	10 A1 0.04 Fe 0.45 Pb 0.01 Zn 1.2	38	53	0 81		DWR
Truckee P.U.D. domestic	8MI	10-19-61		129	7.7	13	6.7	3.2	0.03	0.00	85 1.39	0.00	0.00	0.0	000	0.02	34	101	91	9		DWR
Truckee P.U.D.	14F1	10-19-61	64	150	7.8	15	8.1	3.8	1.2	000	96	0.0	0.7	0.0	000	0.01	32 Fe 0.04 Zn 0.02	109	10	7	0	DWR
o Cetermined by addition of constituents	of constituents.																					

Castermined by addition of constituents.
 Gravimatric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 600 except as shown

	Analyzed by c		DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		DWR	DWR
			0		0		0	0	0	0	0	0	0	0		0	0
Hardness	as Co Total Ppm		99	65	04		88	52	8	82	17	F	39	31		911	41
	Sod		6	13	19		35	β	32	31	30	37	73	82		92	g ₁
Total	solved solids in ppm		104	115	8		175	177	72	148	144	167	214	1 172		766	81
	Silica Other constituents			Fe 0.02 Zn 0.02	Fe 0.02 Pb 0.01												
			창	쑀	36		(왕	77	8.9	킶	웨	41	37	54		13	8
ion	Boron (B)		0.01	0.05	0.02		0.10	0.30	0.06	0.46	0.10	0.22	2.6	3.0		1:2	0.02
millon ir mill	Flug- ride (F)		0.0	000	000		0.2	3.1	0.00	0.0	0.0	0.0	3.4	7.6 0.40		9.8	0.0
parts per millan valents per mill	Ni- trate (NO ₃)		0.01	1.1	0.0		4.6	0.0	0.0	0.00	3.6	1.8	1.5	3.6		0.0	0.0
parts per million equivalents per million	Chla- rida (CI)	(Cont.	0.0	8.3	3.9		2.4	13 0.37	1.4	12 0.34	0.12	2.5	39	15	(6-9)	29.0	0.01
Ē	Sul – fota (SO ₄)	((6-67)	0.00	0.08	0.02	(6-7)	7.1	39	0.10	9.9	9.9	5.9	16	16		347	1.1 0.08
constituents	Bicar- banate (HCO ₃)	TRUCKER VALLEY	89	1.28	0.09	TOPAZ VALLEY(6-7)	154 2,52	1.29	1.08	107	106	133	93	148	BRIDGEPORT VALLEY	389	1.00
	Carbon-1 ata t (CO ₃) (TRUCKE	00.0	00.00	00.00	TOPAZ	000	000	000	00.00	0.00	0.0	0.00	0.0	BRID	00	000
Minsral	Potas-C sium (K) (0.00	2.7	2.8		3.1	1.4	1.6	2.4	2.4	1.2	2.4	1.5		8.7	1.6
	Sodium (Na)		3.0	0.50	4.6		23	34	8.7 0.38	17 0.74	15	21 0.91	52 2,26	2.96		320	1.8
	Magna- sium (Mg)		8.8 0.72	6.7	3.6		7.4	1.7	1.9	5.6	5.7	4.7	1.6	1.4		3.3	2.2
	Calcium M		09.0	15 0.75	0.50		23	18 0.90	0.60	22	19	23	13	10		13	1 th 0.70
	H _Q		7.7	7.8	7. ^t		89 .v	7.7	7.2	7.6	7.7	7.8	7.8	8.3		8,2	7.0
Specific	ance (micra- mhas at 25°C)		136	155	107		259	273	121	233	210	232	339	359		1440	110
0,	Temp in °F		64	671			29	29	8	82							
	Date		10-19-61	10-16-01	19-61-01		9-13-61	9-15-61	9-12-61	9-13-61	9-13-61	9-13-61	9-13-61	9-13-61		9-13-61	9-13-61
State well	number and other number		1561	191	17F1		8N/23E-16P1	28E3	2905	9N/22E-24D1	S4MI	9N/23E-20P1	3005	32A1		4N/24E-4Al	13E1
	Owner and use		Truckee P.U.D.	Truckee P.U.D.	State of California domestic		D. Radley domestic	J. Kindel domestic	Mono County Road Department domestic	H. Williams domestic	E. Kinzy domestic	East Camp Ranch domestic	A. Sciarini domestic	Bellview Ranch domestic		Buckeye Hot Spring	Hunewill Ranch domestic

a. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Analysie by U.S. Soladjectal Sureay, Quality of Water Branch (U.S.G.S.), Pacific Chemical Caneuttants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.), as indicated.
 d. Iran (Fe), Aluminum (AI), Arsanic (Ae), Capper (Cu), Lead (Pb), Manganess (Mn), Zinc (Zn), reparted here as \$\overline{\text{GD0}}\overline{\text{GD0

	Anolyzed by c		DWR	DWR	DWR	DWR	DAR
0.00	os CoCO ₃ Totot N.C.		42	0	0	0	•
			201	389	52	134	n
ć	Sod- num- num-		143	73	19	31	a a
Totol	solved solids in ppm		575	1980	88	230	6 तर
	Silica Other constituents (SiO ₂)						
			100	디	育	<u>6</u>	S
Hion	Boron (B)		0.28	5.1	70.0	0.12	8
Ser Billo	Fluo- ride (F)		0.3	1.4	0.00	0.2	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
parts per million volents per mill	Ni- trate (NO ₃)	7	0.9	14.3 0.07	0.5	0.8	0.03
parts per million aquivolents per million	Chia- ride (Ci)	BRIDGEPORT VALLEY (6-8) (Cont.	14 0.39	3.33	0.00	3.6	0.14
is i	Sul - fate (SO ₄)	TEN (e-	230	99.6 791	0.10	34	21 0.44
nstitue	Bicor- bonote (HCO ₃)	ORT V	149	1210 19.83	76	3.46	장 당리 :
Mineral constituents	Corbon- ate (CO ₃)	RIDGE	00.00	0.00	0.00	000	00 00
Min	Patos - C sium (K)	Щ	0.28	38	2.0	10	0.60 8.00
	Sodium P		3.22	551 23.97	5.7	31 1.35	
	Magna- sium (Mg)		20	43 3.53	2.9	13	0.80 0.80
	Colerum (Co)		2,40	85	16	32	$\frac{1.40}{1.10}$
	£		7.9	9.9	7.2	8.1	E
Specific	mhas at 25°C)		750	2920	137	914	353
	Temp in °F						
	Sompled		9-13-61	9-13-61	9-13-61	19-11-6	9-13-61
3 400	number ond		4N/25E-4B1	LH1	5N/24E-25G1	5N/25E-28K1	289.
	Owner and use		F. Conner domestic	J. Van Dyck domestic	R. Snider domestic	K. C. Stewart domestic	Bridgeport P. U. D.

Determined by addition of constituents

b. Gravimistric determination.

c. Analysis by U.S. Saloglecold Sursey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),

c. Analysis by U.S. Saloglecold Sursey, Quality of Water Brauches (D.W.R.) indicated.

G. Treminol Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) is indicated.

G. Iran (Fs.), Alvenium (A1), Arsenic (As), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reparted here as \$600 except as shown

	2 1		_												
	Analyzed by c		USGS	USGS	USGS	SSSO	SOSO	USGS	USGS	USGS	USGS	nsgs	USGS	USGS	nses
1 5 E	Total N.C. Ppm ppm		0	'n	0	0	16	7†0	18	59	0	0	11	0	α
l .			88	135	33	74	78	78	99	09	123	115	717	80	184
8	E SE		53	20	32	24	23	39	33	1/1	7	39	44	29	4
Total	solved solids in ppm		146	191	73	127	137	180	118	144	138	211	107	137	192
	Silica (SiO ₂) Other constituented														
			œ,	8	19	8	93	8	57	10	75	87	9.6	75	75
Lion	Boran (B)		0.0	0.0	0.0	0.0	0.0	0.0	0:0	0:	0.0	0.1	0:0	0:0	
millio	Fige-		0.0	0.0	0.0	0.00	0:0	0.0	0.00	0.0	0.0	0.0	0.0	0.00	0.0
parts per million equivalents per million	trote (NO ₃)		0.5	0.6	0.08	0.03	% · · 8 0 · ○ 8	49 0.79	24	23 0.37	0.03	0.9	21	1.2	0.08
po	Cide (CI)		0.37	35	8.0	0.59	240.08	30	19	33	0.20	15	31 0.87	15.0	61.0
fs in	Sul - fate (SO _k)	3	1.0	0.00	2.0	0.0	5.0	8.0	7.0	2.0	1.4	13	5.4	0.02	0:10
constituents	Bicar- bonate (HCO ₃)	(No.	133 2.18	155	0.66	81	1.25	54 0.89	58 0.95	38	151	3.16	0.26	108	3.04
Mineral Co	Carbon- ate (CO ₃)	RECION	00.0	20.07	0.00	00.0	0.00	0.00	00.00	0.00	00.00	0.20	00.00	14 0.13	00.0
₹ E	Potos- Sium (K)	ASTAL	0.0	0.30	0.0	0.0	0.00	0.7	0.0	0.00	0.0	2.9	0.0	0.0	0.02
	Sodium (No)	NORTH CDASTAL SMITH RIVER	17 0.74	16 0.70	0.31	11 0.48	11	1.09	15	0.96	4.7	35	16	1.5	0.16
	Magne- sium (Mg)		0.96	13	5.8	1.11	16	16	12	10	26 2.16	13	5.4	12	66·2
	Calcium (Ca)		16	33	3.6	7.4	5.6	0.36	6.0	7.1	6.0	25	8.8	0.60	0.70
	£		8.2	 	7.7	8.1	8.1	7.8	7.5	7.4	80	8.3	7.4	φ Ε.	
Specific			523	329	101	195	204	297	211	239	240	367	186	215	S45
	Temp in °F		1	٠	•	•	•	1	1	1	•	•	4	1	1
	Date sampled		9-5-62	9-17-62	9-5-62	9-5-62	7-30-62	7-30-62	7-30-62	9-17-62	9-7-62	9-15-62	9-17-62	9-17-62	9-7-68
State well	number and ather number	HESW	16N/1W-2Q1	-(F1	-1561	-1601	-17K	-20A2	-2041	-2601	17N/IW-JAI	-1401	18N/1W-5GI	-17RL	-3482
	Owner and		A. Short domestic	L. Cadra domestic	L. L. Early domestic	Pine Grove School domestic	S. R. Mattson domestic	A. Pullen domestic	W. Storey	H. C. Kirkland domestic	R. H. Ermerson irrigation	Redwood School	R. W. Struebing domestic	M. J. Sierka domestic	Jepson domestic and stock

QUALITY OF GROUND WATERS IN CALIFORNIA ANALYSES OF GROUND WATER 1962

					_	_												
	Anolyzed	ey c		USAC	USAC	USAC	USAC	USAC	USAC	USAC		USAC	USAC	USAC	USAC	USAC	USAC	
	Hordness as CoCO ₃	O. E. C.		0	0	~	0	0	0	0		0	0	0	0	0	0	
	Hord as C	Totoi		52	57	66	37	104	140	111		145	308	17	68	154	198	
	a co	S E		8	33	18	09	94	42	27		59	m	45	22	ਜ	35	
	Totol dis-	eoirds in ppm		108	128	160	146	226	310	186		236	330	34	160	200	364	
		Other constituents ^d																
		Silico (SiO ₂)		댔	딦	33	38	35	8	00		147	39	12	247	23	24	
_	Le L	(B)		0.1	0.1	0.0	0.1	0.1	0.5	0.1		1:0	ं	0.0	0.5	0.0	1:1	
ellie	Der m			0.0	0.0	0.01	0.01	0.1	0.01	0.0		0.0	0.0	0.0	0.0	0.01	0.01	
ports per million	equivolents per million	trote (NO ₃)		0.00	0.0	12 0.20	0.00	8.6	0.20	0.03		0.00	7.0	0.0	0.0	0.07	0.16	
å	pania	울: 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		0.0	2.5	0.00	3.9	3.9	5.7	0.05		4.6	5.3	0.0	9.2	1.1	0.60	
	e e	Sul - fote (SO ₄)		6.2	5.8	0.35	6.7	9.1	10	0.0		0.5	1.9	1.9	11 0.23	8.2	00-42	
	constituents	Bicor- bonote (HCO ₃)	73	89	2.58	112	120 1.97	3.29	260	3.21	1-4)	246	360	34	2.00	2.94	284	
	lo l	carbon ote (CO ₃)	CLEY (00.00	0.00	0.00	0.00	9.6	15.0	00.00	LLEY (0.00	8	00.00	3.09	5 0.16	0.24	
	Ī	Sium (K)	BULLIE VALLEY	1.7	2.1	2.4	7.0	6.8	11	0.22	SHASTA VALLEY	2.6	0.5	0.3	0.05	0.03	0.05	
		Sadium (No)		12	14 0.60	10	32	43	2.35	0.90	ES .	28	5.0	5.5	20	8.8	2.18	
		Mogne- sium (Mg)		6.1	6.8	12	1,4	13 1.07	1.55	13		2.01	65 5.39	1.2 0.10	12 0.97	20	17 1.38	
		Calcium (Co)		0.53	0.59	20	0.38	20	25	23		18 0.88	0.77	3.6	0.80	28	2.57	
		<u> </u>		8.0	8.0	8.2	80	8.5	8.6	8.0		8.2	8.3	7.6	φ ω	8.3	8.4	
	conduct-	(micro- mhas at 25° C)		148	162	226	203	370	024	315		350	200	179	250	310	545	
	Temp	in • F		•	58	53	29	55	55	57		•	•	•	55	9	57	
	000	peldwos		8-24-62	9-56-62	8-25-62	8-24-62	8-25-62	8-25-62	8-15-62		6-6-62	6-6-62	6-6-62	8-6-62	9-21-62	9-6-62	
	State well	other number	MDB&M	45N/1E-2L1		45N/2W-1Pl	46N/1E-15D1	46N/1W-2F1	TOTE-WI/NLT	47N/2W-20G1		42N/5W-2011	42N/6W-10J1	42N/9W-2TKI	43N/5W-2CI	43N/6W-21R1	TW9-M1/N77	
	,	Dub James Dub Agen		L. D. Parsons irrigation	A. Beck irrigation	D. Mills irrigation	K. Holbrook irrigation	R. Cheyne irrigation	Butte Valley Farms irrigation	Spring School domestic (unused)		E. Spada domestic	G. G. Maxwell domestic	W. H. Landen domestic	Big Springs Irri- gation District irrigation	Dougherty and Sons irrigation	J. C. Martin irigation	

o. Obsermined by oddition of constituents.
b. Grovimatric determination.
c. Analysie by Gological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.), U.S., Apple shallow of mandlants (U.S.A.C.) or State Department, of Water Resources (D.W.R.) as Indicated,
Terminal Testing Laboratory (T.T.L.), U.S., Apple shallow of Pabl, Manganese (Mn), Zinc (Zn), reported here is \$\frac{0.00}{0.00}\$ except as shown

	Anatyzed by c		USAC	USAC	USAC	USAC	USAC		USAC	USAC	USAC	usac	USAC	USAC		
_			О	0	0	3 E	0		0		3	9	8 0		 	
Hordnese	COCO 3									25					 	
	cent as C		41 372	31 246	39	56 208	17 115	_	117	14 28T	11 82	7 178	5 238	6		
	olie - ce solived co solids in ppm in		720 4	426 3		1485	506		142	310	178	178	292	192		
<u>۾</u>			-	<i>*</i>	-					.,			-		 	
	Sinco Other constituented	all videy.														
			27	25	17	72	<u></u>		22	2	7	%	₹	51	 	
Tion	Boron (B)		1:4	0.5	3.5	10.1	0.0		0.0	0	0:0	0.1	0.1	0:0		
r millio	- obir		0.01	0.01	0.10	0.0	0.0		0.0	0.0	0.0	0.01	0.0	0.0		
ports per million equivalents per million	rote (NO ₃)		2.0	8.6	0.00	0.00	3.6		0.0	0.22	0.18	8.6	0.10	13		
o dinbe	Q:i0 • (i0)		156	23	0.83	0.08	0.0		0.00	2.1	0.00	1.4	7.0	6.19		
ë	Sul - fote (SO ₄)	~	5.8	0.33	21.7	62	28 0.59		7.2	19	5.8	8.7	10 0.21	14 0.28		
Mineral constituents	Bicar- bonofe (HCO ₃)	(contd.	453	322	526 8.61	3.85	2.32	(1-5)	139 2.28	298	1.57	3.21	264	167 2.74		
erol co	Corbon- ofe (CO ₃)	(1-4)	0.66	24	21 0.72	0.23	00.0	VALLE	3 0.11	12	00.00	0.23	8	000		
2	Potos- sium (K)	ALLEY	3.6	5.9	2.5	0.0	5.9	RIVER	0.02	0.03	0.0	0.5	0.5	0.8		
	Sodium (No)	SHASTA	122 5.30	52.26	223 9.70	33	12 0.50	SCOTT	6.6	5.5	5.0	6.6	6.1	0.31		
	Mogne- sium (Mg)		5.71	2.14	0.10	1.79	15.1		15	2.27 2.27	4.5	28	8	12 1.01		
	Colcium (Co)		4.72	56 2.78	0.67	2.36	21 1.05		23	3.47	1.27	26 1.29	2.40	40 1.98	-	
	Ŧ		8.5	8.7	9.6	80 	8.1		® ۥ3	°.	7.9	77.	₹*8	8.2	 	
Specific	conduct- once (micro- mhos of 25°C)		1120	628	9006	485	569		228	1,93	178	320	410	293		
	E. T			58			53		57	62	69	26	57	62		
	Dote		9-10-65	9-6-62	8-24-62	6-6-62	9-22-62		8-31-62	8-31-62	8-31-62	8-31-62	8-31-62	8-31-62		
of Control of Control	number and other number	MDB&M	44N/5W-32F1	-3411	45N/5W-6E1	45N/6W-19E1	46N/24-25R2		42N/9M-10Q1	43N/94-2G1	-8F1	-24F1	-24F2	44N/9W-34RL		
	Owner and		S. D. Nelson domestic and irrigation	H. Silva irrigation	Siskiyou County Airport irrigation	G. Weldon domestic	Butte Valley Irrigation District Irrigation		C. R. McConnell irrigation	Dunsmulr Water District municipal	F. Lockinsmeyer domestic	L. L. Lukes irrigation	L. L. Lukes irrigation	0. E. Heinke domestic and stock		

Determined by oddition of constituents.
 Growimetric determination.
 Growimetric determination.
 Growimetric determination.
 Analysis of U.S. Geological Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Franch Matter Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (Al), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as \$\frac{0.00}{0.00}\text{except}\$ os shown

Sodium Bilent 15 15 15 15 15 15 15 1				91	Specific	-				Minerol	Mineral constituents	ni stne		ports p	er milllo	- 1						
No. Co. Date Conduct-	Temp once DH	conduct-	H	2		\vdash			- 2				12	Elio.	1 .					2000	Anoly	
Column C	mhos (Co) (Mg)	mhos (Co) sium sium ot 25° C)	mhos (Co) (Mg)	Coleium Mogne (Co) (Mg)	Coleium Mogne (Co) (Mg)	Mogne Sium (Mg)		74		- E (C)	HCO.			troto (NO ₃			(SiO ₂) Other constituen	1			Pp.C.	by c
1.00 0.00	WASTON								HAYTOR	K WALLEY	_											
1.0 0.00 0	311/114-841 6-6-62 - 109 7.7 $\frac{11}{0.55}$ $\frac{4.5}{0.37}$	- 109 7.7 11	109 7.7 11	7.7 11	0.55		10/15	3.8					0.00	0 0 0 0		0.09	22	76	77	94	0	DWR
11.0 11.0	311/12W-11Q1 6-6-62 - 248 7.6 29 8.9	- 248 7.6 <u>29</u>	248 7.6 29	7.6 29	29		02						0.08	0.0		0.05	555	149	13	109	0	DWR
1.55 0.07 0.05 0.15	-15KL 6-6-62 - 269 8.2 $\frac{23}{1.15}$ $\frac{14}{1.13}$	- 269 8.2 23	269 8.2 23	8.2 23	23								0.31	9.0		0.27	30	169	17	114	0	DWR
NAD STURE NILEY (1-8) 1.00 266 0.00 0.01 0.00	32N/11W-35G1 6-6-62 - 342 8+1 35 10 0.	- 342 8.1 35	342 8.1 35	8.1 35	35								0.51	4.30		0.0		190	8	129	7	DWR
1.30 0.00	HESW									والأراقة والمستدون			·									
1.52 0.04 0.13 2.57 0.00 0.20 0.00	5W/1E-MH2 8-9-62 66 399 7.9 23 21 1.15	66 399 7.9 23	399 7.9 23	7.9 23	23								26	0.0		0.0	ន	214	31	142	0	USGS
15 15 15 15 15 15 15 15	-811 9-6-62 - 305 8-5 18 13 14 14 15 18 14 14 15 18 14 14 15 15 18 14 18 14 18 18 18 18 18 18 18 18 18 18 18 18 18	- 305 8.5 18	305 8.5 18	8.5 18	0.90		017 .						21 0.59	0.0		0.0	140	185	82	%	0	USGS
13 1.1 1.1 1.2 2.0 2.6 0.2	6N/1E-7M1 8-13-62 65 537 7.6 48 32	65 537 7.6 48	537 7.6 48	7.6 48	2.40		0.1						1.16	0.0		0.1	81	304	0,	250	15	USGS
12	-8H1 8-9-62 62 221 7.4 11 5 5 5 5 6 5 5 5 6 5 5 5 6 5 5 5 6 6 5 5 6	62 221 7.4 11	221 7.4 11	7.4 11 0.55	11 0.55		• •						0.48	1.0		0.2	E.	170		84	1.8	nsgs
3.6 1.1 1.1 1.1 2.0 0.0 0.28 0.01 0.0 0.	6W/1E-17D1 8-13-62 66 397 8-5 \(\frac{\text{L5}}{2.25}\)	66 397 8.5 4 <u>5</u> 2.25	397 8.5 45 2.25	8.5 45	2.25		0						0.28	20 0		0.0	23	192		205	0	USGS
$ \frac{T.3}{0.32} $	-1901 8-13-62 63 367 8.6 5 ⁴ / _{2.69}	63 367 8.6 54	367 8.6 54	8.6 54	54 2.69		12						0.28	0.0		0.0	526	222			0	nsgs
128 7.57 0.19 0.37 1.13 0.00 2.85 0.07 0.03 0.04 28 1.446 75 81 0 5.57 0.19 0.37 0.07 0.07 0.02 0.04 28 0.44 28 0.446 75 81 0	-30N1 8-13-62 63 349 8.4 49	63 349 8.4 49	349 8.4 49	8.4 49	2.45		0.						0.34	000		0.0	<u> </u>	223		172	0	USGS
	-32P1 8-13-62 64 745 8.6 14 0.70 1	64 745 8.6 14 0.70	745 8.6 14	8.6 14	0.70		٦.:							0.0		₹°0	88	944		81	0	USGS

Optiminal by addition of constituents.
 Grovinatric determination.
 Analysis by U.S. Geological Survey, Ovality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),
 Faminal fasting Laboratory LT.L., J. U.S. Apprications (Onsultants (U.S.A.C.), or Place Department, of Water Resources (D.W.R.) as Indicated.
 d. Iron (Fa), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Monganese (Mn), Zinc (Zn), reported here as 500 except as shown

	Analyzed by c		nscs	nsæs	nses .		USAC	USGS	nsgs	nsgs		USGS	USGS	USGS	USGS	USGS	
	7		15 t		~		0	0	0	0		88	77	56	0	04	
Hardne	as CaCOs Total N.C. Ppm ppm		38	138	 		24	210	107	85		227	507	210	203	922	
	sod in the state of the state o	<u></u>	89 47		31 E		£ 4	23	75	36	_	9	17	28	21	6,	
Totol	die- solved eolids in ppm		113	222	85		98	309	516	163		256	262	327	546	251	
	Other constituents ^d					_											
	Silico (SiO ₂)		13	78	70		70	817	<u>N</u>	<u> </u>		17/2	70	2	8	57	
LO.	Boren (B)		0.0	0.0	0.0		0.0	0.0	1.5	0.0		0.1	0	0.1	0.1	1.9	
million of mil	Fluo- ride (F)		0.0	0.00	0.01		0.0	0.00	000	0.01		00.0	0.0	0.0	0.02	0.0	
ports per million volents per mill	Ni- trate (NO ₃)		23	7.6	0.13		000	0.00	0.03	0.00		7.6	0.4	0.02	0.05	0.19	
ports per million equivolents per million	Cic)		20	0.82	6.5 0.18		14 0.37	0.79	3.13	0.90		8.8	24 0.68	50 1.41	0.59	0.35	
5	Sul - fote (SO ₄)	7	3.8	0.00	0.12		5.8	0.21	0.02	0.0		36	970	42 0.87	0.31	28 0.58	
Mineral constituents	Bicar- bonate (HCO ₃)	(conto	28	3.05	38	6-	56	298	349	1.88	1-10)	250	3.03	3.44	247	3.71	
eral co	Carbon- ofe (CO ₃)	(1-8)	0.00	0.27	00.00	EUTEKA PLAIN (000	0.00	000	0.00	ALLEY	00.00	5.17	0.23	0.23	000	
Z.	Potas - (X)	VALLEX	0.3	4.4 0.11	0.2	REKA P	0.0	6.0	5.2 0.13	0.05	RIVER VALLEY	2.4	0.05	2.7	0.07	1.4	
	Sodium (No)	AD RIVER	16 0.70	28	7.8	na	0.65	30	155	1.00	BEL F	0.31	16 0.70	39	1.09	10	
	Magne- sium (Mg)	21	5.7	22 1.82	6.4		4.1 0.34	2.26	1.19	0.90		1.35	2.38	30	34 2.81	13	
	Colcium (Co)		5.9	0.95	0.23		9.8	39	0.95	0.80		3.19	34	35	25	148 2.40	
	Ĭ		7.2	8.5	7.3		7.7	7.8	7.9	8.1		8.1	8.1	8.5	8.5	8.1	
Specific	conduct- ance (micro- mhas at 25°C)		171	397	113		165	537	861	279		644	777	572	L9 [†] 1	064	
03	Ten ci		62	61	29		61	ı	1	58			ı	1	1	1	
	Date		8-9-65	8-13-62	8-9-65		8-14-62	9-11-6	9-10-65	8-13-62		8-21-62	8-21-62	8-21-62	8-21-62	8-24-62	
	State well number and other number	HBSW	6N/1M-1H1	-121	7N/1E-30B1		3N/IW-5Kl	4N/1W-16H1	5N/1E-18Q1	-2001		2N/IW-4DI	-7F1	-176	3N/1W-29G1	-30Nl	
	Owner and		Ace Bulb Farm domestic and	irrigation J. M. Vierra domestic and irrigation	T. Galaty domestic		S. Christiansen irrigation	P. Lorenzen	Arcata Redwood Company domestic and industrial	L. L. Spinney domestic and stock		A. Capaul irrigation	E. Calanchini irrigation	C. Anderson	C. Goble irrigation	R. Tedson	

Determined by addition of constituents.
 Growinselied determination.
 Growinselied determination.
 Analysis by U.S. Geological Survey, Quolity of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Loborotory (T.T.L.), U.S., April out Consultants (U.S.A.C.), p. Jack Department, BY Water Resources (D.W.R.) as Indicated.
 Jron (Fe), Aluminum (AI), Areenic (Aa), Copper (Gu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here os Googlexcept as shown

		7										_						$\overline{}$
		by c		USGS	USGS	USAC	USAC		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
		1		532	905	1,543	232		0	16	0	0	0	0	0	17	5	
	Hardness os CoCO-	Total		598	1,030	1,780	Thh		158	274	93	146	108	97	288	109	108	
		S S S		43	28	54	35		SS SS	80	53	772	15	검	17	11	12	
	Total dis-	pevios solids in ppm		1,380	1,920	5,360	069	-	229	599	154	209	156	128	371	141	144	
	T	fuented							Pb 0.02								Zn 0.03	
		Other canstituente ^d							A1 0.01 M	Cu 0.01	Cu 0.01	As 0.01	A1 0.02	A1 0.11	As 0.19	A1 0.05	A1 0.02 7	
	ŀ	Silica (SiO ₂)		15	142	18	8		ล	92	2	83	8	15	댇	ឡ	17	
	lon	Boran (B)		0.1	0.0	0.3	0.1		0.17	0.15	0.2	0.16	0.13	0.12	0.12	0.07	0.15	
parts per millian	per mi	Flua- ride (F)		0.0	0.0	0.01	0.01		0.0	0.0	0.0	0.0	0.00	0.0	0.02	0.00	0.00	
arts per	olents	trate (NO ₃)		2.8	3.2	2.8	2.8		0.03	0.08	0.05	0.02	0.05	0.05	3.0	0.05	6.4	
۵	Addin	Cide (C)		656 18.49	870	2459 69-35	294 8.27		2.9 0.08	6.3	8.9	6.4	2.9	1.9	0.08	0.12	0.08	
	118 10	Sul - fote (SO ₄)	(T)	37.0	52 1.08	3.69	178.0 0.87		0.15	25 0.46	0.20	0.10	0.03	6.1 0.13	0.0	0.23	0.16	
	Mineral constituents	Bicar- bonate (HCO ₃)	(1-10) (contH.)	80	156 2.56	289	254	77	3.42	298	130 2-13	3.36	145 2.38	120 1.97	362	124 2.03	126 2.06	
	neral c	Carbon- ote (CO ₃)		0.00	00.00	00.0	00.00	LEY (1	8 0.27	8	0.00	5	0.00	00.00	21 0.70	0.00	00.0	
	ž	Potas- Rium (X)	VALLE	0.00	5.2	2.5	1.6	ROUND VALLEY (1-11)	0.0	0.5	0.0	0.02	0.02	0.02	0.0	0.0	0.02	
		Sodium (Na)	EEL RIVER VALLEY	210	182 7.92	988	110	ROI	0.91	0.48	18 0.78	21 0.91	0.39	6.2 0.27	1.22	6.3	0.31	
		Magne- sium (Mg)	H	92 7.60	172 14.18	299	5.76		1.16	52	1.16	18 1.52	0.86	7.8	1.16	7.7	0.91	
		Catcium (Ca)		4.35	130	202	6 <u>1</u> 3.06		2.00	24 1.20	14 0.70	28	26	1.30	4.59	31	1.25	
		£		7.7	8.2	8.0	8.0		8.5	8.5	۳ ش	4.8	8.3	8.2	8.6	8	8.1	
	conduct-	ance (micra- mhos at 25° C		2,150	3,110	7,000	1,340		375	511	252	358	242	228	548	236	245	
		Temp in • F			•	'			62	09	09	09	63	1 79	1	62	09	
	i	bars eampled		8-22-62	8-21-62	8-24-62	8-24-62		9-17-62	9-17-62	9-17-62	9-17-62	9-17-62	9-17-62	9-17-62	9-17-62	9-17-62	
	State well	ather number	HESM	3N/2W-2A2	3N/2W-13J1	-27G1	-35M1	MDB&M	SEN/12W-612	-19F	22N/13W-1J3	-12KI	-1341	23N/12W-28N1	-3311	23N/13W-25P1	-3672	
		Owner and		J. Tosta	E. E. Tanferani irrigation	P. M. Christiansen irrigation	P. C. Lorenzen irrigation		W. B. Mody domestic and irrigation	C. B. Rohn irrigation	B. Hurt domestic	R. T. Hurt irrigation	F. F. Rohrbough	Crawford Lumber Co. domestic and industrial	E. Banner domestic and irrigation	W. V. Clarke domestic and irrigation	C. A. Gray irrigation	

o. Determined by addition of constituents.

b. Growmetric determination.

c. Analysis by U.S. Geological Survey, Quality of Water Bronch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.).

c. Analysis by U.S. Geological Survey, Quality of Water Bronch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.).

d. Iron (Fa), Aluminum (A1), Arsenic (Ka), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as <u>G.G.</u>except as shown

	State well		0, 0	Specific conduct-					Mineral		canstifuents	ci .	parts per millian equivalents per millian	parts per millian valents per mill	million r millio	Ę		Tatat		Hardness	55	
Owner and	nymber and other number	Dote sompled	Temp in °F		# <u>8</u>	Calcium Mc (Ca)	Magne - S sium (Mg)	Sadium P (Na)	Polas-Ca sium (K) (c	Carbon Bi ote ba (CO ₃) (H	Bicar- banate (HCO ₃)	Sul - fate (SO ₄)	- ide (C)	rrate (NO ₃)	Flua-B ride (F)	Boran Si	Silica Other constituents ^d		P P P	Total Ppm		Analyzed by c
	MDB&M							UKZAH	UKIAH VALIEY	Y (1-15)	ವ											
G. C. Gilley domestic	14N/12W-5K1	9-29-62		620 8	8.0	67 3.34	22 1.84	37	0.04	0.00	356 1	50 1.04	0,03	0.0	0.05	6.0	25	376	24	259	9	nscs
L. Johnson domestic	14N/12W-11N1	10-62		294 7	7.6 0	18 0.90	20 8	0.39	0.0	0.00	113	17	0.22	36	0.04	0.3	18	184	13	127	34	USGS
M. Mehtonen domestic	14N/12W-26K1	10-2-62	9	348	8,4	23 2	24 00.2	0.61	0.01	0.20	181 2.97 0	14 0.29	0,39	4.1 0.07	0.4	1,0		199	16	157	0	nses
City of Ukiah municipal	15N/12W-16E1	10-62	99	287 7	7.9	28 1.40 1	13 0	12 0,52	0.05	0.00	158 2.59 0	14 0,29	0.22	0.02	0.0	0.2	16	170	17	125	0	uses
Regina Water Co. municipal	15N/12W-21H1	10-2-62		257 '8	8.4	25 1.25 0	0.99	0,43	0.03	0.10	$\frac{147}{2.41} = \frac{8}{0}$	0,17	0.11	0.02	0.0	5.0	16	141	16	112	0	uses
D. R. Broggi domestic and irrigation	15N/12W-3501	10-62		386	8,3	34	12 1	30	0.02	0,00	199 6 3.26 0	0.13	20 0.56	0.5	0.0	0.15		240	32	136	0	DWR
F. Brown domestic	16N/12W-5D1	10-62	63	353 8	8.1	$\frac{23}{1.15}$	1,53	24 1,04	0.02	0000	3.03	0.00	24	1.4	0.0	0.1	28	202	28	134	0	uses
F. Brown 1rrigation	16N/12W-5D2	10-62	62	348	7.2 0	18 0,90 1	18	30	0.3	00.00	3.28	0.00	16	0.0	0.05	0.1	- - - - - - - - - - -	200	36	117	0	usgs
Mendocino Sub Station domestic	16N/12W-9Q1	10-2-62	61	807	8.3	28 1.40 1	17	42	0.0	0.23	246 4.03	0.12	0.20	0.02	0.05	0.2	229	250	40	139	0	uses
J. E. Nelson domestic	17N/12W-18A1	10-62	63	1930	7.7	38 5	5.1	338	0.02	00.00	233 3.82 0	0.02	505 14.25	2.1 0.03	1.2 0.06	181	21	1270	86	116	0	vsgs
H. Mathews domestic	17N/12W-28M1	10-2-62	62	212	10	17 0,85	0.77	0.48	0.03	0.00	84 1,38 0	15 0.31	0.19	0.27	0.04	0.3	31	149	23	81	12	uses
A. DeMarcantonio domestic	12N/11W-2F1	10-62		408	164	44 2.20 T	21 1.76	SANE 13 0,56	SANEL VALLEY 1.3 0.03 0.	- 2 18	16	20	7.6	1.7	0.2	0,34	<u>18</u>	239	123	198	6	DWR
						\exists																

	State well			Spacific					Σ	eral con	Mineral constituents	. <u>e</u>	Podniva	ents per	parts per millian equivalents per millian	اق			Total	ä		0.00	
Owner and use	number and other number	Date sampled	Temp in •F		五	Calcium (Ca)	Magne- sium (Mg)	Sadium (No)	Potas-C sium (K)	Carbon-	Bicar- bonate (HCO ₃)	Sul - fote (SO ₄)	Chlo- ride (CI)	NI- trate (NO ₃)	Fluo- ride (F)	5.	Silica (SiO ₂)	Silca Other constituents ^d (SiO ₂)	solved solved in ppm	ing in	1 ' 1	as CaCO ₃ Fotal N.C.	Analyzed by c
	MDB&M							SANEL VA	VALLEY	(1-16)	(Cont)												
E. F. Hawn irrigation	13N/11W-701	10-62	62	314	8.1	21 1.05	2.01	8.4	0.5	00.00	188 3.08	11 0.23	5.0	1.3 0.02	0.6	0.3	24		179	11	153	0	nscs
A. Domiano irrigation	13N/11W-18B1	10-62	62	330	8.2	23	20 1.67	17 0.74	0.9	00.00	184	12 0.25	7.4	9.7	0.02	1.5	19		190	21	141	0	uses
J. H. Pomroy Co. irrigation	13N/11W-1801	10-62	63	194	8.1	17	10	7.1	0.0	00.00	106	9.0	4.2	1.6 0.03	0.7	0.4	16		115	15	84	0	USGS
Hopland P. U. District municipal	13N/11W-19N1	10-62		261	8.0	14 0.70	15	17 0.74	0.4	00.00	135	1.0 0.02	14 0,39	6.7	0.8	0.0	07		172	27	86	0	nscs
Grace Ranch domestic, irrigation, and stock	13N/11W-30H1	10-62		309	8.1	24	19 1.58	10	0.05	00.00	168	14 0,29	0.21	2.0 0.03	0.7	0.3	16		177	13	139	7	uses
=																							
 a. Determined by addition of constituents. b. Gravimetric determination of constituents. c. Annivals by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.). Pacific Chemical Consultants (PCC.) 	of constituents. ion. Ical Survey, Quality	of Woter Bron	(C)	S.G.S.), Po	cific C	hemicol	Consulton	(PCC)															
d. Iron (Fe), Aluminum (Al	otary (T.T.L.) or Sto	te Deportmen per (Cu), Lea	of WC	Manganes	urces (Mn),	D.W.R.) o Zinc (Zn	s indicat), reporte	ed.	0.0 0.00 exc	ept as s	hown												

				Specific					Miner	Mineral canstituents] .s	parts per millian	parts per millian	illian					:		
Owner and use	number and other number	Date sampled	e i	conduct- once (micra- mhos	Į ŏ	Colcium Mo	Magne - So	Sodium 8	Patas-Carbon- sium ate	rbon Bic	Bicar- St	Sul -	Chlo- ride	Ni- frote	Fluo-Boron	5~	Silica (SiO _s) Other constituents ^d	dis-	F S S E	as CaCO ₃		Anolyzed by c
				at 25° C)	+		_		2	(H)	- 1			ĵ.	-						E &	
							SAN	SAN FRANCISCO	BAK	REC10N	(No. 2)											
	MDBGM							PETALUMA	A VALLEY	EY (2-1)	্র											
H. Cloakie domestic and stock	3N/6W-1Q1	10-25-62		1270								14	165									DWR
0. White domestic and integration	3N/6W-3C1	4-62		3910 8	8.15 4	82 4.12 19.	230 16,16	368 16.00 0	17 0	0000	531 8.70 0.	000	1070 30,10 0.	0,21	0.5	22 17		2520	04	1176	741	DWR
1000		10-29-62		7430								199	2270 64.01									DWR
S. K. Herzog Co. domestic and stock	3N/6W-11B1	79-4		1950 7	7.8 1	$\frac{38}{1.90} = \frac{4}{3.}$	3.69	336 0	13 0,34 0,0	0.00	569 9.33 0.	7 0.15	373 8 10.49 0.	8 0.14 0.14	0.3 0.54	<u>19</u>	al.	1380	71	290	0	DWR
		10-29-62		1920								TA.	369									DWR
C. Strozzi stock	3N/6W-15M1	4-3-62	95	538 7	7.4 2	$\frac{46}{2.30}$	19 1.60	33 1	0.05	0,00	110 6	$\frac{61}{1.27}$	69 69 0.1	8 0.14 00 0.14	0.4 0.02		7	365	27	195	105	DWR
		9-25-62	19	193								10	18 0.51					121				DWR
Rupprecht domestic, stock,	3N/6W-18M1	4-3-62		7 607	7.5	34 70 3	48 3,95	$\frac{32}{1.40} \frac{7}{0}$	7.2 0.02 0.02	0 0 0 5.	$\frac{175}{2.87}$ $\frac{6}{1.}$	63	29 1.66	70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.2 0		6[480	20	283	139	DWR
and frrigation		9-26-62		610] _H	$\frac{52}{1.47} \frac{1}{0.}$	13 0,21				394				DWR
K. Johnson domestic	3N/7W-14F1	4-3-62		693 7	7.7	28 2	34 34 3	73 3.18 0	0.0	0.00	$\frac{260}{4.27} = \frac{2}{0.}$	$\frac{29}{0.61} = \frac{\frac{2}{2}}{\frac{2}{3}}$	81 2,28 0.	0000	0.8 0.68	14	.+1	495	43	210	0	DWR
		9-26-62		658								2	73 2.06					370				DWR
Lopes	4N/6W-7H1	4-62		1081 8	8.2	38 1.90	72 5.90 4	104 0	0,03	0000	549 4 9,00 0.	44 2.92	74 2.08 0.	28 0.0.45	0.2 2.00	11 12	~	835	36	390	0	DWR
		10-26-62		984								l-i	50									DWR
Defermined by addition of constituents	of constituents														-							

a. Determined by addition of constituente.
 b. Gravimetric determination.
 c. Analysis by N. S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Analysis by S. Geological Survey, Quality of Water Resources (D.W.R.) os indicated.
 a. Termnal Testing Labbratory (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 d. Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as Gooten or shown

State well Dote number and sampled	Dot		Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp. Sp.	Specific conduct-once pH (micro-		eugoM muis	l	P of of	inerol c	Mineral constituents	Sul -		ents per	million or mil	E	Silico	Totol dis- solved solids	P S S S S S S S S S S S S S S S S S S S		[c o l	Anolyzed by c
mhas (Co)	mhas (Co)	at 25°C) (Co)	(00)	(00)	6	Z	(NO)	X X	(CO ₃)		(504)	\$ (D)	(NO ₃)	(F)		(SiO ₂)	- 1	E	Total	O E	
MOB&M							PETALUMA	MA VALLEY	(2-)	-1) (Cont	<u> </u>										
pes irrigation and stock 4N/6W-7H2 10-26-62 4480		7480	7480									1120 31.58									DWR
4N/6W-21Q1 4-62 940 7.8 14 0.71	940 7.8	7.8	7.8		-1L	8	8.70	30.08	0.00	397	29	3,10	00.00	0.2	0.89	35	710	98	69	0	DWR
10-29-62		1060	1060									152 4.29									DWR
White 4.62 4.070 7.6 164 8.20 17.6 8.20	4070 7.6	7.6	7.6		202	202	382	19	00.00	561 9.20	00.00	1124	10	00.00	0.42	28	2660	0 40	1242	782	DWR
10-29-62 5560		2560	2560									1720 48,50									DWR
4.62 26800 7.4 285 14.20	26800 7.4	7.4	7.4		202	2160	2640 70 115.00	39 1.00	00.00	112	1140	10400	00.00	00.00	09.00	<u>29</u>	17800	3 37	0096	9510	DWR
10-26-62 23800		23800	3800									9700									DWR
SN/6W-3001 4-62 1300 8.2 80 3.98	1300 8.2	8.2	8.2		98	56 4.62	118 5.15	0.06	0.00	441	138 2.88	137	00.00	0.2	0.54	24	076	0 37	430	89 (8	DWR
10-26-62		932	932									105				<u>,</u>					DWR
SN/7W-8D3 4-62 1100 8.3 68 3.38	1100 8.3	8.3	8.3		38	28 2.32	3.80	4 0.10	0.00	252 4.15	38	177	00.00	00.00	01	21	705	2 40	285	2 78	DWR
10-26-62 935		935	935									161 4.54									DWR
SN/7W-19A1 4-62 611 7.9 34	611 7.9	7.9	7.9		4 72	9 0.73	3 3.45	0.06	00.00	3.68	27	54 1.50	00.00	0.2	0.58	<u>13</u>	430	0 58	123	о 	DWR
10-29-62		549	549									45						_			DWR
5N/7W-20L3 4-62 1990 8.0 90	1990 8.0	8.0	8.0		52	63	0 207	4 0.10	00.00	169	38	484	75	00.00	0.02	25	1260	0 48	3 486	948	OWR
						-		-	4								-	-			

 ^{0.} Determined by addition of constituents.
 b. Growimetric determination.
 c. Analysis by U.S. Geological Survey Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal by U.S. Geological Survey Quality of Water Beaucrass (D.W.R.) as indicated.
 a. Iran (Fe), Aluminum (AI), Arsenic (Ae), Capper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as 600 except as shown

	9															
	Anolyzed by c		DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR
8800	os CaCO ₃ Fatal N.C.			0	0		22		22				129		0	
Hord	Os Co Tatal			174	25		214		339				248		47	
	P E			77	76		27		37				39		69	
Totol	solids solids mgg ni			353	079		391		735				540		205	
	Silco Other constituented								ABS 0.0		ABS 0.0					
				24	13		<u>67</u>		22				32		<u>اع</u>	
Illion	Boron (B)			0:0	0.38		0.0		0.52	0.24		0,19	0.12	0.20	01	0.14
per m	Fluo- ride (F)			0.5	0.0		0.02		0.3				0.57		0.4	
parts per million equivalents per million	NI- trote (NO ₃)			0.02	0,00		0.27		0.07	28	152	169	6 0.10		14 0,24	
viupe	음 (의 - 1 년 (의		441	46	80	69	46		132 3.72	138 3.89	174 4.91	177 4.99	3,14	98 2.76	39	32 0.90
its in	Sul - fate (SO ₄)	Ţ.		21	21 0.45		0.35		31 0.65				106		0,03	
constituents	Bicor- bonote (HCO ₃)	(2-1) (Cont.)		282 4.62	313		224 3.67	(2-2)	386				145		90	
Minerol o	Carbon- ate (CO ₃)			00.00	41	_	50.17	VALLEY	00.00				0.00		00.00	
2	Potos- Sium (K)	VALLE		0.05	$\frac{1}{0.02}$		2.7	NAPA-SONOMA	2 0,04				1 0,02		0.03	
	Sodium (No)	PETALUMA VALLEY		64 2.78	205 8.90		36	NAPA-S	91			118 5,13	$\frac{72}{3.15}$	59 2.57	46	42
	Mogne- sium (Mg)			17	3 0.27		24 1,98		45	96 4.18			17		6 0.45	
	Calcium (Ca)			41 2.05	0.23		46		55 2.77				72 3.59		9	
	£			8.0	8.6		8.3		7.5				7.65		7.4	
Specific			1910	585	880	878	580		1020	1160	1390	1500	788	782	289	290
	Temp in °F			_												
	Date sampled		10-29-62	10-26-62	4-62	10-26-62	10-26-62		4-3-62	9-19-62	4-3-62	9-19-62	4-4-62	9-19-62	4-4-62	9-19-62
Stote well	number and other number	X an o X	5N/7W-20L3	SN/7W-26E1	5N/7W-34E2		5N/7W-35K1		3N/3W-18G1		3N/3W-18G2		4N/4W-2L1		4N/4W-5C1	
	Owner and		Al's Barber Shop	R. E. Atkinson irrigation	Dr. H. E. Clark domestic, stock,	and irrigation	R. H. Surtori irrigation		E. P. Nunn domestic		0, L. Pickens domestic		Napa County Airport domestic		N. Rhodes domestic	

	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
\$5	$\overline{}$		0			225			0	0		0		95	111	41	
Hordne	as CaCO ₃ Tatal N.C.		80			520			388	89	-	452		007		115	
à	in m		99			45			33	85		70		7.1		53	
Total	eolved solved solved in ppm		325			1280			720	999		2040		1880		345	
	Silica (SiO ₂) Other constituents ^d																
			=1			23			νı	56		77		43		23	
Lion	Boron (B)		01	0.12	0.12	0.24	0.27	0.22	0.70	0.48	0,19	2.5	2.4	1.46	2.2	0.15	
per mi	Flus- ride (F)		0.6			0.0			0.6	0.5		00.00		0.25		0.02	
parts per million valents per mill	Ni- frate (NO ₃)		00.00			15 0.25			5 0,08	1 0,02		0.13	23	0.01	0.9	00.00	
parts per million equivalents per million	Signal Si		93 2,63	97	101 2,85	304	$\frac{362}{10,21}$	322 9.08	53	3.52	3.47	703	930 26,23	730	671 18.92	41	
i.	Sul - fate (SO ₄)	3	4 0.08			211			1.51	44 0.93		0.00		00.00		00.00	
Mineral constituents	Bicar- banate (HCO ₃)	(2-2) (Cont.)	138 2,26			360			485	308		10.60		287		3.85	
eral cc	Carbon- ote (CO ₃)	1	00.00			00.00			00.00	00.00		00.00		102		0.00	
.≅	Potas-0 Sium (K)	VALLE	0,6			3.1			0.7	0.08		10 0.27		16		$\frac{1}{0,02}$	
	Sodium (No)	NAPA-SONOMA VALLEY	3,45	3.04	3.35	200	206	143 6.22	3.75	191 8,30		504 21.90		469		61 2.64	
	Magne- sium (Mg)	ź	13 1,13			36			64	10		62 5.14		63 5.24		13 1,08	
	Calcium (Ca)		13			7.36			49	12 0.60		80 3,90		55 2.76	_	24	
	£		7.6			7.2			7.9			7.8		8.4		7.8	
Specific	ance (micro- mhos at 25°C)		520	512	875	1840	2040	1560	1180	965	647	2940	3630	2910	2900	451	
	Te ni																
	Date		4-4-62	9-19-62	9-19-62	4-4-62	9-19-62	9-19-62	4-4-62	4-62	10-25-62	4-62	10-25-62	4-62	10-25-62	4-4-62	
State well	number and other number	МЪВСМ	4N/4W-7A1		4N/4W-12M1	4N/4W-13E1		4N/4W-14C2	4N/4W-25K1	4N/5W-14D2		4N/5W-32B1		4N/5W-34D1		5N/4W-9Q2	
	Owner and		Press Wireless		P. Rogers domestic and stock	Jacobs stock		V. Bassham domestic	H. Mini stock	U. S. Navy municipal		Sonoma Ranch stock		Sonoma Ranch stock		M. L. George domestic	

Determined by addition of constituents.
 B. Grovimetric determination.
 C. Analysis by U.S. Geological Survey Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Pesting Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 G. Iran (Fe), Aluminum (AI), Arsenic (Aa), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as Gogs except as shown

	State well			Specific conduct-					3	Mineral canstituents	stituents	ē	parts per million equivalente per million	parts per million valente per mill	million or mill	 			Total		Hardne	2	
Owner and use	nymber and ather number	Barpied sampled	Te ni	ance (micra- mhas at 25° C)	E E	Calcium (Ca)	Magne- eium (Mg)	Sodium (No)	Patas-C sium (K)	Carbon B ate b	Bicar- banate (HCO ₃)	Sul - fate (SO ₄)	Chla- ride (CI)	NI- trate (NO ₃)	Fluo- ride (F)	Boron (B)	SiO ₂) Other	Silica Other constituents ^d	solved solved in ppm	i pu	as CaCO ₃ Total N.C. Ppm		Analyzed by c
	MDBGM						NA PA	NATA-SONOMA	VALLEK	(2-3)	(Cont.)												
M. L. George	5N/4W-9Q2	9-18-62	65	488				59 2.57					45			0, 19							DWR
W. Gellenger domestic	5N/4W-11F3	4-4-62		687	8.0	0.72	8 0.65	132 5. 75	0,18	0,00	267	00.00	98	00.00	0.04	1,5	8		505	79	69	0	DWR
		9-18-62	-	680				113 4.92					92 2.59			2.2							DWR
P. A. Gasser domestic and stock	5N/4W-14CI	4-4-62		277	7.1	16 0.78 7	13	23	0.06	0.00	124	0.22	29	10.01	0.3	01	97		205	34	93	0	DWR
		9-18-62		230				17 0.74					17 0.48			0.13							DWR
John Healy domestic	SN/4W-15E1	4-4-62		404	8.0	20 0.98	12 1.01	55 .37	20.06	0,00	3.28	8 0.17	42	00.00	0.03	0.02	138		320	53	100	0	DWR
		9-18-62		451				51 2.22					49			0,16							DWR
A. L. Poe domestic	5N/4W-21P2	4-4-62		2200	8.0	32	13 2	460 20.00	8	00.00	363	140 1	468	0.01	0.02	01	20		1520	87	137	0	DWR
		9-19-62		2340			IH	448 19,49				-	476			0.49							DWR
Stewart's Dairy stock	5N/4W-22M1	9-19-62	72	674				60°7 7°09					58			0.72							DWR
Napa State Hospital Irrigation	5N/4W-23C2	9-19-62		245	8,2	15 0.74	1,26	10 0.43	1.6	00.00	120 1,97	9.1	0.22	00.00	0.01	0.1	17		158	17	100	7	DWR
J. Firmingnar domestic	SN/5W-18D2	4-62		509	8.1	28 1.40	21 1.72	48 2.10	0.06	00.00	172	21 0.46	38	69.0	0.5	0,33	26		365	40	156	15	DWR
		10-24-62		516									35	51 0.82		0,15							DWR
L. Miglioretti domestic and irrigation	5N/5W-20R1	4-62		935	8,3	0.76	0,40	205 8.90	0.09	0.00	Im	9 0.19	84 2.35	0.01	0.00	3,7	18		715	88	58	0	DWR
a. Ostermined by addition of constituents. b. Gravimetric destermination b. Gravimetric destermination c. Anolysis by U.S. Geological Survey, Quolity of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), c. Anolysis by U.S. Geological Survey, Quolity of Water Branch Resources (D.W.R.) as indicated. d. Iron (Fe), Aluminum (Al), Arsentc (As), Capper (Cu), Lead (PD), Wanganese (Mn), Zinc (Zn), reparted here as \$\overline{0.0}{0.0}\$ except as shown d. Iron (Fe), Aluminum (Al), Arsentc (As), Capper (Cu), Lead (PD), Wanganese (Mn), Zinc (Zn), reparted here as \$\overline{0.0}{0.0}\$ except as shown	of constituents. ion. jical Survey, Quality aftery (T.T.L.) or Sia	of Water Brante Descripted (Cu), Lear	ich (U.S	S.G.S.), Parter Resou	cific C	hemical ().W.R.) at Zinc (Zn)	Consultant indicate	rte (P.C.C.) Id. I here as	300 exc	ept as sh	UMO												

		9 1															$\overline{}$
		Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	ness	N.C.		0		0			12		0			42		9	
	Hordness	Total Ppm		96		245			87		52			214		39	
	å	Sod E		55		61			07		68			16		33	
	Total	solved ealids in ppm		300		435			225		335			365		06	
		Silica Other constituents ^d														٠	
				07		97			34		256			20		30	
	lion	Boran (B)		0.42	0,53	0.15	0,18	0,12	01	0.21	0.94	1.4	0.09	0.38	0.41	01	12
oj II je	ie ne	Per (F)		0.3		0.00			0.28		0.0			0.2		0,10	
100	lents	NI- trate (NO ₃)		0.01		0000			35		0000			13 0,22		8 0,14	
ľ	equivalents per million	음 (인)		25 0.70	28 0.79	21 0,59	8.4	$\frac{71}{2.00}$	22 0.62	9.8	76	63	6.6 0.19	38	17	8 0,23	8.6
	nts in	Sul - fote (SO ₄)	(t.)	7 0.15		6 0.13			19 0.41		0,02			33		13 0,26	
	constituents	Bicar- banate (HCO ₃)	(2-2) (Cout.)	3,28		343			92		146			3.43		40	
	Mineral Co	Carbon- ate (CO ₃)		0.00		00.00			00.00		0000			00.00		0000	
	Mir	Patas- sium (K)	A VALLEY	2 0.04		0,05			4 0°0		15 0,38			0.00		0,02	
		Sadium (Na)	NAPA-SONOMA	54 2,36		27			28 1,22	$\frac{32}{1,39}$	3.05		7.0	18 0.81	20 0.87	0,40	13 0,56
		Magne- sium (Mg)	N	13		33			0.56		0.17			25 2.07		1 0,08	
		Calcium (Ca)		17		45			$\frac{23}{1.17}$		17 0.87			44		14 0.70	
		Ŧ.		8.2		7.6			7.6		7.8			8.0		7.0	
-	Specific conduct-	ance (micra- mhos at 25°C)		399	450	558	205	505	311	264	492	677	104	667	522	128	152
		Ten in • F															
		Sampled		7-62	10-24-62	4-62	10-24-62	10-26-62	4-4-62	9-18-62	4-62	10-24-62	9-18-62	4-4-62	9-18-62	4-4-62	9-18-62
	State well	number and ather number	MD86M	5N/6W-12F1		5N/6W-24K1		5N/6W-25P1	6N/4W-15Q1		6N/6W-23M2		7N/4w-30L1	7N/5W-5A6		9N/6w-31Q1	
		Owner and		E. L. Smith domestic and stock		M. Kiser irrigation		T. E. Connely domestic	A. R. Johnson domestic and stock		N. Tarvio domestic and	irrigation	A. Fagiani domestic	Wheeler domestic and stock		J. Alcouffe domestic and stock	

-312-

	State well		S	Specific	-				Mineral		constituents	Ē	equivalents per million	parts per million valents per mill	million ir milli	5		Total		Harda		
Owner and	number and other number	Date campled	Temp in F		- 8°	Calcium Mc (Ca)	Magne - S sium (Mg)	Sodium P(Na)	Potas - Co sium (X)	Carbon B ate (CO 3)	Bicar- banate (HCO ₃)	Sul - fote (SO ₄)	8 5 D	Ni- frate (NO ₃)	Fiuo-B	Boron Si (B) (S	Silica (SiO ₂)Other constituents ^d	solids solids in ppg ni	E DE	as CaCO ₃ Total N.C.		Analyzed by c
	MDBGM						NAP.	NAPA-SONOMA	VALLEY	1 1	(2-2) (Cont.)	7										
R. H. Archerd	9N/7W-25N1	4-4-62		778 8.	8.2	16 0.81 0	0,13	150 6,50 0	10 0,25	00.00	178 2.92	0.03	160	00.00	3.17	∞I	17	530	85	47	0	DWR
		9-18-62		927				165 7.18					186 5,24		-1	112						DWR
							S	SUI SUN-FAIRFIELD	TELD	VALLEY	(2-3)											
Taylor domestic	3N/1E-4B1	5-17-62		1310 8.	8.4	51 2.56 5	5.45	129 5.60 7	4 0.09	54 1.80	241 3.95	18 0.38	233 6.55	31	0.0	0.96	25	875	41	401	113	DWR
		9-25-62		1400				114					257									DWR
McDougal Livestock Co. domestic	3N/1E-21D1	5-17-62		1800 8	8.45	0.30	0,54	432	0.08	98 3.28	530 8.68	101 2.11	181 5.10	0.02	0.03	6.68	77	1320	95	21	0	DWR
McDougal Livestock Co.	3N/1E-22F2	5-17-62		1820 8	8.0	34 2	2,40 1	354 [0.06	0,00	544 8.92	1.61	289	12 0,19	0.0	3.88	20	1300	79	205	0	DWR
		9-25-62		1720			IF	307 13,35					280									DWR
McDougal Livestock Co.	3N/1E-22F3	5-17-62		1890 8	8.2	40 2	31 2.56 1	350	5 0.12	00.00	523 8.58	80	301	28	0.0	3.36		1340	76	114	0	DWR
)		9-25-62		1710			J.F.	300					247									DWR
G. Stewart domestic	4N/1E-8F1	5-17-62		2600 7	7,8	105	85 6,98 T	288 12,50	0,35	00.00	3.78	68 1.42	694 19,54	0,12	0,3	0.92	59	1660	50	612	423	DWR
		9-25-62		166				123 5,35					160									DWR
Fish & Game Comm.	4N/1W-33A1	5-17-62		3600 8	8.1	2.80 4	55 3	31.00	8	0,00	624	3.39	864 24.33	0.02	0.0	14	22	2500	80	366	0	DWR
		9-25-62		3630			ļ.	334				,,,	82.5 23.26									DWR

Determined by addition of constituents.
 Erou'metric determination.
 Grow'metric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), reparation of State Deportment of Woler Resources (D.W.R.) as indicated.
 G. Iranife Issing Laboratory (T.T.L.) or State Deportment of Woler Resources (D.W.R.) as indicated.
 G. Iranife I. Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as Gadexcept as shown

	Pe														 	
	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		
Hardness	N.C.		0		61		18		0		36		0			
		Š	85		372	_	375		335		613		767			
8	P E	-	55		37		38		34		97		52			
Toto	solved paylos polids	_	290		810		835		999		1520		1360			
	Sitica (SiO ₂) Other canstituents ^d											•				
!		-	62		22		20		52 22		9]					
Hian	Boran (B)		01		1.32		0,50	<u> </u>	1.06		2.14		2.57			
parts per million equivalents per million	- 55 C		0.2		0.4		0.5		1.4		0,5		0.6			
arts pe	rote (NO.1)		0.00		8 0,14		3 0.05		16 0.27		19 0,30		22 0,35			
oviup.	P e e		46	42	106 2,98	114 3.21	79	2.23	50	50 1,41	183	184	118 3,32	58		
i ei	Sul - fote (SO.)	Cont.)	6 0,13		138		128		47		293 6.10		127			
Mineral canstituents	Bicar- banate	(2-3) (Cont.)	165		379		435		382		704		848 13.90		1	
eral co	Carbon- ate		00.00		00.00		00.00		36		00.00		00.00			
Min	Potas-C sium (K)	ELD VA	30.08		0.02		2 0.06		0.02		$\frac{1}{0.02}$		2 0.04		-	
	Sodium (Na)	SUI\$UN-FAIRFIELD VALLEY	49 2,16	43	100	3.87	105	103	78 3.40	71 3.09	248 10,80	236 10.27	244 10.60	20 <u>2</u> 8.79		
	Magne- sium (Ma)	SINS	7 0.63		36		34		35		91 7.47		83			
	Calcium (Ca)		21/1.07		89		95		3.78		96		61 3.06			
	¥		8.0		8.0		7.5		8,4		7.7		7.8			
Specific conduct-		C 2 15	399	378	1120	1120	.1020	1070	872	772	2010	1860	1740	1500		
	Tem o F															
,	Date sampled		5-17-62	9-25-62	5-17-62	9-25-62	5-17-62	9-25-62	5-17-62	9-25-62	5-17-62	9-25-62	5-17-62	9-25-62		
State wall	ather number		4N/2W-5Q2		4N/2W-18M1		4N/3W-13G2		5N/2W-27J4		5N/2W-34N1		SN/2W-34P4		•	
	Owner and		Southern Pacific Rail- road	industrial	F. P. Smith domestic		D. R. Mangels irrigation		H. J. Beck domestic		domestic		domestic			

Determined by addition of constituents.
 Growmetric determination.
 Growmetric determination.
 Analysis by U.S. Selogelost Survey Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Institute by U.S. Selogelost Survey (T.T.L.) or State Department of Water Resources (D.W.R.) or indicated.
 G. Iran (Fe), Aluminum (Al), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as Gagescept as shawn.

	Anolyzed by c	5		DWB	DWB	DAR		DAR	DWR	DAG DAG	Zielik Zielik	See See	243	DAR.	ë 5
38	1	D.M. D. M.		613	9 1 1	205		59_1	154	8	34	41	0	*	89
Hordness	20 20	Total		875	704	7647		₹ %	387	501	124	9	181	211	32.7
	i po	-		3	29	3		17	24	น	38	36	52	39	24
Totol		mdd ui		2060	86	orn.		386	989	869	238	553	07	214	655
		(SiO ₂) Other constituents													
				겖	쾨	쑀		প্র	위 위	취	6.7	#	ឌ	43	स
L 100	Boron	<u>(8)</u>		9.56	97.56	79.0		0.37	95.36	0.53	25.0	0.26	0.31	70	0°32
ports per million volents per mill		ĘC		ગુરુ	0.02	0.02		0000	0°.02	0.01	0.01	0.01	0.02	0.00	0,00,000
ents per	1 2	(NO ₃)		, , ,	0.03	22,0		2115.	81 1 .	입수	अंद	84°0	अनु	250	96.58
ports per million equivolents per million	Chlo-			15.26	2,82	8.52		25.0	123	1.52	1.27	2,188	245	1.32	<u> </u>
i i	Sul -	fot• (SO ₄)		13.78	35.58	1,16 1,16		1.33	22.1	2.58	0.92	1.50	318	31%	%IS .
constituents	Bicor-	bonote (HCO ₃)	(4-5)	भ्रद्ध	मुर्	84. ² .	(2-5)	79 <u>287</u>	18 55 4 165 55 4	8.168	38.1	25.3 55.3	3,13	1.88	5.18
Minerol co	Corbon	_	PLATE	98	51.0	ुंह		0100	00.0	01%	00.0	010	0 00	0,00	00.00
Zi	_	E (X)	PITTSBURG	게른	6.4 0.16	4.4 0.11.0	CLATTON VALLEY	00 00	0.02	0.02	20.0	0.08	111	2.1	0.02
	_	(NO)	II.	15.27	2 2 2 5 5	Hand State	3	1,22	প্রন্থ	2.70	1.52	1. 51%	ध्र%	1.52	70
	Mogne-	(Mg)		8188	क्षार्ट	5.59		સાર્સ્	25.4	5,3165	318	318	2125	김홍	3.39
	Colcium			युः	恕냨	24. 24.	-	24.5	왦	क्षद्रं	धुर्मे:	회(c. 4	म इ.।	386.	3,14 41.4
	표			8.0	4.8	8.2		7.5	7.7	7.5	8.0	8.3	8.2	8.0	8,1
Specific conduct-	once (micro-	mhos of 25° C		3220	1450	1830		658	1130	1120	424	868	#	† 1†	1080
	Temp in °F				89	69			65						
	Sompled			6-8-62	6-8-62	6-8-62		7-11-62	7-11-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-11-62
Stote well	other number		MBGM	2N/18-7R2	-2201	2N/2E-20A1		11/14/41	n 1M/1W—4R1	2N/1W-30J1	2N/1W-30KL	2N/1W-31D1	2N/2W-13P1	2N/2W-26B1	2B/ZW-36JJ
	Owner and	985		Continental Can Co.	Dow Chemical Co. Dom.	Pibreboard Prod. Inc. Dom.		G. Curletto irrigation and domestic	S. W. Cowell Foundation IN/IW-4R1	F. Baker domestic	J. Diebrow domestic	F. Dorville domestic	R. B. Ogilwie domestic	Bertinola domestic	J. D. Mailen domestic

-315-

Determined by addition of constituents.
 Growinstric determination.
 Growinstric determination.
 C. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.).
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 J. Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as Godexcept as shown

	2 1																
	Analyzed by c		DWR	DWR	DWR	DVIR	DWR	DWR	DIVIR								
ness	os CoCO ₃		203	202	0	66	0	759	178								
Hard	Os Co Tatal Ppm		565	620	220	586	230	1230	681								
	2 0 E		51	44	26	32	74	31	25								
Total	ealved solved in ppm		1450	1280	555	246	866	2170	956								
	Silica Other constituents ^d (SiO ₂)																
			청	81	41	웨	43	98	201	 							
Hian	Boron (B)		1.2	1,1	1.6	1.8	6.3	1.9	0.50		 						
parts per millian equivalents per millian	Flua- ride (F)	_	0.03	0.05	0.02	0.03	0.2	0.5	0.2								
arts pe	rote (NO ₃)		0.24	0.29	000	41	0.7	2.19	0.03								
q	Cide (CC)	(5-5)	5.72	316	3.55	151	301	534 15.06	241								
Ę	Sul - fate (SO ₄)	ن نصصه	10.22	235 4.89	23	2,48	67	414 8.62	36								
Mineral constituents	Bicar- bonate (HCO ₃)	YGNACIO VALLEY	7.24	8.26	364	9.74	488 8 <u>.00</u> 8	574	614 10.06								
ıral car	Carbon- ofe (CO ₃)	YGIVA	0.00	0000	0000	0.00	0000	00.00	0.00		 	- 10			 	 	
M.	Potas-C sium (K) (0.04	0.03	0.07	0.7	3.8	0.9	0.04	 							
	Sadium (No.)		266	224 9.74	129	129	301	250	106								
	Magne- sium (Mg)		70 2.75	74	31	6.37	3.15	2.80	93	 	 	·		 			
	Catcium (Ca)		111	127 6.34	37	107	1.45	11.78 12	1119						 	 _	
	Ŧ.		0	7.9	œ e	7.7	φ 	7.9	200				_				
Specific	ancs (micra- mhos at 25°C)		27/10	2080	1786	1560	1780	3220	1650							 	
0,	Ten Gen Ten															,	
	Sampled		7-11-62	7-11-62	7-11-62	7-11-62	7-10-62	7-10-62	7-10-62		 						
State	number and ather number		1N/1W-7K1	1N/1W-29G1	IN/2W-11N1	1N/2W-13P1	2N/2W-27R1	2N/2W-36E1	2N/2W-36E2								
	Owner and use		A. Sebastiani domestic	Landis domestic	C. Hook 1rrigation	J. Wells domestic	F. H. Dunham domestlc	A. Buscaglia domestic	domestic								

	State well			-0000000										equivalents per million					Total				
	number and other number	Sampled .	Temp in •F	ance (micro-	표	F	Mogne	Sodium	Potos-	Carbon	Bicar-		5	- IN	Fluo-	۶.	Silica	Other constituents ^d	dis-	200	8	as CaCO ₃	Analyzed by c
\dashv				at 25° C)		(0)	_		£	(00)	(HCO ₃)	(so [*])	2 0	(NO ₃			(505)		in ppr		Tatal	D.E.	
							SANTA CL	LARA VALE	LEY -	EAST BAY	BAY AREA	(2-9)											
Manass Block Tanning Company	1S/1W-4A1	6-7-62	99	1370	8,0	3.89	68 5.56	100	0.03	00.00	260	110	234	0,35	0.2	0.17	251		773	31	473	260	DWR
	1S/4W-34F2	6-7-62	29	938	8.2	30	24 1,98	132	1.7	00.00	260	25 0.52	152	7.0	0.2	0.22	68	A8S 0.0	539	62	174	0	DWR
	2S/3W-21J1	6-7-62	89	5300	7.8 2	465	211 17.36	282 12,27	5.5	00.00	101	142 2,96	1670	9.0	0.1	0,38	34		2870	23	2030	1950	DWR
	2S/3W-28G1	6-7-62	99	681	8.2	36	18 1.46	81 3+52	23	00.00	231 3,79	47	$\frac{71}{2.00}$	000	0.2	0,40	35		405	51	163	0	DWR
Alameda Municipal Golf Course	2S/3W-30A	6-8-62		1110	7.9	60 2.99	31 2.52	113	2.9	00.00	138	36	$\frac{253}{7.13}$	0.0	0.10	0.4	34	A8S 0.0	599	47	276	163	DWR
	2S/3W-30D2	6-7-62		3890	7.6	316 15.77	$\frac{136}{11,20}$	242 10,53	6.9	00.00	\$6 0.92	123 2,56	1170 32,99	0.00	0.00	0,34	35		2060	28	1350	1300	DWR
Hohener Packing Co.	28/34-3343	6-19-62		610	8.5	33	17	75	3.3	9	299	33	25	2.0	0.2	0.49	34	ABS 0.0	379	51	154	0	DWR
	2S/3W-34A2	6-19-62		833	8.4	76 3.79	44	45	0.6	6 0.20	317	66	46	55	0.03	0,40	27	ABS 0.0	522	21	372	102	DAR
	2S/3W-3403	6-20-62	89	586	4.8	42 2.10	1,58	60 2.61	0.04	0.20	298	27	26	0.05	0.02	0,44	22	ABS 0.0	352	7.7	184	0	DWR
Air Sta.	2S/4W-3E1	6-7-62		864	8° 3	35	177	130	2.1	00.00	294	41	3,10	0.9	0.1	0.45	36	ABS 0.0	516	79	156	0	DWR
	2S/4W-3F1	6-7-62	89	809	7.7	35	20	103	0.04	00.00	250	23	3,36	0.6	0.1	0.32	37	ABS 0.0	463	56	172	0	DWR
Alameda High School domestic and irrigation	2S/4W-12Rl	6-7-62	89	388	7.8	23	11 0.89	40	0.05	00.00	157	6.6	23	0.2	0.03	0.15	26		224	7	102	0	DWR

	Analyzed by c		DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	uscs
88.00	as CaCO ₃		0	112	174	118	0	0	0	114	106	332		201		97
Hord	Tatal PPm		167	258	768	510	113	106	177	234	909	708		470		254
	- pos E		09	38	26	26	63	71	99	, 62	7 41	35		1 b 23		31
Total	ealved solids in ppm		505	535	738	782	368	458	588	775	1170	1230		671 ^b		434 _b
	Silica (SiO ₂) Other constituents ^d		A8S 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0		ABS 0.0		
			37	643	31	62	37 26	E)	35	55 151	25	위 강		0.46		2 21
on illian	- Boran (B)		0.42	0.52	0,32	0.40	0.37	0,51	0,76	0.50	3 1.2	3 0.42				1 0.2
ar milli	Flug- ride		0.2	0.1	0.3	0.4	0.2	0.2	0.02	0.3	0.6	0.5		0.2		0.1
parts per million equivalents per million	Ni- trate (NO ₃)		0.2	63	42	52	0.5	0.02	0.03	1.0	1,24	101 1.63		23 0,37		0.44
yinbe	0.0	nt.)	92 2.59	90 2.54	156 4.40	123 3,47	51	82 2,31	124 3.50	310	181 5.10	370	3.24	150	82 2.31	76 2.14
i ste	Sul - fate (SO ₄)	(3-9) (Comt.)	48 1.00	95	91 1.89	82	43	52 1,08	57 1,19	68	196	99		107		68
canstituents	Bicar- bonate (HCO ₃)	1	292 4.78	178	358	478	3.88	260	326	147	607	458		328 5,38		191 3,13
Mineral	Carbon ate (CO ₃)	SANTA CLARA VALLEY	0.20	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00	00.00		00.00		0000
2	Potas-(K)	NTA CL	2.3	2.6	0.03	0.7	2.2	2.1 0.05	1.7	3,3	0,03	0.5		2.3		0.04
	Sadium (Na)	AREA OF SA	116 5.05	75 3.26	76 3,31	83 3.61	91 3,96	124 5,39	150 6,52	182 7,95	194	178	59 2,57	64 2,78	<u>57</u> 2.48	53
	Magne- sium (Mg)	BAY	13	3.20	3,01	41 3.40	10 0,86	8.8 0.72	22 1.79	25 2,09	76	83		3,65		40
	Calcium (Ca)	EAST	46 2,30	39	127 6,34	136	$\frac{28}{1,40}$	28	35 1,75	52 2,59	5.84	7,34		115 5.74		1.75
	E C		8.4	8.1	7.7	7.7	8.3	8.2	8.2	8.0	7.9	7.5		8.2		8.2
Specific	conduct- ance (micro- mhas at 25°C)		821	847	1220	1280	610	772	991	1330	1820	2070	926	1140	797	709
	5 E •			9			70	74	76							
	Date sampled		6-7-62	6-19-62	6-19-62	6-20-62	6-28-62	6-20-62	6-19-62	6-19-62	6-19-62	6-20-62	5-7-62	9-62	5-8-62	9-62
Sign ators	number and ather number		2S/4W-25A1	3S/2W-7J1	3S/2W-19R4	3S/2W-30R14	3S/2W-31K1	3S/2W-32D3	3S/3W-1G3	38/3W-11Q1	3S/3W-13B2	3S/3W-24Q2	4S/1W-17E4		48/1W-1801	
	Owner and		Ratto	Bayside Nursery	Kruger and Sons industrial	A. Mateas irrigation	M. T. Sladek	Mt. Eden Nursery	irrigation Avansino Mortensen Co.	Trojan Powder industrial	Cianelli irrigation	J. Harat domestic and stock	M. Freitas irrigation		J. M. Enos	

⁻³¹⁸⁻

	Analyzed by c		DWR	nses	DWR	DWR	DWR	DWR	DWR
	-			1650	322	47	69	63	29
Hardness	os Ca Tatal ppm			1690 1650	544	292	264	252	222
à	t mod			12	15	26	56	27	30
Total	solved solids in ppm			2500	969	388	411	431	371
	Silica (SiO ₂) Other canstituented					Cr46 0.0 A1 0.00 As 0.00 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.02 Cr 0.00 (Total) Fe 0.00 (Total)	Cr +6 0.00 Cu 0.00 As 0.00 Cu 0.00 Pb 0.00 Tr 0.10 Zb 0.00 Tr 0.10 (Total) Fe 0.00 (Total)	Cr+6 0.00 Cu 0.00 As 0.00 Cu 0.00 Ps 0.00 Mn 0.00 Zn 0.00 Tr 0.00 (Trofs I) Fe 0.01 (Total) Phenols 0.000	Cr ⁺⁶ 0.00 Cu 0.02 As 0.01 Cu 0.00 Pb 0.00 Mn 0.00 Zn 0.01 T.0. 1 Se 0.00 Cr 0.00 (Total) Fe 0.14 (Total)
				17	17	14	14	13	15
Lion	Boron (B)			0.3	0.44	0.78	0.67	0.69	0.63
Billio	Fluo- ride (F)			0.3	0.00	0.3	0.03	0.3	0.02
parts per millian equivalents per millian	Ni- trate (NO ₃)			9.3	12 0,19	0.11	0.08	0.04	0.04
DAIND	Chlo- ride (CI)	(Gont.)	1440	1280 36,11	246	43	46	62	72 2.03
s in	Sul - fate (SO ₄)	(2-9) (6		23	66	1,83	93	67 1.39	1,02
constituents	Bicar- bonate (HCO ₃)			51	255	299	238 3,90	230	3.31
Mineral co	Carbon- ote (CO ₃)	CLARA VALLEY		0.00	0.27	0.00	000	00.0	0.00
Min	Potas-C sium (K)			4.1	2.4	2.2 0.06	0.05	2.1	0.06
	Sadium (Na)	AREA OF SANTA	116	108	46	48 2.09	1.91	43 1.87	1.91
	Magne- sium (Mg)	EAST BAY		184 15,14	50 4.13	3.09	26 2.18	27 2.19	22 1.85
	Calcium (Ca)	នា		374	135	55 2.74	62 3.09	57	52 2.59
	Ŧ			7.5	8,5	e .	7.8	7.7	7.9
Specific conduct-	ance (micra- mhos at 25°C)		0787	3980	1290	757	969	988	979
<u> </u>	E .					28	09		63
	Sampled		5-8-62	9-62	9-62	3-15-62	6-14-62	9-6-62	12-5-62
State well	number and ather number		4S/1W-18M7		4S/1W-20D2	4S/1H-21F2			
	puo Jaumo		M. Rose Armostic and	irrigation	Santa Cruz-Portland Cement Co.	Citizens Utilities Co. of California municipal			

a. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Sesting Loboratory (T.T.L.) or State Opportment of Woter Resources (D.W.R.) as indicated.
 d. Iron (Fe), Alwminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown

				7	F								ă	orts pa	ports par million	-				-		-	
	Stote well			Specific conduct-					₹.	erol co	Mineral constituents	is in	aquivo	lents	aquivolents per million	Lion			Totol		Hardness		
Owner and USe	other number	sampled	Tamp in • F		Ŧ.	Colcium (Co)	Mogne- sium (Mg)	Sodium P (Na)	Potas-C sium (K)	Corbon- ofe (CO ₃)	Bicar- bonote (HCO ₃)	Sul - fote (SO ₄)	Chlo- ride (CI)	rrote (NO ₃)	Fluo- ride (F)	Boron (B)	Silico (SiO ₂)	Silico Other constituents ^d	solids in ppm	sod ium Te	Totol N.		Analyzed by c
						EAST	ST BAY AR	REA OF SAI	SANTA OL	CLARA VALLEY		2-9) (6-2	((ont.)										
H. J. Kaiser industrial	48/1W-21M1	3-15-62	53	682	2.	51 2.54 2	34 2.81	44 1.91	0.05	00.0	255 4.18	79	48	0.03	0.2	0,54	15	Cr +6 0.00 Cu	406	56	268		DWR
		6-14-62	97	692	7.8	3,14	2.27	42 1,83	0.04	00.00	252 4.13	84 1.75	46 1,30	0.04	0.2	0.77	17	Cr ⁺⁶ 0.00 Al 0.00 Al 0.00 Al 0.00 Ro 0.00 Ro 0.00 Tr 0.10se 0.00 Tr 0.10se 0.00 Fe 0.00 (Total) Fe 0.00 (Total) Fre 0.00	418	525	271 6	79	DWR
		9-6-62		702	88	3.04	28 2.33	42	0.05	0000	254	85 1.77	1,35	0.03	0.2	0.60	16	Cr+6 0.00 Al 0.10 As 0.00 Al 0.10 As 0.00 Mn 0.00 Ph 0.00 T.0.5 Se 0.00 Cr 0.00 (Total) Fe 0.00 (Total) Fhenols 0.000	431	525	569	19	DVR
		12-5-62	62	711	8.1	3,19	2.32	444	0.05	00.00	266 4.36	85 1.77	1.38	0.03	0.3	0.62	18	Cr ⁺⁶ 0.00 A1 0.00 AS 0.00 Mn 0.00 PD 0.00 T.0. 1 Se 0.00 Cr 0.00 (Total) Fe 0.02 (Total)	421	56	276	28	DWR
M. Desales irrigation and domestic	45/IW-21R2	5-8-62		766	en	98	20	81 3.52 66	1.5	7	206	69	38	5.7	0.4	0.8	20	ABS 0.0	349	47	158		DWR DWR
T. Garcia irrigation and domestic	4S/1W-21R6	5-8-62		727		1.50	1.66	81 3.52	0.04	51.0	2, 2	7	38	6	50.00								DWR
 Defermined by addition of constituente. Gravimestric determination. Gravimestric determination. Gravimestric determination. C. Analysie by U.S. Geological Survey Quality of Woter Branch (U.S.G.S.), Pacific Chemical Consultante (P.C.C.), C. Analysie by U.S. Geological Survey Quality of Woter Brances (D.W.R.) as indicated. C. Analysie by U.S. Geological Survey Quality of Woter Branch (M.R.) as indicated. C. Analysie by U.S. Geological Survey Quality of Woter Branch (M.S.), reported here as One Shown of Iron (Fe), Aluminum (A.I., Areanic (Aa), Copper (Cu), Lead (P.D., Mangonese (Mn), Zinc (Zn), reported here as One Shown 	of constituente. tion. gleat Survey, Quality atory (T.T.L.) or Sto I), Areenic (As), Cop	of Woter Braite te Ospartmen per (Cu), Leon	i (Pb),	S.G.S.), Pa ater Resou	cific G	hemicol J.W.R.) o Zinc (Zn)	Consulton s indicate	ote (P.C.C.), ad.	00 000 exc	ept os s	помп												

	State well		8 9	Specific conduct-				2	ineral	Mineral constituents	i si	DVIVD.	parts per millian valents per mill	parts per millian equivalents per millian	6			Total	à	Hardness		
Owner and use	other number	sampled	Temp in •F	(micra- mhas	H Calcium (Ca)	ium Magne sium (Mg)	Sadium (No)	Potos-	-Carbon- ote	Bicar- banate	Sul – fote (SO ₂)	음. - 등 등 (고)	trote (NO ₄)	Ping.	Boron Si	ioo Other	Silico Other constituents ^d	solids solids in ppm	T DE	Os CaCo		Analyzed by c
				0 62						'n								۵				
						EAST BAY	AY AREA OF	SANTA	CLARA VALLEY		2-9) (dont.)	ont.)							11			
A. J. Rezendes irrigation	4S/1W-22M2	5-8-62		1650			364					79										DWR
		9-62		1630 8.7	$\frac{22}{1.10}$	0.96	375 16,31	8.8	40	832 13,64	45 0.94	88 2.48	6.3	0.4	3.8	33 ABS 0,	0.0	1020	88	103	0	DWR
J. S. Dutra domeatic and	4S/1W-28B2	9-62		674 8.3	3 47	22 1.81	1 3.22	0,05	0.10	260	72 1,50	44	8.4 0.14	0.4	0.8	19 ABS 0	0.0	397	43	208	0	DWR
irrigation A.C.W.D. municipal	4S/1W-28CI4	5-4-62		268			1.83					30										DWR
		9-62		515 8.1	1 36	30 20	6 43	0.05	00.00	3.18	55	36	3.5	0.2	0.3	22 ABS 0	00.00	309	35	173 1	14	uses
J. M. Braga domestic and	4S/1W-28D4	9-62		1380 8.3	3 7.14	13 52 14 4.31	1 61 2.65	2.5	00.00	257	63	309	4.1	0.00	0,63	켐		692	19	573 362		DWR
irrigation Washington Twn. Hosp. hospital	4S/1W-28F5	29-4-62		797			75					24 0,68										DWR
		9-62		436 8.3	3 28 1.40	1.16	6 1.91	0,05	6 0.13	182 2.98	38	26	2.4	0.3	7.0	22 ABS 0	0,00	260	42	128	0	DWR
c. Caldeira domestic	4S/1W-29J8	5-2-62		2410			160					484										DWR
		9-62		2630 7.7	7 156	26 108 78 8.92	8 2 7.83	3.5	00.00	304	95	619	31	0.1	8.0	19 ABS 0	0.0	1580	32	835 56	586	DwR
A.C.W.D. municipal	4S/1W-29L12	5-3-62		7.7	7 62 3.09	2 27 09 2.24	40 40 1.74	1.9	00.00	191 3,13	51	100	4.4	0.2	0.42	21		402ª	24	267 11	110	DWR
		9-62		835 8.1	1 63 3.14	3 14 2.54	45 45	0.05	00.00	149	50	155	5.7	0.0	0.4	25 ABS 0	0.0	537	25	284 16	162	nsgs
J. Silva domestic and	4S/1W-30C2	5-3-62		2650		7.74	20 v3					1740										DWR
irrigation A.C.W.D. municipal	4S/1W-30E3	5-2-62		799			5,52	E 1-1				90										DWR
especial production of participation of	of contituents				-	-			 						1				-	$\frac{1}{1}$	$\frac{1}{1}$]

Determined by addition of constituente.
 B. Gravimetric determination.
 C. Analysis by U.S. Geological Survey Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Woler Resources (D.W.R.) as indicated.
 D. Aluminum (Al), Areenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as GOG except as shown

	State well		W.C	Specific					Wineral	Mineral constituents	ents in	vinbe	parts per million equivalents per million	r millio	Tion			Total		Hordn	88	
Owner and use	number and other number	Dote sampled	Temp in •F		# S S	Calcium Mogne (Ca) sium (Mg)	Sodium (No)	Potas-	s-Carbon- ate (CO ₃)	n- Bicar- bonate (HCO ₃)	Sui - fote (SO ₄)		rote (NO ₃)	Fluo- rido (F)	Boron (B)	Silica (SiO ₂)	Silica (SiO ₂) Other constituents ^d	solids perios solids in ppm	Page 1	os CaCO ₃ Tafal N.C.		Analyzed by c
						EAST BAY	AY AREA OF		SANTA CLARA VALLEY	VALLEY	(2-9)	(dont.)										
A.C.W.D. municipal	4S/1W-30E3	9-62		735	0 1	19 0.95 0.63	3 5.70	0.05	5 0.27	208	54	90 2.54	1.2 0.02	0.02	0.4	21	ABS 0.0	425	78	79	0	nses
W. E. Hutchins irrigation	4S/lw-31A2	5-2-62		798			1.83	1				102 2.88										DWR
A.C.W.D. municipal	4S/1W-31B3	5-2-62		730			2.52	in:				104										DWR
		9-62		677 8.1		$\frac{42}{2.10} \frac{18}{1.48}$	65 8 2.83	3 0.04	0 0 0 0	5 2,16	1,02	3,27	3.7	0.3	0.4	28	ABS 0.0	777	77	179	11	uses
J. Pianetta irrigation	4S/IW-33EI	5-3-62		2850			179	o lo				740 20.87								······		DWR
		9-62		4120 7.5	5 4.10	119 10 9.78	9 137 8 5.96	6 4.2	0 0 0	$\frac{92}{1.51}$	1.56	1250 35,26	29	0.1	0.6	26	ABS 0.0	2470	51	1690 1620	950	nses
Enrico and Sodini domestic and	4s/lw-33G3	5-3-62		1450			136 5.92	volet				188										DWR
irrigation		9-62		1170 8.1		$\frac{24}{1.20}$ $\frac{54}{4.40}$	139 6.05	3.4	00.00	286	83	173	27	0.2	0.8	25	ABS 0.0	099	- 52	280	45	uses
R. Clarkes domestic and	4s/lw-33Kl	5-3-62		1180			118 5.13	mlm				108										DWR
irrigation		9-62		1000 8.5		$\frac{9.6}{1.90}$ $\frac{52}{2.84}$	34 6.05	3.4	15 0.50	286	84	99 2.79	50	0,2	0.9	26		583	56	237	0	nses
B. Rose domestic	4S/1W-34Q4	5-3-62		1360			3.87	16				178										DWR
,		9-62		1070 8.	8.5 3.	71 43 3.54 3.51	3.74 3.74	1.8 0.05	14 0.47	7 4.82	29 0.60	3.95	52 0.84	0.03	0.2	27	ABS 0.0	612	35	352	88	nses
A.C.W.D. municipal	4S/1W-34R2	9-62		521 8.	8.3 0.	$\begin{array}{c c} 16 & 17 \\ \hline 0.80 & 1.40 \\ \end{array}$	79 3.44	4 0.04	54 0.17	7 244	0,40	37	0.19	0.03	0.2	33	ABS 0.0	310	09	110	0	sosn
A.C.W.D. municipal	4S/1W-35P3	5-3-62		638	4 4	96						39										DWR
Contemporal by oddition	of secondiducation								-										1	1		

a. Determined by addition of constituente.
 b. Growmetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 [Faminal Institute Laboratory (T.T.L.) or Stote Department of Water Resources (D.W.R.) os indicated.
 d. Iran (Fe), Aluminum (Al), Areanic (Aa), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown

Per- Hardness	solved sod- solids sod- in ppm ium		370 62 129 0 USGS	359 55 144 0 USGS	2830 ^a 33 1680 1554 DWR	RWG		333 53 130 0 USGS	53 130 0	53 130 0 52 183 0 53 382 293	53 130 0 53 52 183 0 53 382 293	53 130 0 52 183 0 53 382 293 23 1000 881	53 130 0 52 183 0 53 382 293 23 1000 881	53 130 0 53 1382 293 53 382 293 23 1000 881	53 130 0 53 382 293 53 382 293 30 470 213	53 130 0 52 183 0 53 382 293 23 1000 881 30 470 213 24 1820 1750
Total	Silico Silos) Other constituented in ppm b		370	359	0.0 2830 ^a		333	233	4519	4514	451a	0.0 0.0 1170 1870	451 ⁴ 451 ⁴ 1170 1870	0.0 0.0 1170 1870 884	0.0 0.0 1170 1870 0.0 884	0.0 0.0 1170 1870 884 884
ion	Boren (B)		1 0.3 24 ABS	0.2 25 ABS	0.40 27 ABS		1 0.2 23 ABS		0.56 21	0.56	0.2 22	0.56 21	0.56 21	0.56 21 22 22 22 22 22 21 22 22 22 22 22 21 22 22	0.56 21 0.6 21 0.4 22	0.6 21 22 22 22 22 22 21 22 22 22 22 22 22
parts per milition equivalents per million	Chlo- ride ride (NO ₃)	~	$\begin{array}{c ccccc} 40 & 8.1 & 0.2 \\ \hline 1.13 & 0.01 & 0.01 \end{array}$	18 2.0 0.0 0.51 0.03 0.00	10 1.8 0.2 40 0.03 0.01	25 0,70	$\begin{array}{c cc} 66 & 4.1 & 0.2 \\ \hline 1.86 & 0.07 & 0.01 \end{array}$		$\frac{74}{2.09} \frac{2.4}{0.04} \frac{0.2}{0.01}$	2.4 0.04 0.04 0.04	2.4 0.04 0.04	2.4 0.04 0.04 0.04	2.4 0.04 0.04 0.04 0.24	2.4 0.04 0.04 0.04 0.24 0.24	2.4 0.04 0.04 0.04 0.24 0.24 0.24 0.24	1.5 0.04 0.04 0.04 0.24 0.24 0.24 0.24 0.24 0.24 0.27
constituents in	Bicar- banate fate ric (HCO ₃) (SO ₄) (C	X (2-9) (Gont.)	326 5.34 0.44 1.	289 4.74 0.85 0.	154 138 1610 2,52 2,87 45,40	00 2	$\begin{array}{c c} 172 & 35 \\ \hline 2.82 & 0.73 & 1. \end{array}$		$\frac{274}{4.49}$ $\frac{57}{1.19}$ $\frac{7}{2.}$	57 1,19 53 1,10	57 1,19 53 1,10	57 1,19 1,10 1,10	57 1,19 53 1,10 364 7,58	57 1.19 53 1.10 1.10 1.758 1.102 2.12	57 1.19 53 1.10 1.10 7.58 102 2.12	57 1,19 53 1,10 7,58 1,02 2,12 444
Mineral consti	Potas-Carbon-Bic sium ate ban (K) (CO ₃) (HC	SANTA CLARA VALLEY	1.7 0.04 0.17 5.3	$\begin{array}{c c} 1.5 & 10 & 2 \\ 0.04 & 0.33 & 4. \end{array}$	$\frac{6.4}{0.16}$ $\frac{0}{0.00}$ $\frac{1}{2.}$		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0.04 0.00 4.	00.00	00.00	00.00	00.00	00.00	0.00 0.00 0.00 0.00 0.00	00.00 00.00 00.00 00.00 00.00
	Magne-Sadium Pe sium (No)	AREA OF	99 4.31	8 1,08 3,52 0	389	7,00	$\begin{array}{c c} 13 & 68 & 2 \\ \hline 1.10 & 2.96 & 0 \end{array}$		$\begin{array}{c c} 14 & 94 & 1 \\ \hline 1.12 & 4.09 & 0 \end{array}$	94 4.09 204 8.87	94 4.09 204 8.87 125 5.44	94 4.09 204 8.87 125 5.44 137 5.96	204 6.09 8.87 125 5.44 7.96 93. 4.04	94 4.09 8.87 125 5.44 7.96 4.04 93. 4.04	94 4.09 8.87 125 5.44 5.96 4.09 8.78 93. 4.09	94 4.09 8.87 125 5.44 137 5.96 4.09 4.09 8.7 8.7 137 6.09
	pH Colcium Mac	EAST BAY	8,3 22 18	8.5 444 8	7.7 436 144		$8.2 \frac{30}{1.50} \frac{1}{1.}$		7.7 51 1.	51 2.54 97 4.84	51 2.54 97 4.84	51 2.54 4.84 1.75 8.73	51 2,54 97 4,84 8,773	2.54 97 4.84 175 8.73	2.54 97 4.84 8.73 99 4.94	2.54 2.54 4.84 4.84 8.73 175 8.73 18.96
Spacific conduct-			9 079	579 8,	67 4930 7,	516	565 8,		766 7,							
	eampled		9-62	9-62	6-20-62	5-8-62	9-62		5-3-62	5-3-62	5-3-62 9-62 5-7-62	5-3-62 9-62 5-7-62	5-3-62 9-62 5-7-62 9-62 5-8-62	5-3-62 9-62 5-7-62 5-8-62 9-62	5-3-62 9-62 9-62 9-62 5-8-62 9-62	5-3-62 9-62 5-7-62 9-62 9-62 9-62
State well	other number		4S/1W-35P3	4S/2W-3R1	4S/2W-9Q2	4S/2W-10C1			4S/2W-10M2	4S/2W-10M2 4S/2W-10N6	4S/2W-10M2 4S/2W-10N6 4S/2W-10Q2	48/2W-10M2 48/2W-10N6 48/2W-10Q2	4S/2W-10%2 4S/2W-10%6 4S/2W-10Q2 4S/2W-11Q5	4\$/2W-10M6 4\$/2W-10N6 4\$/2W-10Q2	4\$/2W-10%2 4\$/2W-10%6 4\$/2W-11Q5 4\$/2W-11Q5	48/2W-10\(\pi_2\) 48/2W-10\(\pi_2\) 48/2W-11\(\pi_2\) 48/2W-13\(\pi_2\) 48/2W-14\(\pi_1\)
	Owner and		A.C.W.D. municipal	Andrada domestic and	irrigation J. F. Bettencourt Irrigation	Holly Sugar industrial			A.C.W.D. municipal	A.C.W.D. municipal A.C.W.D. municipal	A.C.W.D. municipal A.C.W.D. municipal Scutto Bros. irilgation	A.C.W.D. municipal A.C.W.D. municipal Scutto Bros. irrigation and domestic	A.C.W.D. municipal A.C.W.D. municipal Scutto Bros. irrigation and domestic H. Dutra domestic and	A.C.W.D. municipal A.C.W.D. municipal Scutto Bros. irrigation and domestic domestic and irrigation	A.C.W.D. municipal A.C.W.D. municipal Scutto Bros. irrigation and domestic domestic and irrigation irrigation S. May irrigation	A.C.W.D. municipal A.C.W.D. municipal Scutto Bros. irrigation and domestic domestic irrigation irrigation T. E. Harvey irrigation T. E. Harvey

o. Determined by addition of constituente.
 b. Growinstric determination.
 b. Growinstric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Terminal 18sting Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 d. Iran (Fe), Aluminum (Al), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 670 except as shown

	Analyzed by c		nses	DWR	uscs	DWR	DWR	DWR	DWR	DWR	DWR	USGS	DWR	nses	DWR	uses
988	os CoCO 3 Fotol N.C. Ppm ppm		59		2		75	0		51		31		68		36
Hord	Totol Ppm		189		148		162	94		224		161		191		250
å	S S S S S S S S S S S S S S S S S S S	 	31		37		31	67		25		31		. 29		22
Totol	eolved solved solvds in ppm		326		276		297	366		356		272		344		361
	Silico (SiO ₂) Other constituents ^d				ABS 0.0		ABS 0.0	ABS 0.0		ABS 0.0						
	Silica (SiO ₂)		25		24		5 29	35		7 23				20		22
Lion	Boren (B)		0.4		0.2		0.34	0,37		0.37		0.2		0.3		0.2
er million per million	Fluo- ride (F)		0.3		0.2		0.1	0.02		0.2		0.2		0.02		0.4
	Ni- trate (NO ₃)		10	•	11 0.18		9.2	1.0		5.8		10 0.01		6.0		6.3
ports p	음년 (미)	(Gont.)	50	29	28 0.79	38	40	26	46	48	34	32	. 1.55	74 2.09	33	32 0.90
ë	Sul - fote (SO ₄)	2-9) (6	57		44		52 1,08	40		55		47		53		50 1.04
Mineral constituents	Bicor- banate (HCO ₃)		145 2,38		178		147	251		3,46		159		118		3.72
o lore	Carbon- ofe (CO ₃)	CLARA VALLEY	0.23		00.00		00.00	5		00.00		00.00		3 0,10		0,57
₹	Potos-0 sium (K)	SANTA C	2.1		2.1		2.8	1.6		2.0		1.7		2.2		0.04
	Sodium (No)	AREA OF S	39	39	41 1.78	33	35	91 3.96	_	34	32 1,39	34	32 1.39	36	30	32 1,39
	Magne - sium (Mg)	EAST BAY	25 2.08		17		18	5.8	36	13		$\frac{21}{1.72}$		$\frac{27}{2.22}$		20
	Colcium (Co)	ভ্ৰ	34		31		35	28		68 3,39		30		32		67 3.34
	Ŧ.		8.3		8.1		8.1	8.5		8.1		8,1		8.3		8.6
Specific	once (mlcro- mhos		445	809	857	367	667	268	621	295	599	456	602	551	609	580
	Temp in °F															
	Sampled		9-62	5-8-62	9-62	5-3-62	9-62	9-62	5-3-62	9-62	5-3-62	9-62	5-3-62	9-62	5-3-62	9-62
9 9 9	other number		4S/2W-14J1	4S/2W-15C1		4S/2W-15L4		4S/2W-22P2	4S/2W-23F2		4S/2W-24D4		4S/2W-24J1		4S/2W-24L6	
	Dun and		A. Caeton irrigation	T. P. Harvey	irrigation	King irrigation		W. D. Patterson	Patterson Ranch irrigation		L. Croce		Macado)	M. Kitani domestic	and irrigation

Per- Hardness	solved sod in ppm in ppm			27 371	27 371 193	27 371 193	27 371 193	27 371 193 82 55 0 81 59 0	27 371 193 82 55 0 81 59 0	27 371 193 82 55 0 81 59 0	27 371 193 82 55 0 81 59 0 32 637 417 61 119 0	27 371 193 82 55 0 81 59 0 32 637 417 61 119 0	27 371 193 82 55 0 81 59 0 32 637 417 61 119 0	27 371 193 82 55 0 81 59 0 61 119 0 61 119 7	27 371 193 82 55 0 81 59 0 61 119 0 37 278 7 37 380 182	27 371 193 82 55 0 81 59 0 61 119 0 61 119 0 37 278 7	27 371 193 82 55 0 81 59 0 61 119 0 37 278 7 37 278 7 90 20 0
Per l		t		ABS 0.0	ABS 0.0 592	ABS 0.0 592	ABS 0.0 592	ABS 0.0 592	ABS 0.0 358 ^a 358 ^a	ABS 0.0 592 ABS 0.0 364	ABS 0.0 358a 358 a 358 a 358 a 358 a 358 a 364	ABS 0.0 358 ^a 358 ^a 1030 1030	ABS 0.0 592 ABS 0.0 364 ABS 0.0 360 ABS 0.0 482	ABS 0.0 384 ABS 0.0 364 ABS 0.0 360 ABS 0.0 482	ABS 0.0 592 ABS 0.0 364 ABS 0.0 360 ABS 0.0 482	ABS 0.0 592 ABS 0.0 364 ABS 0.0 369 ABS 0.0 482	ABS 0.0 384 ABS 0.0 364 ABS 0.0 360 ABS 0.0 482 ABS 0.0 794
Boran	(0)			0.40 22 ABS	0.40 22 ABS	0.40 22 ABS	0.40 22 ABS	0.40 22 ABS	0.40 22 ABS	0.40 22 ABS	0.40 22 ABS 0.42 24 ABS 0.2 22 ABS	0.40 22 ABS	0.40 22 ABS 0.42 24 0.3 27 ABS 0.3 22 ABS 0.3 26 ABS	0.40 22 ABS 0.3 27 ABS 0.3 26 ABS	0.40 22 ABS 0.42 24 0.3 27 ABS 0.3 26 ABS 0.2 25 ABS	0.40 22 ABS O.2 24 ABS O.2 25 ABS O.2 25 ABS	0.40 22 ABS 0.42 24 0.3 27 ABS 0.3 26 ABS 0.2 25 ABS 0.2 25 ABS
Ni- Fiug- Boran Silica (No.3) (F) (SiO ₂) Other (No.3)			22					0.2 0.01 0.01 0.2 0.3 0.3	0.2 0.42 24 0.01 0.3 27 0.01 0.3 27	0.2 0.01 0.01 0.01 0.03 0.3 0.3 0.03 0.03 0	0.2 0.2 0.01 0.01 0.01 0.01 0.01 0.01 0.	0.2 0.42 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0	0.2 0.42 0.01 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.02 0.03 0	0.2 0.2 0.01 0.01 0.01 0.01 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.	0.2 0.42 24 0.01 0.3 27 0.02 0.3 27 0.03 0.2 22 0.03 0.2 22 0.01 0.3 26 0.01 0.3 26 0.01 0.3 26 0.01 0.3 26	0.2 0.01 0.01 0.01 0.01 0.02 0.01 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.04 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.01 0.02 0.03 0.03 0.03 0.03 0.03 0.04 0.05 0	0.2 0.42 24 0.00 0.2 0.3 27 0.00 0.2 0.3 26 0.00 0.2 0.3 26 0.00 0.00 0.2 0.3 26 0.00 0.00 0.2 0.3 26 0.00 0.00 0.2 0.3 26 0.00 0.00 0.2 0.2 25 0.00 0.00 0.2 0.2 25 0.00 0.00
- Ni- Fiug- Boran (B) (No ₃) (F) (B) (B) (B) (B) (B) (B) (B) (B) (B) (B	3 5.8 0.2 0.09 0.01	5.8 0.09 0.01		309 8.71		32 0,90	0.1 0.2 0.0	0.1 0.00 0.00 0.01 0.32 0.01	0.1 0.0 0.00 0.01 0.32 0.01	0.1 0.0 0.00 0.01 0.32 0.32 0.02 0.02 0.02	0.1 0.2 0.00 0.01 0.32 0.01 0.02 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.01 0.03 0.01 0.02 0.01 0.02 0.02 0.03 0.	0.1 0.0 0.00 0.01 0.32 0.01 0.32 0.01 0.02 0.02 0.01 0.03 0.01 0.03 0.01 0.03 0.01 0.	0.1 0.2 0.0	0.1 0.2 0.00 0.01 0.32 0.01 0.02 0.01 0.18 0.02 0.01 0.33 0.2 0.01 0.33 0.03 0.0	0.1 0.2 0.00 0.01 0.32 0.01 0.33 0.02 0.18 0.02 0.01 0.33 0.02 0.03 0.	0.1 0.2 0.01 0.2 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.02 0.02 0.02 0.03 0.02 0.03 0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.00 0.0	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Chide frate ride ride (Cont.) (Sont.) (Sont.) (Sont.) (Sont.) (Sont.) (Sont.) (Sont.) (Sont.)	(Cont.) 193 5.8 0.2 5.44 0.09 0.01	193 5.8 0.2 5.44 0.09 0.01 309 8.71	309		32 0.90		20 0.56 0.00	20 0.56 0.00 20 20 0.56 0.32	20 0.56 0.00 0.56 0.32 368 10.38	20 0.56 0.56 0.32 0.00 0.20 0.32 0.01 0.20 0.20 0.20 0.20 1.32 0.01 0.21 0.01 0.21 0.01 0.21 0.01 0.	0.56 0.11 0.22 0.56 0.00 0.01 0.56 0.32 0.01 0.58 0.32 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.02 0.01 0.03 0.02 0.079 0.18 0.02	20 0.56 0.56 0.00 0.56 0.32 0.01 3.68 1.0.38 1.1.91 0.02 1.1.91 0.02 1.1.91 0.02 0.79 0.18 0.03 0.01 0.02 0.01 0.02 0.01 0.02 0.03 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.02 0.01 0.03 0.01	20 0.1 0.2 0.56 0.00 0.01 0.56 0.32 0.2 10.38 0.22 0.01 11.31 0.02 0.01 28 11 0.2 0.79 0.18 0.02 6.3 0.02 0.01 1.78 0.02 0.02 2.23 0.37 0.01	20 0.1 0.2 0.56 0.00 0.01 0.56 0.22 0.22 10.38 0.01 0.01 11.91 0.02 0.01 28 11 0.3 0.79 0.18 0.02 1.78 0.33 0.02 2.23 0.37 0.01 2.23 0.37 0.01 2.23 0.37 0.01	20 0.10 0.22 0.56 0.00 0.01 0.56 0.22 0.02 10.38 0.32 0.01 422 11.3 0.22 11.91 0.02 0.01 6.79 0.118 0.02 6.3 0.13 0.02 1.78 0.02 0.01 2.23 0.37 0.01 2.43 0.01 0.01 2.65 5.3 0.01 2.65 5.3 0.01	20 0.16 0.22 0.56 0.00 0.01 0.56 0.32 0.21 10.38 0.02 0.01 11.31 0.02 0.01 11.78 0.18 0.02 1.78 0.18 0.02 1.78 0.33 0.02 2.23 0.03 0.01 6.85 0.09 0.01 1.48 0.09 0.01 0.442 0.09 0.01	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Bicor- Sul- banate (10s) (HCO ₃) (SO ₄) AILEY (2-9) (GOO 217 3.56 1.12	ALLEY (2-9) (Gon 217 54 3.56 1.12	3.56 1.12 3.56 1.12	30° 8°.7′	32		283 39 4.64 0.81		$\frac{269}{4.41}$ $\frac{39}{0.81}$	269 39 4,41 0.81	269 39 4,41 0.81 269 116 4,41 2.42	269 39 4,41 0.81 269 116 4,41 2,42 253 29 4,15 0,60	269 39 4,41 0.81 269 116 4,41 2.42 253 29 4,15 0.60	269 39 4,41 0.81 269 116 4,41 2,42 253 29 4,15 0,60 312 49 5,11 1,02	269 39 4,41 0.81 269 116 4,41 2.42 253 29 4,15 0,60 312 49 5,11 1,02	269 39 4,41 0.81 269 116 4,41 2.42 253 29 4,15 0.60 312 49 5,11 1,02 3.97 0.38	269 39 4,41 0.81 269 116 4,41 2,42 253 29 4,15 0.60 312 49 5,11 1,02 3,37 28	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$
Potos - Carbon stum of (K) (CO 3) (CO	G. 0.00	0.00				1.0 0 283 0.02 0.00 4.64	1,8 0,05 0,33 4,41			3.0- 0 265	0000	0000	0 0.00 0.00 0.63 0.63	0 0,00 0,00 0,30	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
Sadium Potga- sium (Na) (K) (K) (K) (K) (K) (K) (K) (K) (K) (K	AREA OF SANTA 64 2.78 0.00 114 4.96 109 4.74 116 110	64 2.78 114 7.96 4.74	114 4,96 109 4,74	109 4.74	114	96.4	114 4.96		118 5.13	118 5,13 139 6,05	118 5.13 139 6.05 90	118 5,13 139 6,05 3,92 71 71	118 5.13 139 6.05 3.92 71 71 76 76 76 76 76 76 76 77 76 77 76 77 77	118 5,13 139 6,05 7,0 3,92 7,0 7,0 7,0 9,0 7,0 9,0 7,0 9,0 7,0 9,0 9,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 9,0 1,0 1,0 1,0 1,0 1,0 1,0 1,0 1	118 5.13 139 6.05 6.05 3.92 7 1,09 4.09 4.09	118 5.13 6.05 6.05 3.92 7.1 7.1 7.1 7.6 9.4 4.09 100 4.61 101 4.61 101 4.51	118 5,13 139 6,05 6,05 3,92 3,92 76 3,31 106 4,09 4,09 4,39 4,39
Calcium Magne (Ca) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg) (Mg	EAST BAY A 104 27 5.19 2.22	104 5.19 27				$\begin{array}{c c} 18 & 2.4 \\ \hline 0.90 & 0.20 \end{array}$	15 0.75 0.38			156 60 7.78 4.95	156 7.78 32 1.60	156 7.78 32 1.60	156 7.78 32 1.60	156 7.78 32 1.60 57 57	156 7.78 32 1.60 2.84 86 4.29	1.56 7.78 32 1.60 7.78 86 4.29	1.56 7.78 32 1.60 1.60 8.0 8.0 8.0 0.40
ance minos at 25 ° C)	8.0	0.8	1440		919	574 8.3 0.	571 8.4 0.		1710	8,0	0 & 8 &	0 8 8	0 8 9	0 8 5	8 8 8 8 2 2 2 3 2 4 3 4 4 4 4 4 4 4 4 4 4 4 4 4	8 8 8 8 0 2 2 2 8	8 8 8 8 8 8 8 8 8 8 8 8 9 9 9 9 9 9 9 9
9-62 1	25	7.			5-8-62	5-2-62		79-6	62		95	62 62		62 62	62 62	62 62	62 62
number and other number			4S/2W~26A1 9	4S/2W-26J1 6	4S/2W-27L1 5	5S/1W-4D1 5			\$\$/1W+6D1 \$								
Owner and			W. D. Patterson irrigation	Abbau irrigation	and stock Patterson domestic and	irrigation A.C.W.D. municipal			J. F. Trindade	J. F. Trindade irrigation and domestic	J. F. Trindade irrigation and domestic S. C. McNuity irrigation	J. F. Trindade irrigation and domestic S. C. McNulty irrigation A. F. Brosius irrigation	J. F. Trindade irrigation and domestic S. C. McNulty irrigation and domestic A. F. Brosius irrigation and domestic	J. F. Trindade irrigation and domestic S. C. McNulty irrigation and domestic A. F. Brosius irrigation and domestic and domestic and the stinker w. B. Brinker	J. F. Trindade irrigation and domestic irrigation and domestic A. F. Brosius irrigation and domestic w. B. Brinker irrigation	J. F. Trindade and domestic and domestic irrigation and domestic A. F. Brosius irrigation and domestic and domestic and tomestic and domestic and domestic and domestic	J. F. Trindade and domestic and domestic s. C. McNulty irrigation and domestic A. F. Brosius irrigation and domestic w. B. Brinker irrigation and the strinker irrigation and the strinker irrigation and domestic and domestic

a. Determined by addition of constituente.
 b. Gravimetric determination.
 c. Analysis by Lobaration (P.C.C.).
 c. Analysis by Lobaration Y.T.L., or State Department of Water Resources (D.W.R.) as indicated.
 d. Trampol Testing Lobarationy (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Alluminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 6.30 except as shown

⁻³²⁵⁻

	Anolyzed by c		OWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
			0	0	0	0	582	20	0	0	17	0	0	0	100	0
Hordness	OS CO Totol PPm		142	146	170	221	999	245	20	119	170	211	135	185	265	226
ż	E SE		54	58	39	33	07	33	70	27	26	29	87	38	21	36
Total	eolved solids in ppm b		355	097	336	380	1375	442	278	274	290	316	342	340	398	400
	Other constituents ^d															
	Silico (SiO ₂)		16	25	22	22	17	22	14	21	31	20	22	22	28	24
lion	Boron (B)		0.2	0.4	0.2	0.2	0.4	0.2	0.2	0.2	0.2	0.2	0.3	0.2		24
ports per million equivolents per million	Fluo- ride (F)		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.1	0.1	0.1	0.1	0.01
ents per	Ni- trote (NO ₃)		00.0	26 0,42	00.0	0.00	0.0	0.00	0.0	0.05	5.0	3.9	0.0	0.00	14 0,23	37
po	Chlo- ride (CI)		$\frac{21}{0.57}$	48	23	49	631 17.8 ⁰	52 1.45	16	0,30	16	22 0,63	$\frac{21}{0.60}$	23	43	43
i.	Sul - fote (SO ₄)	(2-9)	51 1.07	65	35	34	134	63	16	21 0,45	45 0.94	22 0,46	19	31	90	14 0,31
Mineral constituents	Bicor- bonote (HCO ₃)	VALLEY	253	3.63	3,80	266	101	238 3.90	216 3,54	204 3,35	187 3.06	262	255 4.19	281	3,30	296
erol co	Corbon- ofe (CO ₃)	SANTA CLARA	9.0	12 0,40	9.0	4.2	00.00	18	9.0	6.0	00.00	12 0,40	16	0000	00.00	00.00
₹.	Potos - (K)	OF SANT	0.7	0.03	1.1 0.03	0.03	2.5	0.03	0.7	0.7	1.3 0.03	0.03	12 0.31	0.03	1.2	0.03
	Sadium (No)	BAY AREA O	3.40	95 4.13	50 2.17	51 2,20	210	55 2.40	75 3,25	49	28 1.20	40	64 2,80	52 2.25	33	58 2.52
	Mogne- sium (Mg)	SOUTH B	15	2,04	19	28 2,30	85	30	5.7	7.7	$\frac{13}{1,11}$	21 1.69	$\frac{12}{1,00}$	17 1.35	30 2.46	27.22
	Calcium (Co)		32	18 0.91	37	42 2.11	126	48	19 0.94	35	46	51 2.53	$\frac{34}{1.71}$	47	37	46 2.30
	£		8.4	8.6	8.5	8.3	7.9	8.6	8.6	8.5	8.2	8.6	8,6	8.2	8.2	8.1
Specific	(micro- mhos		260	099	200	009	2100	979	077	007	430	550	530	520	009	630
	Temp in • F		97	99	11	67	59	29			29	99	70	72	69	70
	Dote		8-20-62	8-30-62	8-22-62	8-20-62	7-26-62	8-20-62	8-62	8-62	7-25-62	7-26-62	8-27-62	7-27-62	7-27-62	8-27-62
Stote	number and other number		6S/1E-7C1	6S/1E-21G1	6S/1E-30M1	6S/1W-11B1	6S/1W-16A1	6S/1W-14E1	6S/1W-17M1	6S/1W-2602	6S/1W-28R1	6S/IW-29C1	6S/2W-9H1	6S/2W-9K2	6S/2W-16R1	. 6S/2W-20N1
	puo seumo		Winsor Bros.	Y. Cortese irrigation	M. Muchado irrigation	and domestic J. S. Garcia irrigation	and domestic R. T. Collier industrial	A. French domestic and	irrigation C. W. Dunton irrigation	Wilcox Bras.	S. Weston	G. H. Fukumoto domestic and	irrigation Rezentes domestic	J. Joaquin	F. Ormonde	Calif, Water Service Co. municipal

Optermined by oddition of constituents.
 Growimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 A Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as accept as shown

	-							
	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	
Hordness	N.C.		0	24	Φ	73	11	
			146	289	235	250	166	
<u>*</u>	P E		41	27	18	23	28	
Toto	enlos pevios solids d		310	977	314	707	290	
	Siico Other constituentsd							
			25	28	57	- 54	22	
Lion	Boron (B)		0.2	0.1	0.1	0.2	0.2	
Per million	Fluo- pir (F)		0.1	0.1	0.1	0.2	0.1	
equivalents per million	rrote (NO ₃)		0.00	45	15	19 0.30	12 0,19	
pvive	Signature (C)	ont.)	$\frac{21}{0.57}$	45	23 0,65	52 1.45	$\frac{21}{0.57}$	
oi ste	Sul - fote (SO ₄)	(2-9) (Cont.)	28 0.59	23	14 0,28	52 1.09	33	
Mineral constituents	Bicor- bonote (HCO ₃)	SANTA CLARA VALLEY	218	324	253 4.15	3,55	189	
inerol	Carbon ate (CO ₃)	LARA 1	3.6	00.00	0.40	00.00	0000	
2	Potos-Carbon- sium ate (K) (CO ₃)	ANTA C	0.8	1.2	0.7	1.5	1.1	
	Sodium (No)	AREA OF	47 2.05	49	24 1.05	35	30	
	Magne sium (Mg)	SOUTH BAY	1,40	2,36	$\frac{26}{2.10}$	24 1,96	$\frac{17}{1,42}$	
	Calcium (Co)	nos	30	68	32 2.61	61 3.03	38 1,90	
,	H. C.		8.4	8.2	8.6	8.0	8.2	
Specific conduct-	(micro- mhos of 25° C)		095	720	200	580	077	
	Temp in • F		17	99	70	89	11	
·	sompled		8-24-62	8-27-62	8-28-62	7-26-62	7-26-62	
Stote well	number and other number		6S/2W-24M3	6S/2W-29D2	6S/2W-34M1	6S/2W-36H2	7S/1W-5P1	
	Owner and		Homm Bros.	Slonaker domestic and	irrlgation H. Mantelli domestic and	irrigation O. P. Gluhaich irrigation	W. S. Bennet	

o. Defermined by addition of constituents.

b. Growinstric determination.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.),

r. Analysis by U.S. Geological Survey, Quality of Water Branch and Water Resources (D.W.R.) as indicated.

Terminal Testing Laboratory (T.T.L.) or Stats Department of Water Resources (D.W.R.) as indicated.

d. Iron (Fe), Aluminum (AI), Arsenic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 except as shawn

	70	T														
	Anolyzed by c			DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	00	N.C.		0	820	0	19		0		76		0	458		158
1	os CoCO3	Total		188	929	370	335	305	340	359	273	319	383	969	472	391
	Sod of	Ē		95	7.1	91	74	36	20		24		53	38		26
Total		mdd ui								653		404	943		495	
		(SiO ₂) Uther constituents		ABS 0.0	ABS 0.0	ABS 0.0		ABS 0.0	ABS 0.0		ABS 0.0		ABS 0.0			ABS 0.0
				28	27	13	22	23	28		36		29	881		24
Lion	Boron	<u>@</u>		0.31	36	69	6.9	0.34	4.0	1:6	0,49	0.61	2.7	1.6	1:1	1.4
millio er mi	Fluo	<u> </u>		0.00	0.04	0.0	1.1 0.06	0.6	0.02		0.0		0.3	0.2		0.00
parts per million	ż	(NO ₃)		0.9	0.02	2.4	22 0,35	2.3	30		9.6		30	0.22		26
o d	- - - - - - - - - - - - - - - - - - -	ç (C) • (C)		158	2140	2500 70.50	642 18,10	83	3.44		69		178 5.02	399 11,25		135 3.81
i ë	Sul	(SO ₄)		12 0,25	34 0.71	18 0.37	80	96	72 1.50		54		85	276		80
constituents	Bicor-	bonote (HCO ₃)	(3-10)	245	133	523 8,57	359	317	494		234 3.84		560 9.18	169		280
Mineral co	Carbon	(CO ₃)	VALLEY	00.00	00.00	60 2.00	13	00.00	5 0.17		3 0.10		0.00	0000		0.07
2	Potos-	Siu (X)	40RE V	1.9	2.4	8.6	0.03	0.9	1.4		0.04		1.9 0.05	2.0		2.3
		(NO)	LIVERHORE	112 4.87	1040 45.24	1720 74.82	448	3.44	158 6.87		40		202 8.79	172		64 2.78
		sium (Mg)		1.36	62 5.09	29	3.90	34	4,05		67		63 5.15	107 8,77		74 6,11
	Calcium	(Ca)		48 2,40	270 13,47	100 4.99	56 2.79	3.29	55 2.74		29		50 2,50	63		34
	¥			8.0	7.9	8.6	4.8	8.1	8.4		4.8		8,3	8.2		8.4
Specific	conduct- ance (micra-	mhos of 25° C)		898	96490	8180	2620	916	1260	1140	685	789	1550	2000	1130	1020
	Temp in eF			99				62			99	63		79		62
	Date			6-14-62	6-19-62	6-14-62	6-14-62	6-14-62	6-12-62	1-17-62	6-15-62	1-17-62	7-3-62	5-29-62	1-17-62	6-18-62
9	number and			2S/1W-22A1	2S/2E-27K1	2S/2E~35C1	2S/2E-35G2	3S/1W-1G1	3S/1E-3Q1	3S/1E-8H1	3S/1E-8H3	3S/1E-8H5	3S/1E-9A1	3S/1E-901	3S/1E-9K2	
	Owner and	9 50		T. P. Bishop Co. irrigation	City of Livermore industrial and stock	H. Garavente stock	F. Gustanich damestic	J. Nevin domestic	Alameda Co. Sheriff	Lemas	U. S. Air Force domestic and irrigation	U. S. Air Force irrigation			E. M. Kamp	

Determined by addition of constituents.
 Growinsertic determination.
 Growinsertic determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (At), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as Godexcept as shawn.

⁻³²⁸⁻

	State			Specific					Mine	Mineral canstifuents	tituents	i.	pari	parts per millian	IIIan millian			Tota		I	-	
Owner and	nymber and other nymber	Date	Tem Temp	ance (mlcro-	<u>₹</u>	Calcium	⊢	Sadium Pc	atas-C	urbon-B	Bicar - S		- 014	- IZ	Flua - Boron	5.	ball of the constituents	Pevios Spilos	1 5 0g	ĕL		Analyzed by c
				at 25° C)		(0)	(Mg)		(K) (CO ₃)	H) (°CO)		(80,	(i)	(NO ₃)			(SiO ₂)		Ē	Tata! Ppm p	N.C. Ppm	
							ri.	IVERMORE	VALLEY		(2-10) (Cont.)											
M. Nielsen	3S/1E-9L1	1-17-62		1270											1.0	اه		808		585		DWR
		6-15-62	63	1450 8	8.1	81 7	96	71 3.09	2.6	0.00	456	99 2.06	202	16 0.26 0.0	0.2 1.4		26 ABS 0.0		20	596 2:	222	DWR
	3S/1E-9P1	1-17-62		1230											ं।	0,93		1110		546		DWR
Busch Brothers domestic	3S/1E-9R1	1-17-62		869											ી	0,29		426		294		DWR
	3S/1E-10E2	6-15-62		1460	7.8	84 7	85	3,57	1.20	00.00	676 11.08	67	136	0.00	0.2 2.0		14 ABS 0.0	882	22	561		DWR
	3S/1E-10Q1	6-15-62		614	4.8	57 2.84 2	30 7.49	1,04	1.8	0.13	246 4.03	54	37	8.1 0.13 0.	0.0	0,33	21 ABS 0.0		16	267	- 65	DWR
	3S/1E-11D1	6-12-62	79	1050	4.8	25 5	61 5.00 7	96	2.0	4 0.13 Z	268 4,39 1	52 1.08 7	159	21 0.0.34	0.0		31 ABS 0,0		07	313	87	DWR
Jamie son irrigation	3S/1E-11E1	6-18-62	63	1170	e, e	3,34 7	88	2,04	2.3	00.00	400 6,56 I	48 7	161	26 0.42 0.	0.2 0.0	0.60	29 ABS 0.0		91	531 2	203	DWR
E. Hageman domestic and	3S/1E-11H1	6-15-62		789	8,5	43 4 4	54 7	1.17	0.04	00.30	287 4.70 0	38 0.79	44	21 0,0	0.2	0,37	25 ABS 0.0		15	330	80	DWR
trigation A. H. Hagemenn drainage	3S/1E-12B1	9-7-62		1650 8	۳ د د	73 3,64 7	85 6	154 6.70	2.4	00.00	534 8.75 0	23 0,48	300	2.0	0.1 1.0		29 PO ₄ 0.13 (Total) ABS 0.0	^	38	533	95	DAR
California Rock and Gravel	3S/1E-13P2	6-19-62	62	670	8° 3	$\frac{\frac{22}{1,10}}{\frac{1}{6}}$	0.82	125	0.04	0.00	180 0	31 0.64	36	0.13	0.3	0.27			74	96	0	DWR
domastic H. J. Kaiser Inds. domestic	3S/1E-15L1	6-15-62	63	537	E . 8	51 2.54 2	26 7 3	26	0.03	00.00	223 3,65 0	36 0.75	32 0.90	15 0.	0.2 0.	0.25 2	24 ABS 0.0		19	233		DWR
Pleasanton Twp. W. D. irrigation	3S/1E-16Pl	6-15-62		297	8.5	56 1	22 1.79	41 (1.78	0.07	2 02.0	266	39 0.81	32 0.90	0.08	0.0	0.32	21 ABS 0.0		28	229	0	DWR
M. Kruse irrigation	3S/1E-17H2	6-19-62		796	8.1	59 2.94	3.57	31 1.35	0.05	00.00	310	50	59	0.18	0.2	0.41	23 ABS 0.0		17	326	72	DAR
											-					-				_	-	

Determined by addition of constituents.
 Crowinstric determination.
 Crowinstric determin

	Pe															
	Analyzed	o ka		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		
	os CoCO 3	N.C.		22	64	0	0	e	194	77	51	19	52	0		
		Tatal		208	266	995	394	251	799	320	318	243	287	263		
	¥ 5 5			25	20	35	46	34	45	14	19	42	28	89		
Total	- sip															
		(SiO ₂) Other constituents ^d		ABS 0,0	ABS 0.0	PO ₄ 0.0 (Total) ABS 0.0	PO4	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0	ABS 0.0		
	_			118	21	18	8.9	ଛା	141	- 56	28	<u>위</u>	- 24	- 25		
uoi II		(B)		0.33	0.43	6.0	0.8	0.76	4.4	0,40	0.45	1.3	0.49	6.9		
millio	Fluo	şē.		0.9	0.0	0.3	0.2	0.0	0.02	0,00	0.2	0.3	0.2	0.5		
parts per million	ż	trate (NO ₃)		4.8 0.08	13	0.0	0.27	0.40	0.00	20	30	19	$\frac{12}{0.19}$	0.03		
od oning	į	<u> </u>		32 0.90	30	3.86	158	1.69	231 6.51	32	43	83	66	213		
ī.	- 110	101e (SO ₄)	<u></u>	39	53	55	14 0,29	30	402	40	38	62 1.29	59	101 2.10		
canstituents	Bicor	bonate (HCO ₃)) (Cont.)	221 3,62	265	760	605	285	573 9,39	337	297	257	276 4.52	495		
Mineral co		(CO ₃)	(2-10)	3 0,10	00.00	00.00	00.00	8	00.00	00.00	14 0,47	8	6 0.20	13		
₹ E	2000	sium sium (K)	VALLEY	1.6	0.04	0.0	7.5	0.04	2.0	1.6	1.9	0.05	0.05	0.06		
		Sodium (No)	IVERMORE	32	30	139 6,05	158 6,87	59 2.57	254 11.05	1,09	34	83 3,61	53 2,30	262 11,40		
	Moone	sium (Mg)	111	1.76	31 2.57	85 6.97	79	3.26	102	52 4.25	50 4.15	33	32 2.64	3.75		
		Calcium (Ca)		48	55 2.74	87	28	35	98	43	44	43	62 3.09	30		
	Ξ			8.4	8.1	7.6	8.2	8.5	8.0	8.3	8.6	8,5	8,5	8,5		
Specific	conduct	mhos at 25°C)		528	616	1530	1360	733	2150	677	706	814	762	1600		
	Temp	<u> </u>			63			63				89			 	
	Date	Deides		6-15-62	6-15-62	9-5-62	9-5-62	6-19-62	6-14-62	6-12-62	6-12-62	6-14-62	6-14-62	6-14-62		
143	number and	סנואפר העווספר		3S/1E-17R1	3S/1E-19A5	3S/1E-20Q2	3S/1E-29B1	е 3S/2E-4H1	3S/2E-4M1	3S/2E-7Kl	3S/2E-8H1	3S/2E-10H1	3S/2E-29D1	3S/3E-19C1		
	pub renwo	• sn		Pleasanton Twp. W. D.	San Francisco W. D. irrigation	City of Pleasanton abandoned	City of Pleasanton abandoned	California Water Service 3S/2E-4H1 municipal	J. Schenone irrigation	H. L. Hagemann domestic and	irrigation California Water Ser. municipal	Amling Devore Nursery domestic and	irrigation B. G. Wood irrigation	J. Amaral		

a. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Analysis by U.S. Galacidost Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal by U.S. Galacidost Survey, Quality of Water Resources (D.W.R.) as indicated.
 d. Tram (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 600 except as shown

⁻³³⁰⁻

	State well			Specific					Mineral		constituents	Ë	od onivo	rts per	parts per millian equivalents per million	100			Total		Hordness	-	
Owner and use	number and other number	Date sampled	Temp in °F		Ŧ	Calcium (Ca)	Magne- sium (Mg)	Sadium P (No)	Potas-Co sium (K) (Carbon B ofe (CO ₃) (H	Bicar- banote (HCO ₃)	Sul - fate (SO ₄)	음: - 일: - (IO)	rote (NO ₃)	Fluo- ride (F)	Boran (B)	Silica (SiO ₂)	Silica Other constituented	solved eolids in ppm	E SE	Total N Ppm	T	Analyzed by c
								CENTRAL COASTAL REGION	STAL B	EGIOD	(No. 3)												
	MDBGM							PAJARO VAL	VALLE	EY (3-2)	<u>ූ</u>												
S. H. Gandrup domestic and	11S/2E-27A1	5-3-62		729	0.8	57 2.84	33 2.71	2.40	2 0.04 0	0.00	292 4.79 1	52 1.08	63	00.00	0.04	0.04	21		530	30	278	38	DWR
irrigation		9-6-62		169				40					54 1.52										DWR
F. T. Blake domestic and	12S/1E-11L1	5-2-62	99	007	8.2	31	20	21 0.92	0.04	0,00	3.23	14 0.28	30	2 0,03	0.03	0,35	36		300	22	163	-1	DWR
irrigation		9-5-62		420				22 0,96					20 0.56										OWR
Sunset Beach Park domestic	12S/1E-11N1	5-2-62	65	416	0.8	28	23 1.93	22 0.95	2 0.04	0.00	3,10	17 0,36	33 0.92	90.15	0.3	0.10	36		305	22	168	13	DWR
		9-5-62		423				21 0,91					24 0.68										DWR
J. Roacha irrigation	128/1E-1451	5-2-62	62	677	0.8	26	18	28 0	0.03	0.00	59 620	18	67	37	0.17	0.22	28		285	31	139	06	DWR
		9-5-62		357				33					52										DWR
E. L. Padden domestic	12S/1E-23R1	5-2-62		576	8.2	30	2.26	52 5	12 0.32	00.00	288 4.71	38	38	00.00	0.2	0.29	20		445	36	187	0	DWR
		9-5-62		582				44 1.91					25 0.70										DWR
H. Trafton irrigation	12S/1E-24G1	5-2-62		545	8,1	39	30 2.50	30	4 0.09	0.00	274 6.50	0.36	34	00.00	0.3	0.13	27		405	22	223	0	DWR
		9-5-62		505				27					22 0.62										DWR
domestic	12S/1E-24Q	5-2-62		457	8.0	27	22 1,83	37	0.13	00.00	3.68	14 0.31	25 0.70	00.00	0.10	0.13	23		335	33	160	0	DWR
		9-5-62		997				34					17										DWR
o Contained by oddition	of constituents		1								1												

a. Determined by addition of constituents.
 b. Growmetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Ferminal Testing Loboratory (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 d. fram (Fe), Alyminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here os 6000 except os shown

	pez.															~	
	Analyzed			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
	as CaCO ₃	N.C.		0		158		•	36	···	0			129	7728	93	
		Tatal		141		628		318	191	207	183		227	281	7800	226	
-	- La	SE E		30		20		5 26	25	23	23		4 25	0 22	5.9	15 7	
		salids in ppm		295		1040		595	345	390	340		374	730	10020	707	
		(SiO ₂) Other constituents ^d								Fe 0.07 Total Al 0.32 As 0.00 Cu 0.00 Pb 0.01	0.14 zn						
				91		<u>26</u>		8	15	29	59		36	28	16	27	
2		Boron (B)		0.27		0.58		0,54	0.10	0.65	0.19		0.2	0.2	0,1	0.1	
millo		5 5 5 6 7		0.0		0.53		0.17	0.03	0.00	0.04		0.1	0.2	0.1	0.1	
parts per million		trate (NO ₃)		0,00		3 0.05		0.00	0.00	00.00	00.00		0.00	0.00	0.00	0,88	
		\$ <u>\$</u> 50		33	17	85 2.38	2.03	49	20	0.67	21 0.58	14 0,39	25 0.70	101 2.85	5452 153.75	1.70	
ri str		Sul - fate (SO ₄)		20		198		21 0.46	31 0.67	51 1.07	35 0.72		38 0.79	58 1,20	506 10,55	67	
canstituents	;	Bicar- bonate (HCO ₃)	(Cont.)	$\frac{177}{2.88}$		573 9.40		426	236 3,89	242 3.97	223 3.65		275 4.51	3.03	88	156	
Mineral co		ate (CO ₃)	(3-2)	00.00		00.00		0.00	0.00	0.00	00.00		00.00	0,00	00.00	3 0.10	
Ž		Patas- sium (X)	ALLEY	0.06		0,06		0.05	0.05	2 0.05	2 0.05		2.3 0.06	2.6	7.5	2.1	
		Sodium (Na)	PAJARO	29	22 0.96	3,10	66 2:87	53 2.28	30	30 1.28	$\frac{23}{1.10}$	24 1.04	35 1.50	37	225 9.80	47 2.05	
		Magne- sium (Mg)		11 0.92		102 8.35		40	19	22 1.78	17		30	40	1161	33 2.68	
		Calcium (Ca)		38		84		61 3.07	44 2.20	47	44		$\frac{42}{2.10}$	46	1212 60,50	37	
		<u> </u>		8.3		7.65		8.15	8.3	7.85	8.2		8.2	8.2	7.4	8.	
Specific	conduct-	(micro- mhos at 25°C)		421	492	1360	1260	770	025	507	977	443	530	700	13500	650	
	Temp	Ē			63	61	62	79	29				67	29	62	19	
	0000	sampled		5-2-62	9-5-62	5-24-62	9-5-62	5-24-62	5-2-62	4-2-62	5-2-62	9-5-62	9-5-62	9-5-62	7-23-62	7-23-62	
	State well	other number	MDBGM	12S/2E-7K1		12S/2E-12E1		12S/2E-16J1	12S/2E-18A3	12S/2E-18J1	12S/2E-18K2		12S/2E-1981	12S/2E-19M1	12S/2E-30E1	12S/2E-30N1	
		Owner and		A. L. Wangaman irrigation		Sheehy frrigation		Struve	Mine irrigation	F. Kellog irrigation	City of Watsonville domestic and	industrial	T. E. Trafton irrigation	M. Williamson irrigation and	domestic E. Yappert domestic and	irrigation J. Fenaglio domestic and irrigation	

-332-

	2	\Box															
	Analyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hardness	ŏ L	mdd		61		99	204	09	29		161		312	0	190	208	80
		mdd		223		128	382	227	80		481		492	72	438	417	370
å	2 8 E			31		777	27	25	59		30		27	45	31	38	45
Totol	solved ealids	م,		465		308	588	384	285		910		832	194	810	797	792
	Silica Other constituented																
				24		38	27	33	30		18]		27	77	31	34	97
Tion	Boron (B)			0.21		0.1	0.2	0.1	0,12		0.77		0.2	0.0	0.1	0.16	0.2
millo	Pige.			0.1		$\frac{0.1}{0.01}$	0.1	0.1	0.0		0.2		0.1	0.1	0.1	0.2	0.1
parts per million equivalents per million	trote	(NO3)		00.00		56 <u>0</u>	11 0,18	3.2	37		00.00		8.2	18	59 0.95	38	20
Podnivo	- olici	(<u>c</u>)		49	44	72 2.03	184	55 1,55	81 2.27	68 1.92	98 2.75	85 2.40	289	28	3.00	221 6,23	7.40
ls in	Sul - fote	- 1		61 1.27		17 0,36	69	54 1.13	4 0.08		221 4.61		77	0.04	3.90	123	2.34
constituents	Bicar- banate	(HCO ₃)	(3-2) (Cont.)	260		77	218 3,56	181 2.97	62		390		199	87	285	255	3,23
Mineral c	Corbonate	(0)	(3-2)	00.00		0000	00.00	10.8 0.36	0000		00.00		10.2	0.00	9.0	00.00	00.00
M	Potos-	3	TTEL	3 0.07		1.8	3.0	2.3	0.03		3 0.07		3.2	0.9	3.9	3.0	3.0
	Sodium (No)		PAJARO VALLEY	48	41	47	65 2.83	35 1,50	53	48	97	3.65	85 3,70	28 1.20	91	121 5.26	138
	Mogne-	(Bw)		26 2.11		16	67	31 2.55	5 0.37		68		63 5.15	10	56 4.62	54	3.87
	Colcium (Co)			47		26	73	40	25		81 4.05		94	12 0,59	83 4.15	78	3,53
	<u>₹</u>			8.3		8.0	7.5	8.4	7.7		7.8		4.8	8.0	8.4	7.7	8,2
Specific	ance (micro- mhos	ot 25° C)		674	692	495	1020	610	432	481	1230	1250	1320	260	1100	1370	1300
	Temp in •F					61	89	09			61	09	79	79	79	63	99
	Date sompled			5-2-62	9-5-62	7-23-62	7-24-62	7-24-62	5-2-62	9-5-62	5-24-62	9-6-62	7-23-62	7-31-62	8-15-62	6-14-62	7-24-62
State well	number and ather number		MDBGM	12S/2E-31A1		12S/2E-31C1	12S/2E-31K1	12S/2E-32C1	12S/2E-32K1		125/3E-781		13S/1E-1A1	13S/2E-1K1	13S/2E-5M1	13S/2E-6B1	13S/2E-6E2
	Owner and			Ranger domestic and	irrigation	Jenson irrigation	F. Tronavaca irrigation	S. H. Cowell 1rrigation	Johnson irrigation and	domestic	L. Banovac irrigation		Hurley domestic and	irrigation M. Vaughn domestic and	irrigation irrigation	Farley Fruit Co. abandoned	G. H. Hurley irrigation

Obtermined by addition of constituents.
 Decormetric determination.
 Crowinestric determination.
 Capacity Analysis by Sealing Survey, Quality of Wafer Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Analysis by Sealing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 Ferminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as accept as shown

a. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Cansultants (P.C.C.), Terminal Testing Lobarotary (T.T.L.) or State Department at Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (A1), Areenic (Aa), Capper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as accept as shawn

240	by c			DWR	DWR	DWR DWR	DWR DWR	DWR DWR DWR	DWR DWR DWR	DWR DWR DWR	DWR DWR DWR DWR	DWR DWR DWR DWR DWR	DWR DWR DWR DWR DWR	DWR DWR DWR DWR DWR DWR	DWR DWR DWR DWR DWR DWR	DWR DWR DWR DWR DWR DWR
Hardness as CaCO a Ang				o												
1 -			206		239 35	239	239 822 593	239 822 593 738	239 822 593 738	239 822 593 738 604	239 822 593 738 604 454	239 822 738 604 654 740	239 33 822 42 738 25 604 30 604 12 740 8	239 3 822 42 822 42 738 25 740 8 89 89	239 3: 822 42. 738 25 738 25 740 8 740 8 89 89	239 3 822 42 822 42 738 25 738 25 740 8 89 89 89 194 430 13
70.6			613 62	322 20		1300 26										
Other constituents ^d																
Boron Silico (B) (Silo ₂) (Silo ₂)	0.32	0.32	0.32	0.8		1.0 27		0,96	1.3	1,3	4.3	1.0	1.0	0.96 0.76 1.6 1.6	0.96 1.0 1.6 1.6 1.6 1.6 1.6	0.96 0.76 0.95
7 rido 0.2 0.01 0.01 0.01	0.2 0.01 0.01 0.01 0.03	0.01				0.4 0.5	0.04		29 0.4 0.47 0.02							
7.10 3.0 5.02 3.0 0.85 5.81 9.66	178 5.02 3.02 0.85 5.81	178 5,02 30 0,85 5,81 5,81	30 0.85 206 5.81	206 5.81 96	96	7/:7	3.75 0.04	$\frac{3}{3}$ $\frac{174}{4.91}$ $\frac{29}{0.47}$		3 159 5.6 4.48 0.09	159 4.48 100 2.82	159 4.48 100 2.82 146 4.12	159 4,48 100 2,82 4,12 23 0,65	159 4,48 100 2,82 146 4,12 0,65 308 8,68	159 4,48 100 2,82 2,82 4,12 0,65 8,68 8,68 4,73 13,34	159 4,48 100 2,82 146 4,12 0,65 0,65 13,08 8,68 13,34 11,4 13,34 11,4 13,34
Bicar- Sul- fele (HCO ₃) (SQ ₄) (HCO ₃) (Cont.) 351 14 5.75 0.29 43 43 4.83 381 7.92 7.93					_		584 425 9.57 8.85	367 6.02 8.08		396 6,49 2,56						
STER BASIN 1.1 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.006 0.006 0.006 0.006	STER BASIN (1.1 0 0.03 0.00 0.03 0.00 0.03 0.00 0.03 0.00	000000000000000000000000000000000000000	0.00			0.07	3.0 0.00	3.7 0.09 0.00		2.3 0.06 0.00	00.00	0 0.00 0.00 0.00 12 0.40	0 0.00 0.00 0.40	0 0,000 0,000 0,400 0,000 0,33	0 0.00 0.00 0.00 0.40 0.00 0.33 13 13 0.43	0 0,00 0,00 0,00 0,00 0,00 0,33 0,43 0,4
Sadium (No) 157 6.83 27 1.17	157 6,83 1,17 1,17	157 6,83 1,17 1,13	133 133	133	5.78	148	166	174		108	108 4.70 150 6.52	$ \begin{array}{r} $	108 4,70 150 6,52 11,57 266 111,57	108 4,70 150 6,52 11,57 266 2,44 2,44 2,44 10,61	108 4,70 150 6,52 11,57 2,44 10,61 404 17,57	108 4,70 150 6,52 2,66 11,57 10,61 10,61 17,57 17,57 10,61 17,57
Calcium Magna- (Ca) (Mg)			45 23 2.24 1.88	50 28 2.50 2.28	217 10,83 5,59	75 99 3.74 8.11	91 124 4.54 10.20	$\begin{array}{c c} & 43 \\ \hline & 2.14 \\ \hline & 9.93 \end{array}$		87 4.34 4.73	<u> </u>	87 4,34 91 4,54 1	87 4.34 91 4.54 13 0.65 16 0.80	87 4,34 1,34 1,54 1,54 1,6 0,65 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6 1,6	87 4.34 91 4.54 13 0.65 16 0.80 1.60 1.60 2.30	87 4.34 1.34 1.54 1.60 1.60 2.30 2.94
arcs pH ambs of 25°C			1010 8.2	555 8.3	1880 7.5	1580 8.0	1870 7.8	1800 8.2		1290 8.2						1290 1770 1310 412 1500 2410
eampled in •F			6-13-62	6-13-62	6-13-62 64	6-13-62	6-13-62	6-13-62	3000	6-13-62	6-13-62	6-13-62	6-13-62 6-13-62 6-13-62 6-13-62	6-13-62 6-13-62 6-13-62 6-13-62 6-13-62	6-13-62 6-13-62 6-13-62 6-13-62 6-13-62	6-13-62 6-13-62 6-13-62 6-13-62 6-13-62 6-13-62
ather number			11S/5E-26Q3	11S/5E-27M1	12S/4E-34P2	12S/4E-35C1	12S/4E-36G1	12S/5E-9N2		12S/5E-12M3	128/5E-12M3 128/5E-33A1	128/5E-12M3 128/5E-33A1 128/5E-36A1	128/5E-12M3 128/5E-33A1 128/5E-36A1 128/6E-7M2	128/5E-12M3 128/5E-33A1 128/5E-36A1 128/6E-7M2 128/6E-19E2	128/5E-12M3 128/5E-33A1 128/5E-36A1 128/6E-7M2 128/6E-19E2	128/5E-12M3 128/5E-33A1 128/6E-36A1 128/6E-19E2 128/6E-31B1 138/5E-331
	Owner and		F. Smith irrigation	C. R. Lanini domestic	Ferry Morse Seed Co. irrigation	Olympia School domestic	Manuel Diaz domestic	W. Daly irrigation		J. Lomanto 1rrigation	J. Lomanto irrigation F. Preitas domestic and	J. Lomanto irrigation F. Frettas domestic and irrigation P. Rovella domestic and	J. Lomanto irrigation F. Freitas domestic and irrigation P. Rovella domestic and irrigation S. Brandon domestic and stock	J. Lomanto lritgation F. Frettas domestic and lritgation P. Rovella domestic and lritgation S. Brandon domestic and stock domestic and stock domestic	J. Lomanto lrrigation frrigation frrigation frrigation frrigation frrigation frrigation frrigation formestic and frrigation domestic and stock domestic and domestic frrigation frrigation frrigation frrigation	1. Lomanto 1. Itrigation 2. Freitas domestic and 1. Trigation 4. Rovella durigation 3. Brandon domestic and domestic and comestic and frigation 4. F. Broadfoot domestic and frigation frigation C. T. Fillsbury domestic and frigation fourch domestic

Ostermined by addition of constituents.
 Grovimetric determination.
 Analysis by U.S. Socioglecies Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Institute Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 except as shown

⁻³³⁵⁻

	State well	o do C		Specific conduct-				2	inerol c	Mineral constituents	ofs in	equiv	orts pe	ports per million equivolents per million	ion		<u> </u>	<u>.</u>		Hordness	
Cont. Cont	peldwas		n • F (n				_		Carbon- ofe (CO ₃)	Bicor- bonote (HCO ₃)		은 (I) (I) (I) (I) (I) (I) (I) (I) (I) (I)	rrote (NO ₃)	Fluo- egin (F)		Silico (SiO ₂) Other constitu		P& E	يسفا	5	
244 5.08 117 1.5 211 0.03 0.4 0.03 1.4 0.02 25 0.02 884 0.03 40 0.04 46 0.03 113 0.03 46 0.03 113 0.03 47 0.03 228 0.03 48 0.03 47 0.03 228 0.03 48 0.03 47 0.03 228 0.03 48 0.03 47 0.03 228 0.03 48 0.03 49 0.03						51	ILROY-HOLI	STER			Cont.)										
3.8 3.8 3.8 3.8 3.8 4.8 93 11 0.08 1.63 0.14 0.01 0.0 44 228 48 93 11 1.63 2.73 0.38 0.01 0.0 36 296 43 125 38 8.6 2.6 0.9 0.01 0.0 0.2 47 588 85 62 0 8.1 2.6 0.01 0.01 0.2 47 588 85 62 0 0.11 1.71 0.00 0.01 42 291 49 119 0 0.11 1.71 0.00 0.01 46 1169 55 22 0 0.10 0.00 0.01 <td>6-13-62</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>3.0</td> <td></td> <td>401</td> <td>244 5.08</td> <td>3,30</td> <td>21 0,34</td> <td>0.4</td> <td>1.4</td> <td>25</td> <td></td> <td></td> <td></td> <td></td> <td>DWR</td>	6-13-62							3.0		401	244 5.08	3,30	21 0,34	0.4	1.4	25					DWR
3.8 5.5 0.2 0.0 44 228 48 93 11 1.6 0.15 0.01 0.0 36 2.9 48 93 11 86 1.65 0.1 0.01 0.0 36 296 43 125 58 86 96 0.9 0.11 0.2 47 588 85 62 0 1.81 0.00 0.01 0.01 0.01 42 291 49 119 0 0.11 1.71 0.00 0.01 0.01 46 169 52 0 0.11 1.77 0.00 0.01 0.01 46 169 52 0 0.00 0.00 0.01 0.01 0.01 46 116 52 117 0.05 0.01 0.01 0.01 0.01 0.01 0.01 43 641 42 315 222 1.42 0.00 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>SAI</td> <td>LINAS V</td> <td></td> <td>(3-4)</td> <td></td>							SAI	LINAS V		(3-4)											
16 72 36 0.1 0.0 36 43 125 58 86 96 0.3 0.01 0.0 47 588 85 62 0 5.3 60 0.0 0.01 0.01 0.01 42 291 49 119 0 5.3 60 0.00 0.01 0.01 0.01 42 291 49 119 0 0.11 1.71 0.00 0.01 0.01 0.01 42 291 49 119 0 0.12 1.73 0.01 0.01 0.01 42 291 49 119 0 0.16 0.10 0.01 0.01 0.01 0.01 46 119 0 110 0 111 0 111 0 111 0 111 0 111 0 111 0 111 0 0 111 0 111 0 111	7-30-62							0.8		100	3.8	58 1.63	8.5	0.2	0.0	777					DWR
86 96 0.9 0.1 0.2 47 588 85 62 0 1.81 2.70 0.01 0.01 0.01 0.01 0.01 42 291 49 119 0 2.13 60.11 0.00 0.01 0.01 46 169 55 52 0 0.06 1.07 0.01 0.1 46 46 112 40 112 0.06 1.07 0.01 0.1 0.1 0.1 32 802 54 306 169 0.76 1.020 0.01 0.01 0.01 0.01 0.01 43 802 54 306 169 0.75 5.20 0.00 0.01 0.01 0.01 31 46 241 76 1.42 1.42 1.43 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 <td< td=""><td>7-30-62</td><td></td><td>89</td><td></td><td>-</td><td></td><td></td><td>1.8</td><td></td><td>81 1.33</td><td>16</td><td>2.03</td><td>36 0.58</td><td>0.1</td><td>0.0</td><td>36</td><td></td><td></td><td></td><td></td><td>DWR</td></td<>	7-30-62		89		-			1.8		81 1.33	16	2.03	36 0.58	0.1	0.0	36					DWR
5.3 60 0.0 0.1 42 291 49 119 0 2.19 3.1 1.21 0.00 0.01 46 169 55 52 0 3.1 2.29 3.8 1.8 0.2 0.1 46 169 55 52 0 0.06 1.07 0.03 0.01 0.2 36 611 45 291 112 0.76 5.50 0.03 0.01 0.01 0.02 38 802 54 306 169 0.76 1.02.0 0.01 0.01 0.01 0.01 37 527 46 241 76 1.44 1.45 0.00 0.01 0.01 0.01 32 46 241 76 1.44 1.45 0.00 0.01 0.01 0.01 32 46 241 76 1.45 0.45 0.00 0.01 0.01 0.01 0.01	7-16-62		72		٠,			3.5		226 3.70	86 1,81	2.70	0.9	0.1	0.2	77	بن 				DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-31-62		72					1.4		168	5.3	60	0.00	0.2	0.1	42					DWR
31 223 3.1 0.1 0.2 36 611 45 291 112 37 365 6.30 0.01 0.2 38 802 54 306 169 26 184 0.2 0.01 0.1 37 43 641 42 315 222 1 42 3.5 0.00 0.11 0.1 43 641 42 315 222 1 1.42 1.42 0.00 0.11 0.1 43 641 42 315 222 1 0.45 3.45 0.00 0.11 0.2 37 407 58 136 0 1 0.45 3.45 0.00 0.11 0.2 37 407 58 114 0 1 0.45 1.76 0.01 0.01 0.1 22 320 58 114 0 1 0.41 4.55 0.01 0.01 0.01 0.01 0.01 0.01	7-31-62		72					0.03		67 1,10	0.06	38	1.8 0.03	0.2	0.1	97					DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	8-6-62							0,15		219 3.58	31 0.65	223	3.1	0.1	0.2	36	·•				DWR
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-62							0.21			37 0.76	362	2.2 0.03	0.1	0.2	138					DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-62		99					0.07			26	184	0.9	0.1	0.1	37					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-62	- 5						2.5		113	68	264	0.00	0.01	0.1	43	<u>.</u>				DWR
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-16-62		70					2.8			21 0.45	123	0.02	0.1	0.2	37					
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	7-17-62	- 62	67					0.06			0,22	60 1.70	1.3 0.02	0.1	0.1	53					
	7-17-62	29	70	800	.2 3	90 1.63	103	0.07	00.00	3,00	19 0.41	162 4.55	0.0	0,1	0.2	31	_ 				

⁻³³⁶⁻

	State well			Specific conduct-					Mineral		constituents	ë	equivolents per millian	parts per millan volents per mill	million	اء		Tatal		Hord	988	
Owner and	other number	Sampled	E e		H.	Calcium M	Magne - S. eium (Mg)	Sodium Pr	Patas-Car eium (K) (C	Carbon- Bic afe bon (CO ₃) (HC	Bicar-Si bonote fo	Sul – fate (SD ₄)	- ide (C)	rrate ri (NO ₃)	Fluo- ride (F)	Boron Sili (B) (Si	Silica Other canstituents ^d	solved solved in ppm	E SE	as CaCO ₃		Anolyzed by c
							S.	SALINAS VA	VALLEY ((Cont.)								91			
E. Bellone irrigation	13S/2E-31N2	7-17-62	72	8 086	8.2	60 3	28 3.31 4	95 3	3.2 0.08 0.0	0 1	114 5 1.87 1.	51 1.07 6.	229 1. 6.45 0.	1.3 0.02 0.02	0.1	0.2	33	556	39	315	222	DWR
irrigation	13S/2E-32A2	7-16-62	72	8 005	8.4	19 19 1	1,32 2	62 2,70 0	0.07	3.0	149 2.45 0.	14 2	73 0. 2.05 0.	0.0	0.1	0.1	 33 	298	53	115	0	DWR
0. P. Overhouse irrigation	13S/2E-32C1	7-16-62	99	495 8	8,5	58 2.86 0	0.22 2	51 2.20 0	2.3 0.06 0.06	0.20	198 1 3.25 0.	12 0,24 1,	53 0.	0.0	0.1	0.1	31	314	41	154	0	DWR
Molera Estates irrigation and	13S/2E-32N1	7-17-62	70	8 767	8.4	24 1,23 0	11 0.88 2	67 2,90 0	2.4 0.06 0.06	$\frac{3.6}{0.12}$ $\frac{1}{2.}$	$\frac{167}{2.73} = \frac{2}{0.}$	22 0.47 1.	60 1.70 0.	0.0	0.1	0.1		306	57	106	63	DWR
C. Rossottl domestic and	13S/2E-33R1	7-19-62	99	735 8	4.8	3.79	22 1.82 2	2,30 0	2.8 0.07	0.30 3.	$\frac{223}{3.65}$ $\frac{7}{1.}$	1.54	2,30	0.14	0.1	1 3	34	767	29	280	82	DWR
R. Hollenbeck domestic and	138/3E-4L1	8-1-62	89	320 8	0.8	$\frac{14}{0.72} \frac{9}{0}$	0.74	37 1.60	0.03	0.00	87 1.44 0.	3.4	46 1,30 0.	9.8 0.16 0.0	0.1	0.2	777	230	52	73	-	DWR
F. B. Tagana domestic and irrigation	13S/3E-20B2	7-26-62	63	285 7	7.9	16 0.82 0	0.50	34 0	0.02	0.00	86 4.	0.10	43 1.20 0.	0.05	0.1	0.0	37	186	52	99	0	DWR
C. Lightfood domestic and irrigation	13S/3E-29A1	7~26-62	79	570 7	6.7	0.94	1.20	3.00	0.03	0.00	82 1.35 0.	0.28	3.50 0.	0.04	0.0	0.0		336	58	107	39	DWR
V. Cato domestic	14S/1E-24Q2	7-12-62	61	1060 7	7.0	3,20 2	35 4	103 4.47	0.05	0000	46 7.75 1.	1.53	145 4.10 3.	3,35	0.1	0.1	<u>259</u>	720	47	300	262	DWR
Marina del Mar School domestic and irrigation	14S/1E-25K1	7-12-62	59	200 2	7.0	$\frac{26}{1.30}$		49 0	0.03		$\frac{37}{0.60} \frac{2}{0.}$						23	290	45	129	66	DWR
L. Martin domestic and trrigation	14S/2E-6Q1	7-17-62	72	535 8	4.8												35	366	54	127	0	DWR
E. Struve irrigation	14S/2E-6R2	7-17-62	72	510 8	4.8	34 1.72 0	11 0,94 = 2	63 2.75	2.3 0.06 0.06	6.0 0.20 3.	$\frac{197}{3.23} \mid \frac{2}{0.}$	23 0,48 T	51 1,43 0,	0.02	0.01	0°1 	32	348	20	133	0	DWR
J. Jefferson irrigation	14S/2E-8M2	8-7-62	72	200 1	7.8	34 1.71	13 2	230 C	0.06	0.00	206 3.38 0.	150	50 1.40	0.02	0.2	0.1	34	304	3	142	0	DWR
J. P. Rogers domestic and irrigation	148/2E-11D1	7-19-62	99	455	8.2	28 1.36 1	22 1.75 1	40 2 1.75	0.06	0 0 0 2.	180 1 2,95 0.	0,25 1	48 1,35 0,	0.03	0.1	0.1	396	298	35	152	5	DWR
a. Determined by addition of constituents.	of constituente.					1						-				1			1		1	

 ^{0.} Determined by addition of constituents.
 b. Gravimistric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Cansultants (P.C.C.),
 Terminal Testing Labaratary (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fe), Aluminum (Al), Arsenic (Ae), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as <u>50.0</u> except as shawn.

	σ															
	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hordness	N.C.		m	25	52	252	130	27	186	269	9	77	362	205	9	29
Hord	Total		202	195	188	345	238	197	434	429	110	137	742	419	212	202
ģ	E of		26	37	37	35	70	36	32	33	20	30	32	45	£.	777
Total	solved solved in ppm		334	384	408	738	512	388	806	828	308	284	1314	926	426	438
	Other canstituents ^d															
	Silico (SiO ₂)		22	32	[3]	34	33	29	26	33	28	30	24	27	138	35
uoi	Boran (B)		0.0	0.1	0.2	0.2	0.2	0.1	0.3	0.0	0.1	0.1	0.4	0.3	1:1	0.1
parts per millian equivalents per millian	Flua- ride (F)		0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.1	0.2	0.2	0.1	0.2
ents per	Ni- trote (NO ₃)		3.6	4.0	0.4	4.0	0.06	2.2 0.04	5.3	0.0	73	0.9	8.5 0.14	22 0,35	3.6	8.5 0.14
pviupe	를 <u>하</u>		41 1.15	62	43	190	2.80	63	162 4.55	195	69 1.95	17	312 8.80	257 7,25	78 2,20	3.20
s in	Sul - fote (SO ₄)	7	11 0,24	1.00	102	185	138	41 0.87	156	194	17	81	233	152 3,16	58	54 1.12
constituents	Bicar- bonate (HCO ₃)	(Cont.	3,98	201 3,30	148	113 1,85	$\frac{132}{2.17}$	195 3.20	302	195 3,20	55 0,90	$\frac{107}{1.75}$	464	261	174	165
Mineral co	Carbon- ate (CO ₃)		00.00	3.0	6.0	00.00	00.00	6.0	00.00	00.00	0000	3.0	00.00	00.00	6.0	00.00
.≅	Patos-C sium (K)	VALLEY	1.8	3.7	3.0	4.0	4.2 0.11	0.07	3.8	4.6	1.8	2.7	4.3	3.8	$\frac{2.7}{0.07}$	2.8
	Sadium (No)	SALINAS	33	55 2,40	53	98 <u>4.25</u>	74 3,20	52 2.25	94	98	53 2,30	28 1,20	157	157	53 2,30	3.25
	Magne- sium (Mg)		6.7	13	18	35 2.93	27 2.18	15	3.17	43	13	7.1	3.60	55 4.45	$\frac{21}{1.71}$	19 1,58
	Calcium (Ca)		3,48	56 2.78	44	3,96	52 2.58	54 2.74	110	102 5.11	$\frac{23}{1.15}$	43	323 11,13	3.92	50 2.53	49
	Ŧ		8,2	8.3	8.4	8.0	8.1	8.4	7.5	8.2	7.3	8.2	7.4	7.9	8,4	8.2
Specific	once (micro- mhas at 25° C)		200	585	565	1055	750	580	1200	1180	510	450	1850	1420	625	705
	Teap in • F		79	99	99	99	70	89	79	99	63	70	99	62	70	63
	Sompled		7-19-62	7-18-62	7-18-62	7-18-62	8-7-62	7-19-62	7-12-62	7-18-62	7-12-62	8-7-62	7-12-62	7-12-62	7-20-62	7-11-62
State well	number and other number		14S/2E-12Q1	14S/2E-14N1	14S/2E-15L1	14S/2E-18D1	14S/2E-23J1	14S/2E-24E1	14S/2E-25B1	14S/2E-26A1	14S/2E-30P2	14S/2E-35Q1	14S/3E-30E1	14S/3E-30F1	14S/3E-33G1	15S/1E-22C1
	Owner and		E. C. Eaton	L. A. Wilder	Monterey County Bank	irrigation J. G. Armstrong Co.	A. H. Bordges irrigation	M. T. DeSerpa	domestic M. T. DeSerpa	M. Bordgers	irrigation A. Goodall domestic	D. P. McFadden irrigation	A. Lanini	and domestic	P. G. & E. municipal	P. Calabrese domestic

a. Determined by addition of constituents.
 b. Grovimetric determination.
 c. Analysis by U.S. Geological Survey Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

 c. Analysis by U.S. Geological Survey Quality of Water Branch of Worter Resources (O.W.R.) as indicated.
 c. Analysis Loburotary (T.T.L.) or State Department of Worter Resources (O.W.R.) as indicated.
 d. Iran (Fe), Aluminum (AI), Arsenic (Ae), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as \$\overline{600}{600}\$ except as shown

	_															
	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	OWR	DWR	DWR	DWR	DWR	DWR
Hardness	N.C. PPM		0	87	37	165	69	428	332	202	0	12	97	100	355	225
			38	92	163	417	169	557	450	357	262	130	271	225	477	420
	E sod	- 0	79	59		27	40	50	27	23	43	53	38	57	35	34
Totol	eolved eolids in ppm		132	300	296	744	378	1508	650	610	767	366	474	624	1044	810
	Silco Other constituents ^d															
			30	31	28	70	28	30	31	26	33	07	61	77	36	32
Lion	Boron (B)		0.0	0.1	0.1	0.2	0.2.	9.0	0.3	0.2	0.2	0.1	0.1	0.1	0,4	0.3
Der m	Fluo- ride (F)		0.1	0.1	0.2	0.1	0.2	0.4	0.2	0.1	0.1	0.4	0.2	0.1	0.2	0.1
equivolents per million	rrote (NO ₃)		0.00	33	0.9	0.0	0.9	00.0	0.0	1.8 0.02	0.0	3.6	0.00	6.1	57 0.92	0.0
Minbe	유 한 한 한 한 한		40	103 2,90	0.37	74 2.10	38	243	3.65	66 1.85	116 3.25	3.10	124 3.50	254	3,30	74
e i	Sul - fote (SO ₄)		3.4	14 0.28	74	208	133	624	302 6.28	209	30 0.62	16	40	34	403	331
constituents	Bicor- bonote (HCO ₃)	(Cont.)	53	59 0.97	150	307	122 2.00	157	143	189 3.10	301	144	244	152	148	238
Minerol co	Corbon- of (CO ₃)	(3-4)	00.00	00.00	0.05	00.00	000	00.00	00.00	00.00	12 0,40	00.00	15 0.50	00.00	00.00	00.00
Z	Pofas-C sium (K)	ALLEY	1.1	2.4	3.0	3.3	3.7	6.5	4,3	3.9	5.2	2.2	2.6	3.3	3.5	3.9
Ī	Sodium (Na)	SALINAS	32 1.40	63 2.75	28 1.20	74 3,20	54	255 11,10	3.33	51 2.20	92	70 3.05	78 3.40	140	122 5.30	103
	Mogne- sium (Mg)		0.24	10	10 0,83	67	1,56	71 5.79	56	51 4.24	54 4.43	13	16 1.34	22 1,78	62 5.08	56 4.55
Ī	Colcium (Co)		11 0.53	20	49	86	36	5.35	87	58 2.90	16 0.81	29	81 7.08	54 2.72	89	76
	Æ		7.2	7.5	 	7.9	. 1	8.0	8.0	8,1	8.5	8.2	8.5	8.4	8.2	8.2
Specific conduct-	once (micro- mhos of 25° C)		226	200	450	1100	570	2000	1100	870	830	009	830	1060	1350	1120
	Ten Ten		72	29	99	79	70	79	89	99	99	68	89	73	99	79
ě	sompled		7-11-62	7-11-62	7-10-62	7-9-62	8-7-62	8-7-62	7-20-62	8-10-62	8-10-62	7-25-62	7-25-62	7-25-62	7-26-62	7-27-62
Stote well	other number		15S/1E-23G1	15S/1E-26N2	15S/2E-1A3	15S/2E-2Q1	15S/3E-4K3	15S/3E-5Q4	155/3E-701	15S/3E-16M1	15S/3E-17P1	16S/2E-1L1	16S/2E-3J1	16S/2E-12G1	16S/4E-24Al	16S/4E-25K1
	Owner and		0, Veach domestic	J. Siino domestic	domestic and	irrigation L. Jacks irrigation	irrigation	irrigation	E. Giottinini domestic and	irrigation Spreckles Sugar Co. irrigation	J. Violini irrigation	J. Hugo domestic	Corral de Tierra County Club	irrigation C. Phillips dome stic	K. R. Nutting irrigation	J. C. Twisselman irrigation

Observation of constituents.
 Grovimatric determination.
 Grovimatric determination.
 Consultantian of Consultantian.
 Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as Gootexcept as shawn of Iron (Fe), Aluminum (Al), Arsenic (As).

	9 0 0		5,	Spacific					Mineral		canstituents	. <u>e</u>	parts per millian	parts per million	illon			Total		Hord		
Owner and	nymber and ather number	Date	E e c	conduct- ance (micro- mhas	E E	Calcium (Ca)	Magne - sium	Sadium P. (Na)	Potas-Ca sium (K)	Carbon Bi ate bo (CO ₃) (HC	Bicar- Su bonate fa (HCO ₃) (S	Sul - fate (SO ₄)	Oldo Cide Srr Srr	rrote ri	Plug- pir (F)	5.	Silica (SiO ₂) Other constituents ^d	all and a district of the solids of the solid o	E SE	as CaCO ₃ Total N.C.		Analyzed by c
							31	SALINAS VA	ALLEY	(3-4)	(Cont.)											
C. Doud	178/5E-9Q1	7-31-62	79	610 8	7,8	3.76	2.30	30 7 1 30	2.2	0.24	$\frac{221}{3.61}$ $\frac{125}{2.61}$		28 0.80 0.0	0.00	0.1	0.1	27	450	18	303	11	DWR
irrigation	17S/6E-7Q1	7-31-62	89	620	8.2	40 7.02	21 1,68	2,50	2.9	0 0 0	$\begin{array}{c c} 134 & 103 \\ \hline 2.20 & 2.14 \end{array}$		62 4. 1.75 0.	0 80 0	0.1	0.2	36	432	07	185	75	DWR
N. Baker irrigation	17S/6E-27K1	7-31-62	89	1100	8.1	62 3,08 7	51 4.22	107	0.08	0000	149 2,45 7,	337 2	94 2.65 0.	0.09	0.1	0.4	<u>୍</u> ଥା	816	38	365	243	DWR
L. M. Jacks irrigation	18S/6E-1E1	8-3-62	99	930	7.6	40 2.02	30	120 5.20	0.11	0.00	3,40 4.	222 4.62	50 1.40 0.	33 0	0.1	0.5	26	632	53	225	55	DWR
L. Jacks irrigation	18S/6E-2N1	8-3-62	29	1170	7.9	119	3,65	3.05	5.6 0.14 0	0,00	$\frac{119}{1,95} \frac{3}{7}$	365 2	87 2,45 0.	57 0,92 0	0.1	0.1	21	812	24	481	383	DWR
F. W. Smith irrigation	18S/6E-28J1	8-3-62	89	740	8.2	48	13	23	0.06	0.00	180 6 2.55 1.	69 0	13 0,35 0.0	3.4 0	0.1	0.1		300	22	173	97	DWR
E. Pincini irrigation	18S/7E-29G1	8-3-62	99	2400	8.0	263	115	149	0.11	0.00	159 870 2.60 18.13		287 8.10 0.0	37 0	0.1	0.4	28	2032	22	1128	866	DWR
Salinas Land Co. irrigation	19S/7E-10P1	8-9-62	19	092	8.2	53	35	50 2.17	2.0	0000	146 2,40 2,	99 2.06	3.05	0,18	0.2	0.3	25	204	28	277	157	OWR
D. M. Bingaman domestic and	19S/7E-13D2	8-8-62	65	1020	8.2	37	57 4.72	102	0.07	0.00	$\frac{176}{2.88}$ $\frac{2}{5.}$	283 5.89 1	1.81	37 0	0.0	9:0	27	732	07	328	184	DWR
irrigation	19S/8E-32AI	8-8-62	79	3500	4.8	281	70 5.70 2	500 21,75	0.22	13 0.44 4	260 4.26 27.80		316 8.90 0.	24 0.38	0.04	2:0	23	2980	52	985	750	DWR
G. Ross irrigation	19S/8E-33R1	8-8-62	65	2900	8.3	125 7	130	360	6.7	3.0	188 3.08 22.00		279 7.85 0	25 0	0.4	8.1	274	2210	47	848	689	DWR
A. Duarte irrigation	20S/8E-5R1	8-8-62	99	1360	7.9	67	64 5.25	160	0.12	0.00	$\frac{217}{3.55} = \frac{3}{7}$	363	144	17 0.28 0	0.2		31	1096	777	430	253	DWR
irrigation	20S/8E-24J2	8-8-62	70	3200	8.2	164	63 5,20 1	445	0.29	0.00	122 2,00 10.	492 10,24	754 2, 21.25 0,	0.04	0.1	2.8	29	2300	58	671	571	DWR
irrigation	21S/9E-7J1	8-7-62	77	1700	8.1	137	80	132 5.73	0.15	0.00	180 2.95 11.	530 4	158 0	36 0	0.2	0.4	32	1328	e e	674	527	DWR

a. Determined by addition of constituents.
 b. Gravimetric determination.
 c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. tron (Fe), Aluminum (AI), Arsenic (Aa), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 300 except as shown

	State well			Specific					₩.	Mineral cans	constituents	٩	Po	parts per million	parts per millian	l _s		Totol			\$60	
Owner and	number and other number	Dots sampled	Temp in • F	conduct- once (micro- mhos at 25° C)	Ŧ	Colcium (Co)	Mogna - sium (Mg)	Sodium (Na)	Potas-C Sium (K)	Carbon- Bi afe bo (CO ₃) (H	Bicar- bonote (HCO ₃)	Sul - fore (SO ₄)	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Ni- trate (NO ₃)	Fluo-B	ng (Silico Other constituented	eolved solids in ppm	S sod		as CaCO ₃ Fotal N.C. Ppm ppm	Analyzed by c
							ळा	SALINAS V	VALLEY	(3-4)	(Cont.)											
K. and H. Eade irrigation	218/9E-24L1	8-7-62	69	2230	8,0	262	61 61 6.97	195	63 0.16	0.00	3,50	812	170	33 0.53	0.0	8.0	- 	2030	32	901	726	DWR
Glav Estate irrigation	22S/10E-17N1	8-7-62	63	520	8.4	36 1	21	35	0.04	0.14 2	160 2.61 1	73	25 2	0.04	0.2	0.2	- 52	336	30	176	39	DWR
L. Rosenberg irrigation	22S/10E-34G1	8-7-62	29	200	4.8	32 1.60	2.36	3.05	3.4	3.0	161 2.63 2	123	62 62 6	4.1 0.07	0.0	0.4	34	458	43	861	61	DWR
E. Weferling irrigation	238/8E-2E1	8-6-62	70	410	8.0	40 2.00	1,15	0.80	0.07	0.00	65 1,07	79	36 [15	0.0	0.1	35	282	20	157	104	DWR
J. Martinus irrigation	23S/8E-8K1	8-6-62	69	300	8.2	27 1.37	7.2	24	0.04	0.00	116 0	14 0,31	0.62	0.12	0.2	1.0	30	206	34	98	m	DWR
M. Martin, Jr.	23S/9E-29C1	8-6-62	75	009	7.9	65	21 .72	30	2.4	0.00	235 3,85 1	55	38	10	0.2	0.1	36	408	21	248	95	DWR
								CARM	CARMEL VALLEY		(3-7)											
R. Odello	16S/1W-13L1	8-14-62	63	700	8.5	93,42	23	47	3.6	10	410	98	61 1.72	1.8 0.02	0.02	0.1	<u>26</u>	097	50	265	82	DWR
Carmel Sewage Treat-	16S/1W-13L2	7-11-62	61	735	8.4	70	23	64 2.80	0.07	3.0	$\frac{226}{3.70}$	85	85	0.04	0.4	0,1	26	208	33	270	80	DWR
industrial B. Odello irrigation	16S/1W-13Q2	8-14-62	62	830	8.4	83	23	60 2.60	0.11	0.24	3.41 2	127	78	21 0.33	0.2	0.1	- 23	099	30	306	123	DWR
b	168/1E-16L1	7-10-62	62	300	8.2	36	8.6	18	2.1	0.00	114 0	45	14 0.39	0.00	0.2	0.0	23	220	24	125	32	DWR
E. Haber Irrigation	16S/1E-16N1	7-10-62	7.1	099	8.1	52 2.61	25 2.06	\$1 2,20	2,3	0.00	$\frac{165}{2.70}$	118	58	0.9	0.02	1.0	33	977	32	233	86	DWR
Harbert domestic and	16S/1E-17Gī	7-10-62	79	1180	7.7	150	18	94	3.7	0.00	354	3,33	133	10.0	0.0	0.2	61	838	31	155	161	DWR
lrrigation lrrigation	16S/1E-18Kl	7-11-62	61	610	7*8	62 3.12	19 1.60	41 1.80	3.4	4.2	3,21	85	48	0.0	0.01	0.1	27	670	07	287	187	DWR
Observing by addition of constituents	of constituents.											1		1	1	1			1			

Defermined by addition of constituents.
 Grownwarit defermination.
 Grownwarit defermination of Worler Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Analysis by U.S. Geological Survey, Quolity of Water Branch of Water Resources (D.W.R.) as indicated.
 Fernand Issuing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Fernand Issuing Laboratory (T.T.L.) or State Department of Water Resources (Wn), Zinc (Zn), reparted here as GGD except as shown in Iran (Fe), Aluminum (Al), Areanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as GGD except as shown

	3 4 5 7			Specific					Mine	Mineral constituents	stifuents	ڃ.	parts per million equivalents per million	parts per millian	million r milli	 		Totol		Hard	98.8	
pub LeumO	number and ather number	Date	Temp in °F	conduct- ance (micra- mhas	五	Calcium Magne-		Sadium (Na)	Potas-Carbon- sium ate (K) (CO ₃)	arbon-Bote ote bc	Bicar- banate (HCO ₃)	Sul - fote (SO ₄)	CE)	rofe (NO ₃)	F1uo - 8	<u> </u>	Sitroa (SiO ₂) Other constituents ^d	solved pavlos by solved and on p	sod-ium	as CaCO ₃ Tatal N.C. Ppm ppm	N.C.	Analyzed by c
								CARMEL V	ALLEY	(3-7) ((Cont.)											
R. Martin	16S/1E-23F1	7-10-62	99	880	0.8	63 3.14 2	32 2,59	3,83	3.5	0.00	122 2.00 5	247 5.15	2.35	00.00	0.0	0.2	31	670	07	287	187	DWR
E. Holt irrigation	16S/1E-25B1	7-9-62	65	097	8.1	42 7.07	15	37	2.8	0000	137 1	80	30 0.85	0.00	0.04	0.1	18	324	33	162	20	DWR
																		- "				
	,																					

Determined by addition of constituents.
 Gravimetric determination.
 Gravimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.), Terminal Lebrardory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Terminal Lebrardory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as accept as shown

	State well			Spacific					Minerol	Minarol constituents	ni stre	ind •	ports p	parts per mittlon	- L			Total		1 2		
Owner and	number and other number	Sompled	e e e e	once (micro- mhos	<u> </u>	Colcium S (Co)	Mogne - Sodium sium (Mg)	ium Potos- sium (K)	Corbon- im of e	bonote (HCO ₃)	Sul – fote (SO ₄)		Ni- trote (NO ₃)	Fluo- ride	Boran (B)	Silica (SiO ₂)	Silica Other constituents ^d (StO ₂)	epilos pevide peride in ppm	- to Bui	as CaCO ₃ Total N.C.		Anolyzed by c
	MDB&M						CENTI	CENTRAL VALLEY	EY REGION	FON (No.	Î.											
Franks Brothers domestic	44N/13E-36A1	8-29-62		161	8.0	16 0.79	1.6 0.13 1.10	0.04	0.00	1.73	0.05	3.5	0.02	0.01	0.1	_{කි}		114	53	917	0	USAC
H. J. Hacker domestic	44N/14E-7K1	8-29-62		944	4.8	15 2.24 1.	18 24 1.52 1.04	T 0.03	3 0.13	3.77	7.6	0.28	0.42	0.01	0.00	50 Zn	0.14	288	8	188	0	DWR
	45N/13E-12E1	8-29-62		330	7.7	0.96	3.8 49	5 3.7	000	5 3.07	0.17	5.3	0.0	0.2	0.3	<u>1</u>		220	61	†9	0	USAC
	45N/14E-32L1	8-29-62		235	8.2	28 1.42 0.	7.3 0.60 0.60	0.03	0.00	5 2.51	0.05	0.01	0.0	0.01	0.1	21		164	23	101	0	USAC
T. M. O'Connor irrigation	47N/13E-791	8-28-62		215	8. 0. 01H	21 1.03 0.	9.0 0.74 0.65	3.6	0.00	141 5 2.31	0.0	0.02	0.0	0.01	0.0	21		158	56	68	0	USAC
C. R. Vincent domestic and stock	47N/14E-2H1	8-29-62		505	2.8	1.6 0.08 0.0	0.5 116	5 0.04	0.00	2.43	1.03	27.	0.05	1.6	2.9	07	•	334	16	9	0	USAC
L. L. Smith domestic	-14B2	8-29-62		155	7.7	21 1.00 0.	3.8 6.0	1-1-2-2-4-2-4	0.00	5 1.37	1.4	0.0	9.0	0.0	0.0	81		106	15	69	0	USAC
A. Greenwood domestic and garden	48N/13E-20G1	8-28-62		5617	8.5	60 26	26 2.11 0.75	3.9	0.39 0.39	298 1.89	2.4	0.20	200	0.01	0.1	<u>2</u>		326	13	256	0	USAC
C. M. Cloud domestic	18N/14E-35A1	8-29-62	56	191	7.9	23 6.	6.4 0.53 0.36	10.0 1.0	0.00	1.67	6.9	0.03	13	0 0	0.02	33 Zn	0.02	128	18	†8	0	DWR
C. M. Cloud irrigation and stock	-35A2	3-21-62	89	740	8.1	0.24 0.	0.5 154	0 0.12	0.00	5 237	28	88	0.02	3.2	7-7	ଖ		194	76	174	0	DWR
		8-29-62	69	734	8.3	6.2 0.31 0.	0.1 157 0.01 6.83	3 5.1	00.00	0 3.54	0.90	2.71	1.6	3.3	3.0	65 Fe	(total) 0.00 0.01 Zn 0.01	454	46	16	•	DWR
								ALTURAS	ALTURAS BASIN	(2-5)												
D. Flourney domestic	39N/13E-6N1	8-28-62		170	8.0 7	7.2	2.3 0.19 1.30	0.12	0.00	0 1.62	3.4	5.3	0.05	0.1	0.1	2]		136	8	82	0	USAC
Pit River Ranch domestic	4 ON/12E-25JI	8-28-62		η20	8.4	17 0.83 0.	8.1 0.67 3.00	0.25	25 0.26	86.8	12 0.24	0.40	0.02	0.01	0.2	ଞ		312	63	75	0	USAC
d by addition	o Determined by addition of constituents.				1				-										+		1	

o. Defermined by addition of constituents.
b. Growinic defermination.
c. Analysis by U.S.Goological Survey, Quality of Woter Branch (U.S.G.S.). Pacific Chemical Consultants (P.C.C.).
c. Analysis by U.S.Goological Survey, Quality of Woter Branch (U.S.G.S.). Pacific Chemical Sating Laboratory (T.T.L.), U.S., April and Laboratory (T.T.L.), U.S., April and Laboratory (T.T.L.), U.S., April and Consultants (U.S.G.S.), Espain (C.S.), Reported here as \$50.0 except as shown
d. Iron (Fa), Aluminum (Al), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as \$50.0 except as shown

	Analyzed			æ	œ.	E	USAC	ρs	USAC	USAC	USAC		USAC	USAC	USAC	DWR	USAC	DWR	USAC
		1		DWR	DWR	DWR		DWR											
	Hardness os CaCO ₃	P P C		0	0	152	0	0	0	0	0		0	0	76 1	5 45	0.	62	57
		Totol		41	53	349	19	139	83	16	7		55	153	177	75	82	164	167
-	T	& E		7 92	7 7	11 11	6 29	6 21	2 58	99 17	8 35		††1 9:	338 37	326 23	869 86	160 28	322 23	328 24
	Total			767	224	504	146	566	312	354	248		146	M	<u></u>	<u></u>	JE	×	m m
		Silico Other constituents ^d (SiO ₂)		Mn 0.07 Zn 0.09															
				対	<u>8</u>	75	21	임	%1	ឌា	Ħ		22	21	63	81	2	39	25
	uoi L	Boro (B)		0.15	7.5	0.1	0.1	0.00	0.7	0.0	0.1		0.0	0.0	0.0	3.4	0	0.1	0.0
allle	E	- 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5 - 5		0.00	0.0	0.0	0.2	0.0	0.2	0.1	0.0		0.1	0.01	0.0	2.1	0.0	0.2	0.0
ports per million	equivalents par million	trate (NO ₃)		2.8	0.0	3.0	0.16	6.8	2.0	0.00	0.00		0.00	0.12	3.0	0.00	0.00	1.21	1.08
امّا	oviupe	8 <u>\$</u> <u>\$</u> <u>\$</u>		3.92	0.25	13 0.35	3.5	6.0	35	5.3	3.6		0.05	38	38	3.02	0.03	30	33
2		Sul- fote (SO ₄)	~	212	22 0.46	3.60	2.4	0.31	36	0.5	0.10		0.5	2.4	1.90	390	5.3	0.31	00.21
	Constituents	Bicor- bonote (HCO ₃)	contd.	3.75	2.28	3.77	102	3.11	172	347	3.41	-T-	130 2.13	253	98	28	136 2.23	124	2.20
		Corbon (CO ₃)	5-2)	η 0-13	00.00	5.17	0000	00.00	0000	10 0.34	5.1	VALLEY (5	00.00	00.00	00.00	14	0.00	00.00	0000
	2	Potos- Sium (K)	MASIN	7.1	0.34	9.6	5.1	02.0	13	111 0.29	5.6	IG VAL	0.10	11 0.29	2.4	0.12	2.8 0.07	5.2	0.13
		Sodium (No)	ALITURAS	258	<u>51</u> 2.20	20 0.87	114 0.60	18 0.78	62 2.70	96 4.17	31		0.95	7.00 5.00	25	9.92	0.65	23	1.10
		Mogne eium (Mg)		2.1	0.09	30	5.9	0.83	3.2	8.1	8.5 0.70		5.9	19 1.58	17	0.00	0.92	23	23 1.87
		Colcium (Co)		13	9.6	90	17 0.86	39	28 1.39	23	$\frac{34}{1.72}$		12 0.62	23	21.2	30	1770	27	29
		<u>E</u>		4.8	8.1	4.8	8.0	8.0	7.9	₹. 8	4.8		7.9	8.2	7.8	80	8.0	7.6	8.0
Specific	conduct	(micro- mhas at 25°C)		1,270	305	099	200	360	544	530	340		193	064	450	1,280	220	472	720
	Temp QE	in •					59									104		77	
	Date	eampled		8-28-62	8-28-62	8-28-62	8-28-62	3-21-62	8-28-62	8-28-62	8-28-62		8-30-62	8-30-62	8-30-62	3-20-62	8-30-62	3-20-62	8-30-62
	State well number and	other number	MDB&M	41N/10E-2N2	41N/11E-2J1	41N/13E-18P1	42N/11E-24A1	42N/12E-11Q1		42N/13E-31G1	-3261		37N/TE-2D1	38N/TE-2P1	-1465	38N/8E-14Pl	-17K	-30KL	
		use use		F. Caldwell domestic	N. Austin domestic and irrigation	Morgan Brothers domestic	L. Goings domestic and stock	City of Alturas municipal		Younger domestic	E. Swanson domestic		E. G. Babcock domestic	W. Gerig domestic	A. O'Toole domestic	H. Simer domestic	F. Leonard domestic	M. Walsh domestic	

o. Determined by addition of constituents.

b. Growmatric determination.

c. Analysie by U.S. Galogolog Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Analysie by U.S. Galogolog Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

Analysie Schoologology (T.T.L.), Obs. April 2010 (U.S.G.S.), Pacific C.D., reparted here as analysis (D.W.R.) as andicated,

d. fron (F.D.), Aluminum (Al.), Artenic (Aa), Copper (Cul, Lead (P.D.), Manganese (Mn), Zinc (Z.D., reparted here as analysis of shown

	Anolyzed			USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC		DWR	DWR	USAC	USAC	USAC	
	as CaCO ₃	N.C.		0	0	0	0	0	17	0	34	0		0	0	0	0	0	
1 2	S C	Total		123	69	69	37	37	275	43	158	27		263	564	70	153	5	
	- C - C	Ē		8	746	24	79	19	37	51	39	07		143	777	35	49	75	
t later	die.	in ppr		252	272	188	160	160	1,88	172	1,34	122		955	555	126	724	132	
		(SiO ₂) Other constituents"																	
	Silco	(SiO ₂)		27	3	N	77	김	717	25	22	97		2)	2)	91	18	33	
lion	Boros	(B)		0.0	0.0	0.0	0.0	0.0	0.1	0.1	0.0	0.1		0.1	0.12	0.03	0.2	0.1	
million mil	Fluo-	<u>.</u>		0.0	0.01	0.0	0.2	0.2	0.0	0.2	0.0	0.0		0.2	0.2	0.0	0.02	0.2	
ports per million equivolents per million	12	trote (NO ₃)		0.30	0.04	0.30	0.0	0.00	1.28	3.0	73	0.0		0.8	0.05	0.0	1.0	0.00	
o d	5	(CD)		16	3.6	5.3	2.1	2.1	1.36	2.8	37	1.8		0.0	0.0	2.8	23	0.03	
ت ت	- Ins	fot• (SO ₄)		5.8	0.05	0.0	6.7	6.7	42 0.89	14	39	0.0		0.00	0.00	0.00	3.4 0.07	0.03	
Minerol constituents	Bicor-	bonate (HCO ₃)	ontd.)	170 2.78	3.55	2.22	11.89	11.89	290	98	151	103	(5-5)	648	618	123 2.05	448	11.87	
erol c	Corbon	ot• (CO ₃)	D) (11-9	0.00	0.00	0.00	0.00	0.00	12 0.40	0.00	0.00	00:00	ALLEY (5-5)	0.00	0.00	0.00	24	00.00	
2	Potos-	Sium (X)	VALLEY (S	4.9	7.5	1.1	1.8	1.8	1.2	4.4	5.5	4.1	RIVER	6.8	8.0	3.6	5.7	0.0	
		(No)	BIG VA	1.10	2.10	30	32	32	67 2.90	29	2.13	17 0.75	FALL	% 1.18	4.31	18	133 5.80	97	
	- eva	(Mg)		1.10	2.8	7.4	0.22	0.22	30	0.34	1.15	01.0		33 2 - 75	32 2.68	5.6	1.05	0.03	
		(00)		1.36	1.06	0.77	0.52	0.52	2.96	10 0.51	0,10	0.62		2.50	52 2.59	0.90	10° 5° 01	1.4	
	E .	,		1.8	0,00	8.1	8.1	8.1	2.0	8.0	0.8	0.8		7.9	0	0.8	9.6	8,1	
Spacific	ance falcro-	mhos at 25°C)		335	320	245	187	187	715	191	550	161		948	952	193	069	189	
	Temp to eF										55			52		62			
	Oate			8-31-62	8-31-62	8-29-62	8-29-62	8-29-62	8-29-62	8-29-62	8-31-62	8-29-62		3-20-62	8-30-62	8-30-62	8-30-62	8-30-62	
Stote well	number and		MDB&M	38N/9E-8E2	-2111	39N/7E-11A1	-1301	39N/TE-13Q1	-1481	39N/8E-23A2	-2611	39N/9E-28F20		37N/4E-1K1		37N/5E-1C1	-9N1	-1481	
	Owner and	080		J. Albaugh domestic and stock	A. Knudson domestic	E. Robinson domestic		D. Yowell domestic	L. Roberts domestic	R. Holmes domestic	L. Meeks domestic	R. Swain domestic		W. Bickel domestic		V. Cessna irrigation	Inter Mountain Fair municipal	W. Moen domestic	

o. Determined by addition of constituents.

b. Growmatric determination.

c. Analysis by U.S. Geological Survey, Quality of Woter Bronch (U.S.G.S.), Pocific Chemical Consultants (PC.C.),

c. Analysis by U.S. Geological Survey, Quality of Woter Bronch (U.S.G.S.), Pocific Consultants (PC.C.),

c. Analysis of Survey, Quality of Woter Bronch (U.S.G.S.), Pocific Consultants (PC.C.),

d. Bronch Assing Laboratory (T.T.L.), "G.S. Appart (Gu), Lead (Pb), Monganese (Mn), Zinc (Zn), reported here of Googetspt os shown

QUALITY OF GROUND WATERS IN CALIFORNIA ANALYSES OF GROUND WATER 1962

	99																	,
	Analyzed by c			USAC	USAC	USAC	USAC	USAC	USAC		DWR	DWR	DWR	DWR	DWR	DWR	DWR	
	as CaCO ₃	E		0	0	0	0	0	0		0	0	a	0	0	0	0	1
1	1.	E		55	115	76	62	77	79		61	778	119	53	83	62	525	1
	- 5 8 E			Lη	80	772	27	10	30		9	17	77	88	22	28	07	 1
Total	die- solved colids			132	184	152	204	100	160		140	181	183	1174	160	140	135	
	Silica Other canatituented																	
				A	547	177	87	81	64		23	8	911	<u>8</u>	25	77	91	
High	Boron			0.0	0.0	0.0	0.0	0.1	0,1		90.00	0.0	0.07	0.0	0.02	70.0	0.00	
r millic	Fluo			0.0	0.0	0.1	0.2	0.2	0.2		0.1	0.1	000	0.00	0.0	0.2 0.0	0.03	
parts per million equivalents per million	NI- frafe	(NO3)		7.0	0.0	14	2 ⁴	0.02	0.0		3.5	0.02	9.3	10.07	0.03	3.7	0000	
Ainbe		_		0.4	0.08	0.03	0.13	0.02	5.3		3.2	1.6	3.2	6.4 0.18	0.13	2.7 0.08	1.8	
Ë	Sul -		đ.)	0.0	1.4	5.8	0.15	0.00	0.5		0.02	0.00	6.6	7.6	7.6	0.10	7.6	
constituents	Bicar- banate	(HCO ₃)) (cont	115	180	107	2.25	98	2.00	(9-	1.56	105	2.34	64	109	1.46	92 1.51	1
Mineral c	Carbon	(00)	7 (5-5	00.00	00.00	000	0.00	00.00	00.00) NIS	00.00	0.00	00.00	000	00.00	0.0	00.00	
ž	Potos-	ξ	NALL.	1.6	2.6 0.07	3.3	3.7	0.7	2.9 0.07	REDDING BASIN	0.08	0.05	0.03	0.5	0.03	0.02	0.00	
	Sadium	(DN)	ALL RIVER VALLEY (5-5) (contd.)	23	14	12 0.50	17	4.0 0.17	16 0.70	EED THE	12 0.52	0.33	9.0	9.4	11 0.48	0.48	16 0.70	
	Magne	(Mg)	, , , , , , , , , , , , , , , , , , ,	07.0	13	5.6 0.46	11 0.87	10	0.86		8.1 0.67	11 0.91	1.33	6.2	8.6	5.4	6.0	
	Calcium	(0)		1 ⁴ 0.70	24 1.19	1.00	25	12	1 ¹ 4 0.72		0.55	13	21	11 0.55	19 0.95	0.80	0.55	
	Ŧ			8.1	0.00	7.8	8	8.0	8.1		8.0	7.8	6.7	7.8	7.1	7.8	7.8	
Spacific	ance (micro-	at 25°C)		185	560	192	255	141	208		171	182	192	151	207	169	169	
	Temp in • F			62	95						19	68	19	62	62	68	69	
	Date			8-30-62	8-30-62	8-30-62	8-30-62	8-30-62	8-30-62		6-13-62	6-25-62	6-13-62	6-25-62	6-25-62	6-13-62	6-25-62	
State well	number and other number		MDB&M	37N/5E-24F1	37N/6E-6L1	-1917	-29B1	38N/3E-24F1	38N/4E-30H1		TWZ-M1/N62	JM4-WE/NOE	-34D1	30N/4W-1E1	-16B	-25V1	3011/5W-1.5R1	
	Owner and			D. Crum irrigation	L. Joschim irrigation	L. Carpenter domestic	R. Clark domestic	R. Peters domestic	E. Johnson domestic		Cottonwood Water Department municipal	D. Park domestic and irrigation	D. Morton domestic	T. Loftus irrigation	Shasta County irrigation	Paul Bunyon Lumber Company industrial	Happy Valley School domestic and irrigation	

⁻³⁴⁶⁻

		Stote well			Specific conduct-				₹	Mineral constituents	stifuants	ë	equivolents per million	ports per million volents per mill	million ir milli	uo		Totol	ä	1	8 8 0	
Market M	buner ond	number ond other number	Sampled		mhos ot 25° C	Ŧ			olos-C sium (K) (orbon- B ofe bi				frote (NO ₃)	- pir - pir	30ron S (B)	SiO2) Other constituent		tien and the second		N.C.	Anolyzed by c
Simple-liminary Simple-lim		MDB&M					111	EDDING B	ASIN (5-6) (0	ontd.)											
Marie Mari	C. Young domestic	30N/5W-17R1	6-25-62	69											0.00		754	130		39	0	DWR
Market M	R. Gilbert irrigation	3111/34-7K1	6-25-62	99													252	174	43	67	0	DWR
Paris Pari	Gimblin domestic and irrigation	-12E1	6-25-62	70											0.00			172		79	0	DWR
Service T. M. M. S. M. G. S. G.	T. Murphy irrigation	-29P1	6-25-62	70											0.2		92	176		79	0	DWR
School Fig. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	Lawn Crest Cemetery irrigation	31N/4W-5F1	6-25-62	69											0.02		Z ₇₇	126		75	0	DWR
mututututututututututututututututututut	Enterprise School District domestic and irrigation	-741	6-25-62	78			 										<u></u>	146		78	0	DMR
Moterial 311/5W-13D1 6-25-62 74 404 77 6-35 2-44 5-55 2-44 5-05 2-14 5-05 2-44 5-05 2-	P. Templeton domestic and irrigation	-1691	6-25-62	62													<u></u>	109		22	0	DWR
of Interior and a coor int	California Motel domestic and irrigation	3111/54-1301	6-25-62	77.2	707		 								0.03		Fe (total)			69	0	DWR
and stock be solved by the stock by the stock be solved by the stock by the stock be solved by the stock	U.S. Dept. of Interior domestic and irrigation		6-25-62	99	214		 								0.00	90.0	Fe (total) Mn 0.16 Zn			53	0	DWR
6-85-62 63 3,199 6.1 3.2 615 6.5 6.03 6.00 1.2 6	W. Johnson irrigation	32N/3W-17E2	2-27-62		506										7.00		15	485		90	0	DWR
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$			6-25-62	63											1.1	1,4	A	1,730		100	0	DWR
6-25-62 70 1,790 8.1 23 8.0 15. 10 1.70 8.1 23. 14. 17. 12.18 1.0 10. 15. 10 1.21 8.1 1.21 1.21 1.21 1.21 1.21 1.21	B. Irvin domestic and stock	-20P1	6-25-62	74	175										0.10		25	117	8	09	0	DWR
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	C. Boyle domestic	-3272	6-25-62	74	368										0.00		58	246		115	0	DAR
6-25-62 70 353 8.0 15 10 10 10 10 10 10 10 10 10 10 10 10 10	V. Phipps irrigation	-3211	6-25-62	70											0.0		547	956		191	98	DWR
	Coldinon	-3501	6-25-62	7.0	353										0.0		09	236		79	0	DWR

o. Delsrmined by addition of constituents.

b. Growmatric determination.

c. Analysis Pu.S. Gallogical Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (PCC.),

Analysis P.U.S. Gallogical Survey, Quality of Woter Branch (U.S.G.S.), Pocific Chemical Consultants (PCC.),

G. Franch Pasting Laboratory (T.T.L.), D. ... A

G. Franch Pasting Laboratory (T.T.L.)

-										_
	Analyzed by c			DWR	DWR	DWR	DWR	DWR		
1882	03 CaCO 3	DP.C.		0	25	0	0	0		_
		ppm mgd		30	38	16	89	78		
	L S			71	32	92	55	37		_
Total	- sip	in pp4		782	93	291	193	176		
	Silica Other constituents									
				8	8	Ħ	35	<u>27</u>		
Tion	Boran			0.12	0.44	7.4	0.46	77.0	'	
volents per mill	Fluo-			0.00	0.00	0.0	0.00	0.05		
squivalents per milition	- IN			0.0	34	0.5	0.0	8.8		
DAINDE				4.8	10 0.28	68 1.92	33 0.93	10 0.28		_
nts in	Sul -		7	4.4	0.5	0.0	0.0	23		
Mineral constituents	Bicor	(HCO ₃)	REDDING BASIN (5-6) (contd.	0.82	16 0.26	160 2.62	2.16	111		
nerol	Carbon	(°,	(5-6)	00.0	0.00	0.00	00.0	00.00		
3	Potos -	દ્ર	BASIN	0.0	0.00	0.03	0.03	0.03		
	Sodium		KEDDING	0.48	8.0	97	39	23		
	- Magna -	(Mg)		2.1	5.1	0.09	8.0	8.3		
	Calcium	(S)		0.43	6.9	4.7	0.70	20		
	£	-		7.6	6.8	7.8	8.1	7.1		
Specific	ance (micra-	of 25° (113	133	184	320	268		
	Tamp in °F			72	80	831	81	19		
	Date sampled			6-25-62	6-25-62	6-25-62	6-25-62	6-14-62		
State well	number and ather number		MDBSM	32N/4W-14F2	-1682	-2002	-34PL	32N/5W-26M1		
	Owner and			Hills and Dale Rest Home Lrrigation	W. Ross	E. Jones domestic	Columbia School District domestic	H. Snow, Jr.		

o. Determined by addition of constituents.
b. Grovimstric determination.
c. Analysis by U.S. Gallogoler Survey, Coulty of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Analysis by U.S. Gallogoler Survey, Coulty of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
G. Franch Issuing Laboratory (T.T.L.), U.G. Application of Chemical Consultants (U.S.G.S.), as indicated.
G. Iran (Fs), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as <u>Gas</u>except as shawn

⁻³⁴⁸⁻

	Anolyzed by c		0		D.	Ç3.	٠.	υ	Ų		t)	υ	υ	υ	υ	_O	t)	9
			USAC	USAC	USAC	USAC	USAC	USAC	USAC		USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC
rdness	as CaCO ₃ Fotal N.C. Ppm ppm		0	0	0	0	0	0	0		0	0	0	0	-	0	0	0
1			33	33	37	71	61/19	98	55		7.	112	151	108	87	777	69	R .
<u></u>	solved cent solids ium in ppm ium		<u> </u>	27	75.	114	C 27	15	ध्य		24	20	077	19	10	88	23	22 221
P			78	79	82	114	1,82	8	20		11.5	2538	287	145	107	92	104	A
	Silica (SiO ₂) Other constituents ^d																	
			59	75	32	8	65	22	<u>ଅ</u>		55	g	56	8	2	15	25	<u>يم</u>
III ion	Boron (B)		0.0	0.1	0.0	0.0	0.1	0:0	0,0		0.0	8.0	0.2	0,0	0.0	0:0	0.0	0
r millte	<u> </u>		0.2	0.2	0.00	0.2	0.1	0.0	0.0		0.00	0.02	0.2	0.2	0.2	0.2	0.2	0.0
parts per million equivolents per million	rate (NO ₃)		0.00	000	0.00	0.00	0.00	0.00	0.0		0.0	2.3	0.0	0.0	0.00	2.1	0.0	00.0
Paninge	Cige (CI)		4.0	0.0	0.0	3.0	7.0	0.05	0.0		0.0	2.20	34	0.0	0.0	0:0	0.00	0.00
ıts in	Sul – fote (SQ,)		0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.0	0.0	27	60.0	8.0	2.0	1.0	0.00
Mineral constituents	Bicar- bonate (HCO ₃)	Y 5-7	51 0.83	54	5.8	98	558 9.15	1,1 0,66	32	5-9	113	122 2.00	3.40	146	105	65	97	1.87
oral co	orbon- ore CO ₃)	VALLEY	0.00	0.00	0.0	0.00	0.0	0.0	0.00	WALLEY	0.0	0.00	0.00	1.5	0.0	0.00	0.0	000
Mine	Pajos-Carbon- sium ofe (K) (CO ₃)	ALZANON	0.05	1.8	1.9	2.9	7.0	0.04	0.03	INDIAN VA	0.00	0.6 0.02	0.0	0.00	0.03	2.3	0.2	0.02
	Sodium (No)	LAKE	0.30	0.0	6.0	5.5	9.3	2.2	2.2	ΞI	0.90	52 2.25	46	12 0.50	5.0	8.3	8.9	0.43
	Magne- sium (Mg)		2.0	2.0	3.0	6.0	35	0.03	0.03		0.07	11 0.85	17	13	5.0	4.0	7.0	0.40
	Colcium (Ca)		9.0	9.0	0.43	19 0.93	120	9.0	7.0		7.0	28	33	22 1.09	26 1.32	12 0.61	14 0.71	1.09
	E G		7.8	7.8	7.2	8.1	17	7.5	9.7		÷	8.1	8.2	8.3	7.9	7.9	8.1	8
Specific canduct-	once (mtcro- mhas of 25° C)		146	102	116	172	800	- 89	57		175	1,60	500	250	205	136	172	500
	Temp in • F																	23
	Sampled		8-30-02	8-30-62	8-30-62	8-30-62	8-29-62	8-29-62	8-29-62		8-29-12	8-29-(2	3-29-2	8-29-62	8-29-62	8-29-62	8-29-62	8-29-62
State well	other number	MDB&M	2811/78-51.1	-51:1	-7A1	-7111	-1881	-1801	T1811-	WDBGW	26h/108-481	E i	-1 P1	-18ta	-23A1	-27RI	-28M1	-30F1
	Owner and use		Denver Guess Dom.	Denver Guess Dom.	William Caeser Dom.	Sam Herreld Dom.	H. E. Rogers Dom.	J. W. Stone Dom.	State of California Dom.		Carl Evens	C. D. Doyle	Toscent Bros.	State of California Dom.	C. Bainbridge Dom.	John Young Dom.	Carry Johnson Dom.	Dom.

Defermined by oddition of constituents.
 Growinmeric determination.
 Growinmeric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.L.L.) or Stats Department of Water Resources (O.W.R.) as indicated.
 G. Iron (Fs.), Aluminum (Al.), Arsenic (As.), Copper (Cu.), Lead (Pb.), Manganese (Mn), Zinc (Zn.), reported here as 600 except as shown.

																			ł	}	ŀ	
	State well		,	Spacific sonduct-					Minsrol		constituents	ř	parts per million equivalents per million	ts per	million ir milli	5		Totol		Hordness	:	
Owner and	other number	Sompled	Temp in °F	ance	Ŧ	M	Η,		Potos - C	arbon		Sul -					lico	Period	o de la composition della comp	3	т	Analyzed
020				at 25°C)		(CO)	mis (Mg)	(No)	E (X	(CO ₃)	bonote (HCO ₃)	fate (SO ₄)) (2) (2)	(NO ₃)	<u></u>	<u>6</u>	(SiO ₂) Other constituents			Total	D E C	
							Ħ.	INDIAN VAI	TTEX 2-	-9 (cdN'T)	1											
Plumas County Dom.	27N/9E-35P1	8-29-62		233	8.2	26 1.28 0	0.86	8.8 0.38	0.06	0.00	146 2.40	3.0	0:0	0.0	0.01	0:0	8	157	15	627	6	USAC
	MDB&M							AMERIC	AMERICAN VALLEY	TEK 3-10	21											
James Boyntoo Dom.	24N/9E-2A1	8-28-62		200	8.1	0.59	0.87	0.50	0.03	0.0	1.94	000	0 0	0.00	0.01	0:0	50	71.	25	73	•	USAC
Grey's Flower Gardeng Dom.	THOT	8-28-62		180	8.1	28 1.42 0.0	2.0	3.9	0.03	0.00	103	0.02	0.00	0 0	0.2	0:0	ଅ	8	6	82	0	USAC
Bruno Riedi Dom.	-1011	8-28-62		63	7.2	7.0	0.00	0.05	0.00	0 0 0	20 0.34 0.34	000	000	0.00	0.0	0.0	9	₹2	13	 81	н	USAC
D. E. Bellamy	-16fI	8-28-62		75	7.4	8.0	1.0	3.3	0.01	0.0	37.0	0.01	0.00	0.0	0.0	0:0	8	141	เร	 %	0	USAC
R. W. Asplund Dom.	24N/10E-6N1	8-28-62		10	8.3	55 2.73 0.	0.66	23	0.02	0.15	244 7.00	0.0	0.10	0.00	0.0	0.1	16	232	ຄ	170	0	USAC
B. D. McRoberts Dom.	-811	8-28-62		340	8.3	41 2.04 1.	13 8	0.37	0.02	3.0	3.20	0.13	0 0	0.00	0.0	0:0	19	187	10	159	0	USAC
M. A. Haney Dom.	-1801	8-28-62		71	7.4	13 4	1.0 0.31	2.8	0.01	0.00	56 0.92 0	0.03	0.00	0.0	0.00	0:0	10	ş	13	Lη		USAC
E. Marquardt Dom.	-1981	8-28-62		115	7.2	13 th	4.0	2.3 0.11	0.02	0 0	80.00	0.05	000	0.0	0.0	0.0	8	19	9	61	0	USAC
State of California Dom.	-1901	8-28-62		130	7.6	12 0.58	2.0	3.3	7.00	0 0	66 1.08	0.02	0.00	0.00	0.01	0.0	9	8	13	12	0	USAC
Ben Williams Dom.	-20D1	8-28-62		59	7.2	0.26	2.0	0.10	0.3	000	2t 0.10	000	0.00	3.4	0.01	00	7	32	19	N	cu .	USAC
	MDBEM							MOHAM	MOHAW VALLEY 5-	EY 5-11												
Robert Schoensee Dom.	22N/12E-901	8-22-62		275	8.0	0.85	1.15	0.70	0.11	0.0	1.95	3.4 0.07	0.00	27 0.68	0.0	1,0	141	198	52	001	N	USAC
LeRoy Pryor Dom.	-2201	8-22-62	55	901	7.8	9.2	3.5	3.3	0.0	000	15 0.88	0.03	0.00	0.0	0.0	0:0	16	61	16	<u></u> 쬤	0	USAC
o. Determined by addition of constituents.	of constituents.															7			\dashv	┨	1	

o. Determined by addition of constituente.

b. Growmetric determination.

c. Analysis by U.S. Seological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

c. Analysis by U.S. Seological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

d. Iron (Fe), Alvanian (AI), Arsanic (Ae), Copper (Cu), Lead (Pb), Manganess (Mn), Zinc (Zn), reparted here as \$\frac{1}{2000}\$ except as shown

-350-

	2																	
	Analyzed by c		USAC	USAC		USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC
: 0	os CoCO ₃ Fotol N.C. ppm ppm		0	0		0	0	0	0	0	0	0	0	0	0	0	0	92
Hord	Total Ppm		88	11		72	26	145	101	42	7,5	51	79	30	27	17	171	=======================================
Į į	P E		56	26		59	8	82	16	25	93	53	23	87	62	8.	2	8
Totol	solved solids in ppm		159	254		131	172	143	346	144	716	177	911	372	136	274	729	1659
	Silica (SiO ₂) Other constituents ^d																	
			36	77		27	2	35	티	9	7	<u>L</u> t ₁	36	65	39	39	8	8
Lion	Borga (B)		0.0	7.0		0:0	0.1	0.7	0.0	0:0	5.2	0.1	0:0	1:1	0.2	1.0	0.2	9.1
millio	Fluo- ride		0.00	0.0		0.00	0.02	0.2	0.1	0.00	0.00	0.0	0.00	0.0	0.0	0.03	0.00	2.0
ports per million equivalents per million	Ni- trote (NO ₃)		0.0	0.0		0.00	32 0.52	3.8	0.00	0.00	14	2.6	0.0	24 0.38	0.0	28 0.45	7.7	0.0
equiv	Cici)		0.00	0.50		0.00	43 1.20	3.92	0.00	2.8	273	1.8	0.0	31	0.0	118	96	571 16.10
.c	Sul - fote (SO ₄)		7.2	1.41		1.0	1.0	23	0.0	0.05	167 3.49	0.22	1.4	3.4	0.0	12 0.25	197	367
Mineral constituents	Bicar- banate (HCO ₃)	CON'T.	136 2.24	104 1.70	21	124 2.04	2.08	176 2.89	151 2.48	2,00	2.35	124	1.89	247	88	139	311	50
erol c	Carbon ate (CO ₃)	5-11	0.00	0.00	LLEY	0.0	0.00	0.0	0.0	0.00	8 8	0.0	0.0	0.00	0:00	0.0	0.00	7.5
Min	Patos- Sium (K)	ALLEY	3.4	2.6	SIERRA VALLEY	3.5	4.3	9.5	0.6	1.8	6.5	5.8	1.3	5.6	5.7	2.1	1.3	0.37
	Sadium (Na)	MOHAWK	15	47	SI	0.60	5.60	100	8.9	13	300	30	8.3	111	26	3.30	195	<u>525</u> 22.83
	Magne - s.um (Mg)		7.1	9.5		7.8	6.2	19 1.58	1.17	10 0.81	3.6	01.0	6.3	4.1	3.9	1.0	33	0.20
	Calcium (Ca)		23	15		16 0.80	05.0	26	17 .	15	10	12	15	5.2	4.4	5.0	16	20.5
	Ŧ		7.2	7-3		8.1	8.1	7.4	9.2	8.0	7.0	7.9	8.1	8.1	7.3	7.5	7.9	4.
Spacific	ance (micro- mhas at 25 G		250	365		195	380	160	235	210	1450	245	168	530	180	350	1100	2650
	Tem F • F												69		92	82		
	Date sampled		8-22-62	8-22-62		8-21-62	8-21-62	8-21-62	8-21-62	8-21-62	8-22-62	8-21-62	8-22-62	8-21-62	8-21-62	8-21-62	8-21-62	8-22-62
State well	nymber and ather number	MDB&M	22N/13E-19N1	-30R1	MDB&M	20N/14E-4G2	21N/14E-15J1	-2211	-2911	-36KI	21N/15E-5D1	-963	22N/14E-14F	22N/15E-11F1	-1281	-1703	-26K2	-32F1
	Owner and		Sherrad Dom.	W. A. Barks Dom.		Rite Bradly Dom.	Gordon McMillen Dom.	Gordon Van Vleck Dom.	John Berutti Dom.	P. A. Torri	Erminia Filipini Dom.	John Dandua Dom. & Stock	Mrs. Havey Dom. & Stock	Josephine Roberti Dom. & Stock	Huntly Bros. Dom. & Stock	P. R. Scolari Dom. & Stock	Lucky Hereford Ranch Dom. & Stock	Erminia Filipini Stock

Determined by addition of constituents.
 Growmetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe.), Alvaminum (AI), Arenic (As), Copper (Cu), Lead (Pb), Manganess (Mn), Zinc (Zn), reparted here as analysis shown

	2																		
	Anolyze	by c		USAC	USAC	USAC	USAC	USAC		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
	Hordness as CaCO ₃	N.C.		0	69	0	0	0		0	7	0	0	0	13	59	0	0	0
				21	189	67	128	33		ង	11	122	197	55	192	366	105	89	89
F	100	2 E		72	19	82	17	75		82	16	21	21	31	0	27	89	* 7.	8
	Totol	eolids in ppy		160	यूह	1911	208	542		82	109	187	7 ⁴ 2	108	252	5118	1190	911	170
		(SiO ₂) Other constituents ^d																	
		Silico (SiO ₂)		25	277	91	71	82		9	킴	37_	36	25	15	ଛା	.7	켍	19
	6	Boron (B)		0.1	0.8	1.5	0.0	11		0.00	0.07	0.24	0.06	0.0	10°0	0.19	59	0.01	0.21
n lie	per mil	- 05 (F)		0.0	0.00	0.2	0.00	0.05		0.0	0.2	0.2	0.02	0.0	0.2	0.2	000	0.0	0.03
ports per million	lente p	rote (NO ₃)		0.0	28	1.9	0.18	32		0°°	1.8	0.0	0.03	0.0	6.6	0.9	0.01	0.0	0.02
Ĭ	1=1	음:(D)		0.0	18 0.50	121 3.39	0.03	1.23		0.5	0.12	2.9 0.08	3.9	4.2	7.4	32 0.90	537 15.14	80.0	2.8
	e e	Sul - fote (SO ₄)		1.4	33	114 2.39	2.9	1.0		0.0	0.20	4°1 0.08	8.9 0.18	η·η 0.0	0.31	114	000	9.7	0.0
	Mineral constituents	Bicor- banate (HCO ₃)	CON T.	1.93	3,46	1.48	2.90	1.26	5-13	0,36	93	181 2.97	256	1.48	3.57	358	293	1:12	133 2.18
	erol ca	Corbon (CO ₃)	5-12	0.0	0.0	0.0	0.0	0.00	VALLEY	0.0	0.0	0.0	0.0	0.0	0.0	4.0	0.0	0.0	0.0
	ž	Patos- eium (K)	VALLEY	11.0 0.11	0.01	0.8	3.6	5.7	UPPER LAKE	0.7	0.7	0.8	0.02	1.4	0.00	3.3	2.3	0.0	0.6
		Sadium (No)	SIERRA	32	20 0.87	1 ¹ to	13 0.55	55 2.40	UPPER	2.2 0.10	7.0	1.5 0.65	13 0.56	21 0.52	8.6	45 1.96	404 17.57	7.0	0.52
		Magne- sium (Mg)		2.4	1.47	3.0	9.4	4.3 0.35		2.3	8.4	17	3.84	9.1	22 1.84	37 3.07	7.9	0.88	16 1.28
		Calcium (Co)		4.4	2-30	22 1.08	36	0.30		1.1	17	21	22 1.10	7.1	5.00	85	29	0.90	10 0.50
		<u> </u>		7.2	7.7	8.0	7.7	7.8		4.9	7.2	8.1	7.5	6.9	8.2	7**8	8.5	7.8	7.9
	conduct-	(micro- mhae at 25°C)		500	0917	0/1	300	365		33	180	962	413	167	389	819	2140	198	213
	Temp	u. E		77		99		82											99
	Dote	peldmos		8-21-62	8-21-62	8-21-62	8-21-62	8-21-62		6-12-62	6-20-62	6-12-62	6-12-62	6-12-62	6-12-62	6-12-62	6-12-62	6-12-62	6-12-62
	State well	other number	MDB&M	22N/16E-5N2	23N/14E-25G1	-3511	23N/15E-28H4	-3501	MDB&M	14N/9W-6F2	15N/9W-6F1	-7B	-1721	-31P1	15N/10W-3C1	-311	-10E1	-12K2	-13A1
		nse use		C. D. Franchini Stock	Merveno Air Service Dom.	Albert Falchi Dom. & Stock	Lyle Benner Dom.	Plumas County Stock		Overington Dom.	L. J. Skaggs Irr.	Upper Lake Cemetary Olst Irr.	Guy Bowers Dom.	Ernie Vehand Dom.	Ervin Levis Dom. & Stock	Leo Pecinovsky Dom.	Bessie Dunton Dom,	Lake Co. Cannery Inc. Ind.	Claude Davis -13Al

Determined by oddition of constituents.
 Growinstic determination.
	P. S.													_		
	Anolyzed by c		DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	E MA
Hordness	N.C.		0	0		6	72	90	0	0	0	0	8	56	8	0
			152	83		173	507	7LZ	109	311	214	टाऽ	204	962	7.28	282
à	D . E		<u>۾</u>	19		2	김	00	17	18	검	∞	0	7	0	σ
Toto	polos polos polos modui		545	Ħ		207	265	317	151	244	305	587	252	339	884	353
	Silco Other constituents															
	Silico (SiO ₂)		32	5.9		33	242	77	72	74	7/2	82	23	53	56	99
Tion	Boron (B)		0.12	8		0.14	0.48	0.35	0.17	2.7	0.57	0.69	0.32	0.07	0.22	0.10
r millla per mi	Fiuo- ride (F)		0.0	0.2		0.2	0.02	0.00	0.2	0.2	0.2	0.2	0.2	0.00	0.02	0.3
ports per million equivalents per million	rrate (NO ₃)		0.0	0.0		7.0	0.16	22 0.35	0.9	36	0.9	1 ⁴ 0.22	0.29	9.0	0.21	0.03
d vine	원 - 10년 - 1		17 0.18	8.0 0.0		4.3	28 0.79	7.5	6.8	20	170.43	9.6	9.4	112 0.34	18 0.51	0.23
e i	Sul - fote (SO ₄)	~	13	4.4 0.09		9.4	34.0 0.96	25	5.9	0.0	0.0	0.0	8 0.78	13	13	21 0.25
Mineral constituents	Bicar- bonote (HCO ₃)	(con'T.	210	11.92	5-15	3.28	589 9.65	29 [†]	138	394	269	652	203	329	88700	344
erol co	Corbon- ote (CO ₃)	n 5-13	2.0	0.00	ALLEY	0.0	0.0	0.03	0.0	0.0	h 0.13	0.0	0.00	000	5 0.17	0.00
Ā	Potos-(K)	E VALLEY	0.3	0.03	VILLE	1.0	0.8	0.7	0.02	3.9	4.7	2.8	0.8	1.4	0.7	0.03
	Sodium (No)	PPER LAKE	30	9.2	KELSEYVILLE	6.2	31 1.35	11 0.48	10 0.44	31 1.35	14	16.0	9.8	9.6	16	25.0 21.0
	Mogne- eium (Mg)	- >1	22 1.84	6.8		32 2.66	93	3.43	15	96.4	3.48	10 ⁴ 8.58	30	5.06	70 5.76	3.88
	Colcium (Ca)		2 ^t 4	22 1.10		16	50	1,1	19 0.95	25	16	33	32	17	56 2.79	35
	H _Q		8.4	6.9		7.8	7.8	7. 8	8.2	8.1	8.4	7.5	7.7	7.7	7, 8	7.7
Specific conduct-	once (micro- mhos ot 25° C)		398	199		351	066	529	250	678	453	676	1,32	195	7.78	551
	Temp in °F		88			59		29		8	75					79
	Date sampled		6-12-62	6-12-62		6-13-62	29-21-9	6-13-62	6-13-62	6-13-62	6-13-62	6-13-62	6-13-62	6-20-62	6-12-62	6-12-62
State well	number and other number	MDB&N	-24H1	16N/9W-31L3	MDB&M	13N/9W-3C1	-601	-8c1	-8nI	-8n2	-12MI	-1601	-1602	-2231	14N/9W-32J1	-3272
	bro remo		Herbert Jarvis Irr.	Antone Santos Dom.		C. Benson Irr.	C. W. Butler Irr.	Davidson Irr.	H. E. Marschell Dom.	H. E. Marschell Irr.	Lincoln Wright Irr.	Merritt Fraser Irr.	Merritt Fraser Dom.	W. J. Stone Irr.	I. Morrison Dom.	I. Morrison Irr.

o. Determined by addition of constituente.
b. Grovimetric determination:
c. Analysis by U.S. Sologlead Survey, Quality at Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.),
c. Analysis by U.S. Sologlead Survey, Quality at Water Browness (O.W.R.) as indicated.
Terminal festing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.
d. Iron (Fe), Aluminum (Al), Areanic (As), Copper (Cu), Lead (PD), Wangoness (Mn), Zinc (Zn), reported here as \$600 except as shown

	Anolyzed	o ka		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR		
		Pog.		О О	0	2 2	0	50	19 1	0	0	0	О О	16 I	34	0	0	
100	03 CaCO 3	Totol N Ppm		113	144	17	167	2 3	149 1	102	51	105	184	102	246 3	12	160	
	a a a			34 1	24 1	30	25 1	13 1	ı ı	21 1	35	39_1	1,4	18	374	91	12	
Total	dis-	solids in ppm		202	223	136	261	238	201	159	120	210	281	197	314	564	241	
		(SiO ₂) Other constituents ^d																
				83	881	27	8	8	3 21	<u></u>	32	S	EI EI	629	S S	99	171	
6 L	-	(B)		90.0	0.22	0.15	90.00	0.05	80.08	0.08	0.0T	0.00	0.11	0.39	90.08	0.21	0.0	
ar milli	L C	ĘE		0.0	0.0	0.00	0.0	0.00	0.2	0.2	0.03	0.2	0.00	0.00	0.2	0.5	000	
parts per millian	2	trate (NO ₃)		3.6	2.1	5.8	0.08	0.19	0.21	6.4	6.8	0.0	3.4	1.1	6.6	0.0	3.1	
Vivo	ě	\$ <u>\$</u> <u>\$</u> <u>\$</u> <u>\$</u>		5.7	25 0.62	16	0.42	0.20	6.2	4.3	3.0	19	0.20	16	34	26 0.73	0.54	
nts in		(SO ₄)	~	0.12	14 0.29	6.6	8.2 0.17	20 0.42	18 0.37	3.6	0.21	0.21	2.3	0.33	200	15 0.31	5.75	
Mineral constituents	Picoi H	bonate (HCO ₃)	-21.00	3.13	2.90	80	3.74	2.56	15 ⁴ 2.52	137 2.24	74	165	3.87	105	4.24	2.57	3.16	
neral c	Corbon	(00)	TIEY (S	00.00	00.00	00.00	00.00	000	20.07	00.00	00.00	0.03	14	00.00	00.00	00.00	0.20	
ž	Potos	Signal Enis Enis Enis	TTO VA	0.03	0.00	0.02	0.02	0.02	0.0	0.0	0.5	0.03	3.3	2.9	0.03	0.10	4.1.0.00 40.00	
		Sodium (No)	SACRAMENTO VA TEHAMA COUN	1.17	21 0.91	0.61	26 1.13	10	8.8	13	13	32	114 0.61	0.48	19 0.83	3.35	0.87	
	Monda	Sium (Mg)		1.31	16	8.1	24 1.94	1.26	1.38	0.89	0.59	0.85	25.03	0.99	36 2.95	0.13	1.90	
		(Ca)		0.95	32	15	28	34	32	23	8.7	25	33	21 1.05	40	2.3	26	
	玉			8.3	7.6	8.0	8.2	8.0	4.6	8.1	8.0	8.7	4.8	8.1	7.3	7.4	80.0	
Specific	ance	mhas at 25°C)		322	378	204	425	335	320	238	152	328	391	256	645	379	380	
	Temp			68	70	68	99	65	99	68	99	89		99	179	2/2	89	
	Date	p di pia		6-14-62	6-14-62	6-14-62	6-14-62	6-14-62	6-14-62	6-15-62	6-14-62	6-14-62	6-15-62	6-15-62	7-5-62	6-15-62	6-15-62	
State welt	number and		MDB&M	23N/2W-5A	23N/3M-22Q	-35B1	24N/2W-30C1	24N/34-3P1	-1,K1	-14M1	-20N1	24N/5W-21L1	25N/1W-31M1	25N/2W-4M1	-7K1	-2101	LNE-NE/NZ2	
	Owner and	987		Kelsey irrigation	A. Angleton irrigation	D. Smith domestic and stock	J. Ayres domestic and irrigation	G. Saulsberry domestic and irrigation	H. Moran and Son irrigation	Corning High School domestic	W. Turner irrigation	A. Miller domestic	S. Pritchett domestic	Los Molinos Cemetery domestic	F. Wray domestic	E. Clements Horst Co. irrigation	El Cemino Irrigation District irrigation	

o. Defermined by addition of constituents.
b. Growimstric determination.
c. Analysis by U.S. Getagotis Survey, Quality of Water Branch (U.S.G.S.). Pacific Chemical Consultants (P.C.C.).
c. Analysis by U.S. Getagotis Survey, Quality of Water Branch Chemical Chemical Consultants (U.S.C.C.).
Terminal Issuing Laboratory (T.T.L.). U.S.. Apprendibute Chemical Chemical Can), reported here as 670 except as shown
d. Iron (Fe), Aluminum (AI), Arsanic (Ae), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 670 except as shown

Determined by addition of consituents.
 Growinkstric determination.
 Analysis (Besting Logical String) and Work Work Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.).
 Analysis (Besting Logical Survey, Quality of Work Branch (U.S.G.S.), Pocific Chemical Consultants (P.C.C.).
 Ferminal Testing Logical Survey, Quality of Work Work (U.S.G.S.), Pocific Consultants (P.C.C.).
 Framinal Testing Logical Survey, Copper (Cu), Lead (Pb), Mongonese (Mn), Zinc (Zn), reparted here as \$600 except as \$100 mn.

	9																		\neg
	Anolyzed by c		USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC			
Hardness	N.C. Ppg		0	0	0	0	0	0	0	0	0	m	11	0	0	31			
l			159	191	170	193	166	216	194	346	253	166	233	81	119	506			
į	2 0 E		15	27	04	39	19	16	17	17	23	83	18	73	35	19			
Total	solved polids in ppm		190	256	312	338	216	564	546	198	326	220	. 320	346	198	276			
	Silica (SiO ₂) Other constituents ^d																-		
			72	ଷ	8	27	8	ଯା	뎨	98	16	디	SI.	웨	Pi Pi	웨			
Lion	Boran (B)		0.1	0.1	0.5	0.2	0.1	0.1	0.1	0.0	0.2	0.1	0.1	0.5	0.5	0.12			
aillia er mi	e e e		0.0	0.01	0.02	0.02	0.01	0.01	0.01	0.0	0.0	0.0	0.01	0.01	0.0	0.01			
parts per millian equivalente per millian	rofe (NO ₃)		3.6	3.6	5.3	0.00	0.08	1.8	0.00	21	7.6	8.0	0.22	0.00	0.05	0.18			
po equiva	음: - * (고)		5.3	3.5	8.2 0.23	24 0.68	8.9	6.4	0.60	3.5	23	0.63	0.70	2.60	27.0	27 0.76		-	
its in	Sul - fote (SO ₄)	·	6.7 0.14	3.8	29 0.61	45.0	6.7	5.3	16	3.8	17 0.37	8.6 0.18	0.37	0.00	7.2	28 0.58			
constituents	Bicar- banate (HCO ₃)	(contd.	212 3.48	313 5.13	301	298 1.88	3.75	302	3.88	183 3.00	322 5.28	198 3.25	270	3.63	2.80	3.38			
Mineral co	Carbon- ofe (CO ₃)		00.00	00.00	00.00	0.0	00.00	00.00	00.00	00.00	00.00	00.00	00.00	0.00	00.00	3.3			
Min	Potos-O-C(X)	TY (5	0.0	0.0	0.03	1.2	0.5	0.3	0.02	0.3	0.0	0.0	0.02	0.02	0.0	0.8			
	Sodium (No)	CLENN COUNTY (5-21.02)	13	32	2.30	57 2.47	18 0.80	19 0.83	18 0.80	1 ¹ 4 0.60	35	22 0.95	1.00	103	30	23			
	Mogne- eium (Mg)		16 1.31	2.35	22 1-75	22 1.79	1.8	2.00	19	1.33	1.55	13	20	9.1	1.10	22 1.84			
	Calcium (Ca)		37.	29	33	2.06	37	2.32	2.30	32 1.58	3.50	45	60 2.98	17 0.87	26 1.28	7.58 2.28			
	Ę		7.9	8.2	8.0	8.1	8.2	8.	8.0	8.1	8.0	7.8	8.0	8.2	8.0	8.			
Specific			290	7000	7450	200	320	390	370	280	1480	380	1450	530	310	455			
	Ten en en		70	89	70	70	89	68	79	47	89	89	70	42	77	2			
	Sompled *ampled		7-11-62	7-11-62	7-11-62	7-11-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-9-62			
State well	ather number	MDBCM	19N/zw-6G1	-23NI	19N/3W-9J1	-18F1	20N/2W-11Q1	-1391	20M/3W-2D1	20N/4W-2Q1	21N/ZW-2D1	-1501	21N/3W-2Q1	-14F1	-2003	22N/IW-29CI.			
	Owner and use		A. Walton domestic	C. Calvert domestic	Alta California Dairy domestic and industrial	Caccon Brothers domestic	A. Quinn domestic	H. Perry domestic	F. Reiman irrigation	L. Berens domestic	J. Tohomas irrigation	I. Finch irrigation	Hemilton domestic	B. Purviance irrigation	E. Slatin irrigation	Baker and McGowan irrigation			

o. Determined by addition of constituente.

b. Grovimatric determination.

c. Analysie by Gological Survey, Quolity of Water Branch (U.S.G.S.), Pacific Chemical Cansultante (P.C.C.),

forminal fasting Laboratory (T.T.L.), Usid. Agriculture Generalization (U.S.A.C.) or cleate Department of Water Resources (D.W.R.) as indicated.

Terminal fasting Laboratory (T.T.L.), Usid. Agriculture Generalization (U.S.A.C.) or cleated beganding the as 500 except as shown

d. Iron (Fe), Aluminum (All, Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 500 except as shown

-356-

	Anolyzed by c		USAC	USAC	USAC	USAC	USAC	USAC
988	N CO 3		59	ħ2	16	9	77	6
Hordness	Totol mgg		214	150	112	165	208	222
à	E B E		23	23	18	23	18	15
To to to	solids solids mad ui		316	214	564	214	308	306
	tuents							
	Silica (SiO ₂) Other constituents ^d							
	sio ₂) orh	-	50	15	91	16	176	22
اء	Baran (8)		0.1	0.2	0.2	0.2	0.3	2.0
e III	Flua-B ride (F)		0.1	0.0	0.0	0.0	0.01	0.01
parts per millian valents per mill	rrote (NO ₃)		33 0.54	0.12	0.12	0.10	15 0. 0.25 0.	0.10
parts per millian equivalents per millian								
•	8 <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u> <u>6</u>		37	25 0.62	20	20 0.55	0.62	0.63
nts in	Sul - fate (SO ₄)		36	27	20	13	16	16
canstifuents	Bicor- banate (HCO ₃)	(contd.)	3.10	2.52	3.72	3.18	3.68	259
Minerol Co	Corbon- ate (CO ₃)	20.12	0.0	0.00	5.18	00.00	0.00	8.0
	Poros- sium (K)	TY (5-	0.0	0.0	0.0	0.0	0.02	0.0
	Sadium (Na)	GLEWN COUNTY (5-21.02)	29 1.26	0.90	21	20	22 0.93	18
	Mogne- sium (Mg)		1.97	1.32	22	1.23	1.36	2.18
	Calcium M		2.31	34 10	2.44	1,1 2.06	2.79	2.25
	£		8.0	8.2	1 8 2 1 8	4 0 8	8.3	7-10
Specific conduct-	ance (micra- mhas at 25°C)		522	378	465	350	1,58	044
<u> </u>	Temp in • F		10	29	7.1	89	89	ħ9
	Dote sampled		29-6-2	7-9-62	7-9-62	7-11-62	29-6-2	7-9-62
-			7-	7-	7-	7-	7	-
10 3	number and other number	MDB&M	-341	-26Bl	-461	-2201	-25B1	-10B1
State well	number and ather numbe	W.	SZN/ZW-3A1		SZN/3W-4GI			SZN/4W-1OB1
				nc.				
	Owner and		2,0	Mills Orchard Inc. Irrigation	ight	Orland	as	Graves Cemetery irrigation
	Ö		C. Nickel	lls Orchardirigation	I. C. Wright domestic	City of Orland municipal	J. Freitas irrigation	raves Cemetarrigation
			ပ်	Mi	н	Ci	ب	Gr

Determined by addition of constituents.
 Growimetric determination.
 Analyse by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

 Analyse by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
 Analyse by Loborotory (T.T.L.), U.S. Ay Pain Library Consultants. (U.S.G.S.), Pacific Can, reported here of 800 except as shown
 A Iron (Fe), Aluminum (AI), Arsenic (A2), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here of 800 except as shown

QUALITY OF GROUND WATERS IN CALIFORNIA ANALYSES OF GROUND WATER

		Analyzed by c		USAC	USAC	USAC	USAC	DWR	USAC	DWR	USAC	USAC	USAC	USAC	DWR	USAC	USAC
	si 91			30	270	0	0	81	62	0	0	Ħ	57	177	0	0	0
	Hordn	Tatal N.C.		413	435	165	133	252	277	123	139	236	250	377	50	146	228
	į	D E		15	98	0η	37	75	20	59	96	39	52	14	82	30	37
	Tatai	dis- solved cofids in ppm		550	069	332	272	735	622	41.5	362	984	580	956	354	258	412
		Silica Other constituents ^d (SiO ₂)													Fe (total) 0.03 Al 0.01 As 0.01		
				71	171	73	£4	75	25	18	₹7	53	81	8	37	83	175
	High	Boron (B)		0.2	9.0	0.5	0.3	1.6	2.6	1.5	1.6	0.8	2.3	10.0	0.53	1.2	200
	r million per million	Flug- ride (F)		0.0	0.0	0.01	0.1	0.3	0.01	0.1	0.01	0.0	0.1	0.0	0.00	0.0	0.0
	21	NI- trate (NO ₃)		26	5.0	0.0	2.0	0.0	9.0	0.05	0.30	9.0	3.0	0.00	0.00	0.10	0.02
	parts pagaivalents	음 (CI)		33	296 8.35	1.35	27.0	240	241 6.80	7 ⁴ 2.08	2.15	205	188	8528	1.38	18 0.50	0.93
	ë	Sul - fate (SO ₄)		24 0.51	5.3	5.3	5.8	2 ^t	10	15	0.21	5.8	2tt 0.149	3.34	0.05	13 0.41	39 0.83
	canstituents	Bicar- bonate (HCO ₃)	1.04)	1.67 7.65	3.30	2h9 1 08	3.53	3.43	241 3.95	3.56	3.05	274	271	281	250	3.28	5.20
305	Mineral co	Co 3)	COUNTY (5-31.04)	000	00.00	3 0.10	0.00	0.00	000	0.00	0.00	0.00	0.00	02.0	0.20	0.00	0.20
2	2	Potas-Corbon- eium ate (K) (CO ₃)	1	1.3	1.6	1.8	2.9	2.0	1.8	2.0	0.03	1.2	1.5	2.2	1.0	0.03	0.01
		Sadium (Na)	COLUSA	34	<u>72</u> 3.13	2.25	37	138 6.00	131 5.70	84 3.65	82 3.55	3.05	123 5.35	178 7.75	108	29	61 2.65
		Magne- eium (Mg)		56.4.62	54	1.62	1.34	32 2 62	34 2.84	18	18	3.23	33	60 4.93	5.5	12 1.03	1.59
		Colcium (Ca)		73	86 4.28	3 ⁴ 1.68	26	48	54 2.70	20	1.24	30	2.30	3.62	11 0.55	38 1.89	25.96
		Ŧ		8.1	8.1	⊗	8.1	7.1	ο 0	6.8	8.2	8.1	8.2	80	8.5	8.2	ε. ε.
	Specific	ance (mlcra- mhos at 25°C)		800	1,120	500	395	1,100	1,020	695	595	710	096	1,500	260	365	009
		Temp in • F				69	72					72	73		99	29	
		Sampled		7-23-62	8-2-62	7-23-62	7-23-62	4-9-62	7-23-62	4-29-62	7-23-62	7-23-62	7-23-62	7-23-62	7-23-62	7-23-62	7-23-62
	State well	number and ather number	MDB&M	13N/1E-22H1	13N/1W-8B1	13N/1W-15N1	-3501	13N/2W-10G1		-1041		-2261	-29R1	14N/IW-2Dl	-12A1	14N/3W-12L1	15N/2W-32R1
		Owner and		J. Miller domestic	L. Traynham irrigation	W. West irrigation and stock	M. V. Doherty	Grant irrigation		A. Olivetti irrigation		H. Charter irrigation		Stapp and Co. domestic	S. Morse Irrigation	E. Arambell irrigation	B. Myers domestic and stock

6. Determined by addition of constituents.
b. Growinstic determination.
c. Analysis by U.S. Geological Survey, Ovality of Woter Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Family is a U.S. Geological Survey, Ovality of Woter Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
Farming Itashing Loborotory (T.T.L.), U.S.A. Agris utture C. mattenios (U.S.A.C.), or classe Department (S.M.R.) as indicated.
d. Iran (Fa), Aluminum (Al), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 500 except as shown

	Analyzed by c	T		ų.	JC .	J.	œ	o _f C	es .	24
		_		USAC	USAC	USAC	DWR	USAC	DWR	USAG
dness	ŏ L	Ed		19	0	0	0	0	•	25
		E dd		218	198	116	117	180	254	416
	P Sod	E		33	39	37	27 1	1 31	25 1	
P	eolids			384	350	210	237	587	367	525
	Silico Other constituents ^d						Fe (total) 0.02 Al 0.11 As 0.01 Pb 0.01 Mn 0.06		Fe (total) 0.02 Al 0.06 As 0.01 Pb 0.01	
				81	77	81	퓑	81	92	H .
Tion	Boron (B)			0.1	0.1	0.1	0.18	0.1	0.0	4.0
millia	Fluo-	<u>e</u>		0.0	0.02	0.1	0.00	0.0	0.00	୍ଜାତ
parts per millian	NI- trote	(NO ₃)		3.6	3.6	0.0	0.00	0.0	0.00	0.03
parts per millian	Oho-			33	70 1.98	7.1	14 0.39	19 0.53	19 0.54	26.7.3 07.3
nts in	Sul - fore		(,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	177	20	6.2	0.0	4.3	0.52	00.03 00.03
Mineral constituents	Bicor- banofe	(HCO ₃)) (contd.)	3.98	255	3.50	3.59	289	323	618. 83.5
nerol c	Potas-Carbon-	(00)	(10.12-	00.00	00.0	00.00	00.00	00.00	00.0	000
ž	Potas- sium	(X)) XIA	1.4	0.0	1.5	1.5	1.1	2.6	0.03
	Sodium	(ON)	COLUSA COUNTY (2.17	2.55	$\frac{31}{1.35}$	38	37	33	<u>621.</u>
	Magne	(Mg)		2.37	22	8.6	1.03	17.40	34 2.77	88 88 68 68 68 68 68 68 68 68 68 68 68 6
	Calcium	(0)		40	44	32	25	2.19	46 2.30	1.94
	£	5		7.8	8.0	8.0	8.3	80	φ α.	۵. «۵.
Specific	ance (micro-	0125		560	570	300	377	420	598	839
	Temp in eF			19		09	65	89	99	70
	Sompled			7-23-62	7-23-62	7-23-62	7-22-62	7-23-62	7-24-62	7-23-62
Stote wet!	number and ather number		MDB&M	16N/2W-4H1	16N/3W-9N1	17N/IW-GRI	LN02-	17N/2W-12C1	-36P2	17t/3W-33Ft.
	Owner and			Watts Brothers domestic	F. J. Ortman domestic	W. I. Jerfreys irrigation	Libby irrigation	C. Tuttle domestic	R. E. Patton irrigation	Maxwell Public Utility District municipal

o. Determined by addition of constituente.
b. Grawmatric determination.
c. Analysis by U.S. S. September of March (U.S.G.S.), Pacific Chemical Consultants (PC.C.).
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.).
Terminal Testing Laboratory (T.T.L.), U.S. A.P. Charles (M. M. C.
	D																			
	Anolyzed by c			<u> </u>	DWIN	DAR	USAC	USAC	USAC	DWR	DWR	DWR	OWR		USAC	USAC	USAC	USAC	USAC	USAC
88	o L	S E			>	8	19	0	0	0	7	69	23		0	673	0	0	0	ς.
1		Tatal		90	Ŗ,	154	178	911	91	234	137	418	195		[†] 21	833	יְּדֵ	75	411	215
-	E D	_			<u> </u>	83	6	8	8	16	13	07	7		79	92	75	78	2	33
Totol	dig- solids			<u>1</u>	₹	556	227	1500	163	319	509	541	386		704	2201	256	247	636	349
	Silica Other constituented																			
				ũ	<u> </u>	120	37	8	12	77	53	63	62		143	<u>8</u>	9	되	8	33
Hon	Boran	<u> </u>		ď	6	0.09	0.0	6.4	0.0	90.0	0.06	0.09	0.04		0.7	0.76	0.55	0.73	0.67	0.06
milllor er mil	Fluo-	- 1			18:0	0.00	0.2	0.0	0.2	0.00	0.00	0.00	0.1		0.00	0.00	0.00	0.00	0.00	0.00
parts per million equivalents per million	- N				0.02	3.8	0.13	3.6	3.0	2.0	21 0.19	72	30		0.0	0.0	0.0	0.00	0.0	0.00
Danna	- ole	(C)			0.10	24 0.68	1.8 0.05	2 th 0 6.75	6.4 0.18	5.7	3.1	2 ⁴ 0.68	0.13		268	36.38	02.1	167	213	53 1.50
is in		(80°)		(90.0	24 0.50	18 0.39	627	9.0	6.2	0.21	0.40	13 0.27		0.00	1.4	13	3.4	2.9	26
constituents	Bicor-	(HCO ₃)		23	3.88	163 2.67	19t 3.18	163 2.66	118	295	158 2.59	426 6.98	3.47		239 3.92	3.20	392	247	277	3.90
Mineral c	Carbon	(00)	COUNTY		0.0	0.00	0.00	7.2	0.0	10	0.00	0.0	0.0	COUNTL	14 0.46	0.00	20	9.0	6.0	0.30
ĭ.	Potas-	3	BUTTE	0	0.0	1.4	1.2	2.3	0.9	1.9	0.4	1.2	1.4	SUTTER	2.0	0.03	2.3	1.3	1.7	0.03
	Sodium	1	į,		0.36	20 0.87	8.3	470	11 0.47	20 0.87	9.4	%00.8	11 0.48	- जा	218 9.47	535 23.25	160	180 7.83	8.70	^{4,8} 2.10
	Magne-			č	2.05	22 1.83	1.88	4.8 0.39	12 0.95	30	1.49	57	27.25		110.01	9.40	기 왕	8.3	15	36
	Calcium	(00)		i.	1.75	25	32	39 1.93	17 0.86	2.20	<u>25</u> 1.25	3.69	33		31	145	26	16 0.82	22 1.09	1.30
	Ŧ			t	7.9	8.2	8.2	8.5	8.1	8.5	8.1	8.2	8.3		8.5	7.7	8.6	4.6	8.5	8.5
Specific	ance (micra-	at 25°C		1	377	385	370	2250	210	787	286	823	804		1250	1,000	860	920	1100	590
	Temp in oF				69	59.	61	77		2		63	72							
	Date sampled				8-14-62	8-23-62	8-9-62	9-11-65	10-22-62	8-14-62	7-14-62	9-1-62	8-14-62		6-12-62	6-21-62	6-12-62	ट9 - टा-9	6-12-62	6-13-62
State well	number and ather number		- Mark	Proceed and the second	17N/2E-201	17N/4E-20P	18N/3E-16P2	18N/4E-28M	19N/2E-16R1	21N/14-2691	21N/2E-30C1	22N/1E-9M1	23N/1W-9L1	MDB&M	12N/2E-11N1	נפיזני-	-1681	-2341	-26A1	13N/3E-10M2
	Owner and				J. C. Davis Irr.	L. O. Stresser Irr.	Butte Farms Irr.	West Coast Orchard Irr.	Philip Rose Dom.	Clyde Sprague Dom.	S. Yakich Dom. & Irr.	Sid Hopkins Dom.	M. K. Barnes Dom. & Irr.		Garner Dom.	T. Honning Dom.	L. A. Wright Dom.	D. Haum Dom.	D. E. Mullen	T. Fields Dom.

Determined by addition of constituente.
 Growimstric determination.
 Growimstric determination.
 Analysis by U.S. Sealogleci Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultante (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.
 G. Iron (Fe), Aluminum (Al), Arenic (As), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reparted here as \(\frac{\alpha \circ}{\alpha \circ}\) escept as shown

	9		3	Specific				2	linerol	Minerol constituents	at ri	oviupe	ports per million aquivolents per million	million er milli	50		Totol		Hordn		
Owner and	nymber ond other number	Dote	Te i	conduct- once (micro-	£	Calcium Mogne -	Sodium	Potos-	Corbon	Bicor- bonofe	Sul - fote		1 Prote	Fluo- ride-	5-	Silico Other constituented	eolids solids	E SO E			Anolyzed by c
			8	25,0		JM)			~ 1	(HCO ₃)			(NO ₃)			2			Edd	mod	T
	MDB&M						SU	SULTER COU	COUNTY (CON'T.)	N.T.)											
										3		2).				۶	c d	77			040
E. Silva Irr.	13N/3E-11 Q 3	6-8-62	w -	870 8	8.4 30	118 52 1.46	5 5.45	0.04	0.16	3.59	3.4	163 4.58	000	100	0	 &	20	8	167		USAC
Boccardo Ranch Irr.	-1301	29-8-9	-	425 8	8.2 1.8 0.88	7.4 0.61	86.	1.5	0.0	3.23	0.10	24 0.67	0.0	0.00	12:0	28	245	63	17	0	USAC
L. Brai Ir.	-16Rl	29-02-9		1320 8	8.2 60	99 70.71	3.90	0.03	0.00	3.36	0.0	325 9.15	0.0	0.00	2.0	<u> </u>	2129	31	435	267	USAC
F. K. Silva Irr.	-23H	6-8-62		1600 8	8.0 81 4.04	04 88 7.21	1 3.47	2.5	0 0 0	159	16	411	0.0	0.2	1.0	31	789	72	562	432	USAC
D. Rouse Irr.	-24D1	6-8-62		2900	7.8 212 10.6	2 159 5 13.05	160 55 6.95	0.10	0.00	2.52	33	967 <u>27.2</u> 5	0.00	0.00	60.0	526	1637	53	1183	1057	USAC
C. M. Owen Irr.	13N/4E-21A1	6-13-62		9 00	8.1 56 2.80	80 4.4 3.56	33	1.5	0.00	3.43	196	1.8	0.9	0.00	60.00	31	897	13	318	146	USAC
J. E. Jopson Irr.	-2301	6-13-62		225 8	8.1 21 1.05	3.4	3 0.83	0.7	0.00	1:63	1:9	14 0.38	3.6	2.0	0.0	143	156	82	29	0	USAC
C. E. Nelson Irr.	13N/5E-7R3	6-26-62		265 8	8.2 46	28 1.23	3 2.10	1.1	0.00	2.93	1.20	46 1.30	8.5	0.00	2,0	89	379	37	176	53	USAC
Calif. Packing Corp.	-9R1	6-13-62		370	8.2 29	Tr 5.0	40 1.75	0.03	0.00	2.35	88 0.78	16	6.1	0.0	1.0	75	560	87	93	0	USAC
West Ranch Irr.	-33L	6-21-62		210 8	8.1 16 0.82	82 0.73	3 0.50	0.01	0.00	100	3.8	6.4	3.2	0.0	0:0	577	156	24	R R	0	USAC
S. A. McKeeban Dom.	14N/1E-2A1	6-12-62		720	8.5 60 3.02	10.1 02 4.01	1 16 0.70	0.02	15 0.50	285	37 0.76	64 1.82	0.00	0.0	0.1	43	425	6	352	る	USAC
B. Singh Irr.	14N/3E-3C2	6-12-62		1560	7.6 103	13 118 9.66	65 2.83	2.3	0.00	601 9.85	128	175 492	0.00	0.0	90.0	92	913	16	740	242	USAC
C. S. Srah Dom. & Irr.	-5A3	6-12-62		1130	8.3	82 4.09 5.41	1 75	0.03	3 0.26	1.86 7.86	2.05	76	15	0.0	0.09	252	682	25	475	69	USAC
L. Littlejohn Dom. & Irr.	-1452	29-62-9		225	7.9 16	16 0.82 0.95	5 0.40	0.9	0000	125 2.05	1.9	0.7	0.0	0.00	0:0	35	137	थ्र	68	0	USAC
J. A. Blevine Dom.	-15#1	6-13-62		9 068	8.5	2.97 65 5.36	5 36 36	1.6	10 0.34	340	1.64	80	0.00	0.00	0.03	31	529	97	417	122	USAC
S. E. Best Dom. & Irr.	-1682	6-7-62		1650	8.1 11 5.	115 102 5.76 8.40	0 3.17	0.06	0.00	358	2.09	339	0.00	0.00	60.00	25	932	9	708	414	USAC
	a de constant de c				-			-											\dashv		

Determined by addition of constituents.
 Growinstric determination.
 Growinstric determination.
 Analysis by U.S. Salogical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Issing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) on indicated.
 G. Iron (Fe), Alvenium (Al.), Arenic (As.), Copper (Cu), Lead (PD), Mangonese (Mn), Zinc (Zn), reported here as 600 except as shown.

	State well			Specific conduct-					Min	irol con	Mineral constituents	.s	parts per million equivalents per million	parts per million valents per mill	million 7			Total	ž	Hardness	un un un un un un un un un un un un un u	
Owner and	nymber and other number	Ogte sompled	Tamp in •F	ance (micra- mhos at 25°C)	Ŧ	Calcium Mc	Magne - S eium (Mg)	Sodium P (No)	Patas-Co sium (K)	Carbon E of (CO 3)	Bicar- bonate (HCO ₃)	Sul - fote (SO ₄)	유 	rrate (NO ₃)	Fluo-B ride (F)	Boran Si (B) (S	Silica Other constituents	solved solved in ppm	P S E	as Co Total PPM		Analyzed by c
	MDB&M							SULTER	COUNTY	(con	T.)											
Irr,	14N/3E-17A	9-30-62		200	8.4	36 17	1.60	36	0.10	7.8	3.31	000	1.35	0.0	0.00	0.2	O ₁	530	31	169	0	USAC
R. Mahon Irr.	-18A2	6-21-62		029	7.9	53 4	3.38	1.90	0.03	0.0	389	21 0.45	0.90	0.0	0.00	0.1	35	419	707	301	0	USAC
J. Serger Irr.	-28R1	29-62-9		1600	7.4	1114 88	86 7.09	3.30	2.7	0.00	365	14 0.29	340	0.0	0.00	0.1	32	844	8	641	342	USAC
Irr.	-33c	6-30-62		1760	7.8	7-13 8	8t 6.92	3.35	1.5	0.00	336	16	11.40	0.0	0.00	0.1	120	911	19	703	1,28	USAC
Irr.	-33н	9-30-62		1170	7.5	143 47	3.45	1.83	1.5	0.00	268	0.00	268	0.0	0.0	0.1	42	653	15	529	309	USAC
E. L. Carrothers	15N/2E-26D2	6-7-62	29	950	3°F	3.92	3.91	2.50	0.0	9.0	328	66.0	81, 2.28	386	0.1	90.0	01	609	23	392	108	USAC
A. Eager Irr.	15N/3E4c2	6-12-62		870	8.2	56 7 2.82 6	74	1.30	1.7	0.0	413	87 1.83	25 0.62	51.	0.00	0.1	14.3	568	ī.	777	901	USAC
R. Paillex Irr.	-26MI	6-20-62		415	7.5	27 1	11 0.92	47	2.8 0.07	0.00	209	2.4	27 0.75	0.00	0.00	0.29	37	252	24	113	0	USAC
W. A. Glentzer Irr.	-2967	6-20-62		750	7.7	106 2 5.30 1	23	33	1.5	0.0	430	25	16 0.45	26 0.41	0.00	0.03	145	284	16	362	6	USAC
	MDB&M							, rI	YUBA GO	COUNTY												
City of Wheatland Mun.	13N/5E-4B	8-28-62		1025	8.2	3.12 0	0.79	143	1.8	0.0	1.97	19	266	0.9	0.0	0.5	55	617	19	195	66	USAC
E. Anthony Dom.	14N/4E-7M	8-9-62		200	7.9	52 2.60 1	21	26	0.03	0.00	259	27 0.57	20 0.55	0.00	0.2	0:0	52	327	12	215	m	USAC
F. Hofman Irr.	-22H1	8-16-62		240	89	0.83	7.8	22 0.95	0.03	0.00	103	4.3	19	2.2	0.00	0.0	55	178	39	47	0	USAC
Beeso Brothers Irr.	14N/5E-15C1	8-16-62		230	8.1	20.1	6.3	09.00	0.0	0.00	92 1.50	12 0.25	0.30	3.0	0.00	0.0	51	163	88	77	2	USAC
W. M. Holmes	-1601	8-16-62		201	8.2	0.75	5.2	22 0.95	0.0	0.0	95 1.55	6.7	0.34	1.3	0.2	0:0	9	171	117	59	0	USAC
S. R. Johnson Irr.	-22MI	8-16-62		410	8.2	32 5	55	1:90	0.03	0.00	1.73	8.2	1.93	1.3	0.2	0.1	65	27.1	841	103	17	UEAC
E. Garcia Irr.	-301	89-91-6		390	9.2	38 1.40	7.8	39	1.3	0.0	103 2.98	1.9	68	0.00	0.0	0.1	61	202	54	102	18	USAC
a. Determined by addition of constituents.	of constituents.																		1			

a. Determined by addition of constituents.
 b. Grovinatric determination.
 b. Grovinatric determination.
 c. Analysis by U.S. Geological Survey, Quality of Woter Branch (U.S.G.S.), Pacific Chemical Consultante (P.C.C.),
Terminal festing Laboratary (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 d. Iron (Fa), Atuminum (Al), Areanic (Aa), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as any shown.

	Stote well		S G	Specific				*	dinerol	Mineral constituents	nts in	Minbe	equivalents per million	or mill	uo		Totol		Hardne		
	number and other number	Sampled	Temp in •F	(micro- mhos at 25°C)	H 20	Calcium Sium (Co) (Mg)	Sadium (No)	Potos-	Corbon- ote (CO ₃)	Bicor- bonote (HCO ₃)	Sul- fate (SO ₄)	Cho- ride (CI)	Ni- trote (NO ₃)	Fluo- ride (F)	Boron Sil (B) (S	Silica (SiO ₂) Other constituents ^d	solved solids in ppm	in de la contraction de la con	os CoCO ₃ Totol N.C.		Anolyzed by c
							x	YUBA COUNTY	TY (CON'E.)	- El											
Linda Co. Water Dist.	15N/4E-20J	8-23-62		360	7.9 30	30 19	5 0.60	1.0	3 0.0	182 2.98	25 0.53	0.05	0.0	0.0	0:0	39	250	16	153	n 77	USAC
Linda Co. Water Dist.	-31A	8-23-62		245	7.8 25	25 1.27 0.84	12 0.50	0.02	0.00	2.39	1.9	3.5	0.00	0.0	0.0	37_	163	19	901	•	USAC
Beale Air Force Base Dom.	15N/5E-19N1	8-16-62		180. 8	8.1	12 0.59 5.6	7 17	1.3	3 0.00	76	2.9	8.2	7.4	0.01	0.0	53	146	1,1	53	, ,	USAC
La Finca Orchards Co.	16N/3E-11N1	9-18-62		800	8.2	54 45 2.68 3.72	33 1.43	2.3	0.0	3.25	18 0.39	149	0.0	0.0	1.0	67	844	118	320	158 u	USAC
	-11R2	8-16-62		370 8	8.2 34	$\frac{34}{1.68} = \frac{19}{1.55}$	5 0.65	5 2.5	0.0	3.40	0.21	4.6	3.5	0.0	0:0	82	529	17	162	•	USAC
	-23B	10-3-62		230 8	8.2 17	17 0.86 0.84	T 12 0.50	2.3	0.0	124 2.03	5.0	4.7	0.0	0.00	0.1	33	137	22	85	•	USAC
La Finca Orchards Co.	-2601	8-16-62		898	8.4 32	32 1.61 5.6 0.47	18 7 0.80	2.3	0.00	136	9.1 0.19	11 0.31	0.00	0.0	0.1	26	502	27	104	0	USAC
	16N/4E-901	8-10-62		500	7.9	14 0.71 0.52	16 0.70	0.05	0.00	93	7.2	8.7	0.00	0.0	0.1	गग	144	35	29	0	USAC
	17N/3E-26C	8-10-62		550	8.5	147 36 2.36 3.00	2th 0 1.05	5 0.03	18 0.60	271	24 0.50	1 ⁴ 0.40	19 0.31	0.0	0.0	50	367	16	568	15	USAC
	MDB&M						El	PLACER COUNTY	UNITY										_		
	10N/5E-6D1	8-3-62		320	8.5 24	27 09:00 17:00 17:00	0 1.40	20.02	02.0	141 2.32	3.00	18	4.5	0.01	5.0	\$1	213	643	8	•	USAC
	10N/6E-5C	8-3-62		180	7.9	0.54 0.64	4 0.65	5 0.02	0.00	1.68	0.04	0°.30	2.7	0.02	_ <u>'</u> _ 잉	09	153	35	- 65	0	USAC
	_10D	8-3-62		710	8.2 I.	32 18 1.60 1.52	2 28	0.09	0000	3.12	0.20	0.80	2.7	0.00	이	19	283	27 1	156	0	USAC
	11N/5E-6A1	8-3-62		592	8.1	0.87	20 0.87	7 0.03	0000	124	3.4	0.36	6.4	0.01	170	74	180	32	8	0	USAC
	-18н	8-3-62		285	1.8	0.93 6.3	2 1.30	0.00	0000	2.05	0.11	21 0.57	900	0.01	5.0	24	197	3	22	0	USAC

Optermined by addition of constituents.
 Growmetrie determination.
 Analysis by U.S. Sediaglical Survey, Quality of Water Branch (U.S.G.S.), Pacific Chamical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 6000 except as shown

	· 	Anolyzed by c		USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC
	ness	as CoCO ₃ Totol N.C.		0	0	0	٥	0	0	0	9	118	ম	0	0	0
	Horo	Totol PPm		85	19	92	96	61	14	57	120	91	113	23	114	711
Ì	å	S of E		77	62	34	35	41	62	9	61	61	25	65	25	8
	Totol	epilos pevios pevios pevios pevios		231	250	207	216	166	181	178	410	322	506	120	170	188
		Silco Other constituents														
		Silico (SiO ₂)		8	65	65	99	8	64	62	75	8	20	87	티	ଷ୍ଟା
	lon	Boren (B)		0.3	0.8	0.1	0.1	0.2	0.3	0.1	0.1	0.3	0.1	0.0	0.0	0.2
	millon er mil	Fluo- pir (F)		0.2	0.2	0.2	0.2	0.2	0.00	0.00	0.2	0.2	0.00	0.02	0.00	0.01
	parts per million equivolents per million	ni- trafe (NO ₃)		21	8.1	3.0	0.06	0.8	0.0	0.16	17	2.7	5.0	4.7	0.00	0.03
	oviupa	은 (IC)		25 0.70	46 1.29	14	10	6.4	0.30	11 0.30	89 2.50	76 2.15	28 0.79	3.9	15	हाः य
	ri i	Sul - fote (SO ₄)	~	4.8 0.10	11 0.24	$\frac{7.7}{0.16}$	5.8	7.2	1.4	1.9	55	42 0.89	$\frac{7.7}{0.16}$	7.2	8.6	20 0.42
	constituents	Bicor- bonote (HCO ₃)	(CON'T.	116	99	128 2.10	152 2.50	100	133 2.18	1.63	139 2.28	1.45	123	57 0.93	2.32	2.29
305	Minerol co	Carbon- ate (CO ₃)	COUNTY	0.00	0.00	0.0	0.0	1.8	0.0	0.0	0.0	0.00	0.00	0.0	0.0	0:00
2	Mir	Polas- eium (K)	P.ACER	2.0	0.03	1.3	0.03	0.7	0.03	0.4	0.5	0.6	0.2	0.3	0.03	0.02
		Sodium (No)	Δ1	33	48 2.10	22 0.95	24 1.05	20 0.87	37	24 1.05	3.88	66 2.87	17 0.75	20 0.87	17 0.75	20 0.87
		Magne - sium (Mg)		8.3	6.1	9.0	8.6	6.7	3.5	4.5	15	8.4	12 0.01	0.16	1.15	12 1.04
		Calcium (Co)		101	16	22	24	13	13	15	24 1.18	22 1.12	25	6.0	23	1.23
		F.		6.7	8.1	8.2	8.2	8.3	8.2	8.1	8.1	7.8	8.0	7.7	8.2	7.5
	Spacific conduct-	(micro- mhos of 25°C)		330	360	265	285	205	230	230	650	510	28	132	295	86
		Temp In °F														
		Sompled		8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62	8-3-62
	Stote well	number and other number	MDB&M	11N/5E-31A1	11N/6E-16M	-270	-3 ⁴ B	12N/5E-2B1	-30	-2301	12N/6E-16D2	13N/5E-13D	-24P1	13N/6E-6D	-160	-3301
		Owner and		M. Heinx Irr.	W. R. Fiddyment Irr.	Diamona "K" Ranch Dom. & Irr.	Sierra View Land Co. Irr.	R. Mariner Irr.	F. Bonnfleld Irr.	USAF Communications Ind.	F. W. Fullerton Dom. & Irr.	G. Blake Dom.	W. Brown Irr.	H. Porter	L. Gunther Dom. & Irr.	L. Franceschi

o. Determined by addition of constituents.

b. Grovimetric determination.

c. Analysis by U.S. Seological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),

c. Analysing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.

d. Iron (Fs.), Aluminum (Al.), Arenic (As.), Copper (Cu.), Lead (Pb.), Manganese (Mn), Zinc (Zn.), reported here as analysis.

	P			_													
	Anolyzed by c		USAC	USAC	USAC	USAC	USAC	USAC	DAR	USAC	USAC	USAC	USAC	USAC	DWR	DWR	
ss eup	as CoCO ₃ Fotal N.C.		0	0	0	0	52	0	0	0	0	103	0	64	52	17	
	بكفار		63	117	316	378	250	274	694	228	509	317	109	329	245	317	
	s cent		92	62	56	ж	72	8	647	33	56	72	72	- 23	12	28	
Toto	golved solved solved in ppm		318	353	51717	576	1074	427	1040	380	312	644	624	094	312	7/2/7	
	Silico Other constituents ^d																
			22	워	77	77	<u></u>	প্ল	A	22	17	ম	921	ଯା	52	52	
Illion	Boron (B)		6.9	177	1,2	171	57	2.5	5.6	2.5	0.1	0,2	5.0	0.9	0.10	0.74	
ports per million equivolents per million	Fluo- ride (F)		0.0	0.01	0.0	0.00	0.2	0.01	0.02	0.0	0.04	1000	0.0	0.01	0.0	0.01	
orts pe	NI- trote (NO ₃)		0.00	0.00	0.07	29	000	8.0	0.19	5.00	0.35	2.8 0.13	0.03	4.6 0.08	26 0.42	13	
Annbe	Chlo- objection		0.72	1.42	23.0	E188.	14.50	20:1	200	1.20	0.32	2.71	2.08	1.80	0.62	2.45	
nts in	Sul - fote (SO ₄)		0.58	0.51	0.52	1.03	0.00	24.0	3.25	23	17	1.03	1.76	45	3.6	4.3 0.09	
Mineral constituents	Bicor- bonote (HCO ₃)	COUNTY	3.80	256	7.08	7.27	241 3.95	5.08	8.8	327	260	261 4.28	247	349	263 4.31	366	
eral c	carbon- ate (CO ₃)	voio o	0.20	0.00	0.50	36	0.00	0.56	0.50	000	0.34	000	0.09	000	0.07	0.00	
ž	Potas- sium (K)		1.5	0.05	0.03	0.00	9.5	1.4	0.00	1.8 0.05	0.00	0.01	1:1 0.03	0.00	0.02	0.03	
	Sodium (No)		4.17	3.80	2.20	3.47	310	2.35	9,22	2.30	1.50	1.95	133 5.80	1.95	16	2.52	
	Mogne- sium (Mg)		0.58	1.64	52	59.5	1.88	3.83	6.63	34 2.82	1.97	3.39	1.26	3.26	2.11	3.29	
	Colcium (Co)		17	170	1.50	1.98	3.12	33	2.74	1.74	2.21	252	18 0.92	3.32	2.79	3.04	
	Ŧ.		8.3	8.2	8.5	8.7	8.2	8.5	8.5	8.2	8.4	8.2	8.3	7.9	8.4	8.2	
Specific	(micro- mhos at 25°C)		200	009	200	920	1880	069	1680	630	510	780	770	780	516	832	
	Ten Gen Ten		2	表	74	74	2	20	72	29	2	78	2	78		72	
	Sampled		7-11-62	7-11-62	7-10-62	7-10-62	7-11-62	7-11-62	7-9-62	7-9-62	7-12-62	7-12-62	7-12-62	7-12-62	29-6-2	7-9-62	
Stote well	number ond other number	MDB&M	6N/3E-25A1	-25A2	7N/3E-9J1	-31M	7N/4E-33G1	8N/1E-9E1	L1N/2E-22A1	-320	17/2W-35J1	106-WE/N11	-1052	-26И3	12N/1W-15N2	12N/2W-2A1	
	Owner and		Hollenbeck Dom.	T. Sakata Dom.	Glide Ranch Dom. & Stock	E. Uhul Dom.	Anderson & Seebeck Dom.	B. Nobel Irr.	D. Miller Dom.	W. M. Kimmelshue Irr.	O. Durst Dom.	R. Bloom Dom. & Irr.	N. D. Everett Irr.	G. Knelley Irr.	So. Pacific RR Dom.	M. Dobkins Dom.	

Determined by addition of consituents.
 Growmetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.), Terminal Termi

	State well			Spacific conduct-					Mineral	constituents	tuents in		parts per million equivalents per million	parts per millon valents per mill	llan million	١.,		Tatal		Hardn	55	
Owner and	other number	Date	Tamp in •F	ance (micro-	Ĭ	Calcium	Magne - Sod	Sodium Potos-	os - Carbon-	on- Bic			-iN -ol	Fluo-	Boron		Silica Other constituented	pevios colids	e o	as CoCO3	$\overline{}$	Analyzed by c
				at 25°C)		(00)	-	Ŧ	\rightarrow	(CO ₃) (HCO ₃)		(30,)			1		2)			Tata P P P	D Edd	
	NDB&M							XOLO COL	COUNTY (C	(con T.)												
W. Hodge Irr.	8N/1W-13G1	7-12-62	70	670 8	8.3 Elu	38 36 36 1.90	97 2.35	0.2	2 5.4 00 0.18	t 289 IB 1.73	14.3 3 0.91	1 43 1 1.21	6.4 0.10	0.0	0.4	34		402	33	- t42	0	USAC
Willowbank Corp. Dom. & Irr.	8N/2E-13F2	7-10-62	20	640 8	8.3	25 47	15 13 15 13 15 15 15 15 15 15 15 15 15 15 15 15 15	0.8	8 6.0 02 0.20	20 371 20 6.08	32 32	7 0.53	3 0.06	6 0.0	0.5	<u>۾</u>		394	562	560	0	USAC
B. K. Howatt Irr.	8N/3E-5P1	7-10-62	88	750 8	8.6	23 44	3.59 80	1.9	92 28 05 0.92	315	20.1 2	45 1.25	5 0.03	0.10	1:0	35		1,68	41	253	0	USAC
B. K. Howatt Irr.	-501	7-10-62	69	720 8	8.5 Z	24 44 1.22 3.5	3.56 3.25	1.0	03 0.50	310	47 9 0.98	1.31 1.31	0.0	0.00	0.8	8		1438	0†	239	0	USAC
W. C. Hamel Irr.	-1901	7-10-62	99	980	8.2 4	43 2.17 6.	63 6.82 67 5.90	0.03	0.00	576 30 9.45	5 59	45 1.25	5 0.20	0.2	0.5	<u></u>		627	72	1450	0	USAC
Wilber Dom.	-19M2	7-10-62	72	1570 8.		250 33 12.50 2.	33 107	0.03	03 34	14.93 14.93	93 2.46	6 0.05	5 5 0.93	3 0.01	1:4	22		1083	72	762	0	USAC
Rice Growers Assoc. Ind.	8N/4E-3B1	29-11-2	80	770 8	8.2	53 22 2.66 1.77	77 69	0.13 0.13	0.00	0 00 2.97	7 0.00	162	0.00	0.2	0.3	33		439	0†	222	73	USAC
Dumars Irr.	9N/1E-12A1	7-16-62	70	720 8	8.5	26 44 1.29 3.64	64 64	0.0	0.46	80°± 21 6†72 2±	3 0.85	73 73 2.05	5 0.13	3 0.01	1.0	<u>R</u>		422	36	745	50	USAC
Dumars Dom.	1H91-W1/N6	7-12-62	82	9006	210	53 28 2.64 2.	28 2.32 4.50	0.3	9.3	31 4.80	0 75.1	98 17 2.75	0.00	0.07	9.0	리	1	532	84	248	0	USAC
Chapman Brothers Irr.	-3011	7-17-62	70	770 8	8.1	59 32 2.93 2.	32 66 2.60 2.87	1.0 57 0.03	0.00	00 259	54 0 1.12	61 1.72	19 0.30	0.2	0.7	<u>श्</u>		482	34	277	7	UEAC
T. Barrios Irr.	9N/2E-4L1	7-10-62	88	640 8	8.2	38 35	35 49 2.13	13 0.04	0:00	00 5.35	5 22 5	52:1 2:13	3.9	6 0.01	1.6	61		375	33	0 ħZ	0	USAC
R. Stadtmueller Irr.	-1001	7-10-62	69	1220 8	6.0	56 81 2.78 6.	81 105 6.74 4.55	55 0.03	0.00	00 658	78 0.93	89 2.50	0.29	9 0.0	3.6	2		740	32	94.76	0	USAC
E. Chiles Dom. & Irr.	-3501	7-10-62		1300 8	8.7	$\frac{25}{1.26} = \frac{86}{7}$	86 7.08 6.83	0.08	8 45 02 1.50	50 9.55	5 50	3.20	0.0	0.2	0.5	୍ଥା		785	4.5	714	0	USAC
Woodland Farms Irr.	9N/3E-702	7-10-62	11	700 8	8.3	30 28	2.26 87 3.80	30 0.03	3 3.0	1351 00 5.75	42 5 0.89	28 19 0.78	0.00	0.0	0.5	원 -		114	20	188	0	USAC
Raikes Dom.	9N/4E-33L1	7-11-62	75	1670 8	8.2 8	82 35 4.12 2.	35 235 2.94 10.	235 6.5 10.20 0.17	5 0.00	00 241 00 3.95	5 1.00	π 443 12.50	50 0.00	0.01	7:17	의		1009	82	353	155	USAC
Scarlett & Owens Irr.	10N/1E-1C1	7-9-62	76	834 8	4.8	63 3.14 3.8	3.99 50.13	11.8 0.05	8 05 05 05 05 05		1 0.58	g 61 1.72	2 0.22	0.0	67	ا _ك ة		1,93	23	357	22	DWR
Determined by addition of constituents	of constituents.							+	-			-	-	-	_	4			\dashv	1	1	

Determined by addition of constituents.
 Grovimetric determination.
 Analysis by U.S. Geological Survey, Quality of Water Broach (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) an State Department of Water Resources (D.W.R.) as indicated.
 Iraminal Testing Laboratory (T.T.L.) an State Department of Water Resources (D.W.R.) as indicated.
 Iran (Fe), Alvenium (AI), Arsenic (Ae), Copper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reparted here as Good except as shown

Per Hardness	S E	ium Totol N.C.	100 N.C. ppm ppm 239 307 0	100 Por Por Por Por Por Por Por Por Por Por	39 307 0 6 3 202 0 0	39 307 0 6 8 9 34 3 93	39 307 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	190	199 34.3 93 14.4 605 30 2.58 1.4 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.13 0.0 60.5 3.1 2.1 2.1 3.1 3.1 2.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3.1 3	100 Por Por Por Por Por Por Por Por Por Por	190	100 100	100 Port	192 6 6 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	190	19	19	139 1040 605 149 149 149 149 149 149 149 149 149 149
dis centifuented colids fum in pom			551 39				0	C	0	0	0	0	0 d	О П	0 d	0	0	0
			29 551															हा का
		0.2 0.9		0.0 1.3	0.2 1.3 0.01 0.3 0.02	0.02 0.04 0.02 0.02 0.03 0.00 0.00 0.00	0.02 0.01 0.00 0.00 0.00 0.00 0.01 0.01	0.02 0.03 0.03 0.03 0.03 0.03 0.03 0.03	0.02 1.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.02 0.04 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.02 0.04 0.3 0.00 0.00 0.00 0.00 0.00 0.00	0.02 1.3 0.00 0.00 0.00 0.00 0.00 0.00 0.00	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0.02 0.03 0.04 0.05 0.05 0.05 0.05 0.05 0.05 0.05
52 12 1.44 0.19	52 12 1.44 0.19		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	17 6.0	0.17	194 5.44 5.0	194 5.0 5.44 6.08 6.468 2.2 13.20 6.04	194 5.0 5,44 0.10 194 5.0 1,68 2.2 13,79 0.04 62 8.8	0.47 0.10 194 0.00 5.44 0.00 13.20 0.04 62 8.8 1.75 0.14 4.5 0.05	0.17 194 5.04 194 15.0 15.0 15.0 15.0 15.0 15.0 15.0 17	194 5.0 5.44 0.15 194 0.08 148 2.2 13.70 0.04 62 8.8 1.77 0.14 45 0.15 1.29 0.5 1.20 0.5 1.20 0.15 1.20 0.15 1.20 0.15 1.20 0.15 1.20 0.15 1.20 0.15	194 5.08 194 5.08 113.78 0.03 113.78 0.03 11.75 0.05 11.25 0.05 12.2 0.05 13.48 0.15 14.5 0.05 14.5 0	194 5.08 1,468 2.2 1,375 0.04 1,57 0.01 1,129 0.05 1,129 0.01 1,29 0.01 1,29 0.01 1,29 0.01 1,29 0.01 1,29 0.01 2,45 0.02 1,47 0.01 2,48 0.02 1,48 0.02	0.17 1.94 1.68 1.68 1.75 1.75 1.75 1.25 1.25 1.27	0.17 0.10 1944 0.010 1948 2.2 13.20 8.8 13.20 1.25 0.05 0.05 0.	0.17 194, 5.08 1,68 1,68 1,68 1,75 0.05 1,75 0.17 1,25 0.17 1,25 0.17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,25 0,17 1,27 0,17 1,27 0,17 1,27 0,17 1,27 0,17 1,27 1,27 0,17 1,27 1	0.17 194 186 186 187 187 187 187 187 187 187 187	0.17 194 186 186 187 187 187 187 187 187 187 187
0.1 13 392 0.00 0.42 0.43	13 392 0.42 6.43 6.0 215	6.0 215	0.20 3.51	0.3 8.4 285 15 0.01 0.28 4.66 0.33	r h	0.18 4.82	0.18 4.82 0.00 531 0.00 8.70	0.0 531 0.0 531 0.0 8.70 0.0 297 0.0 1.87	0.0 231 0.00 6.70 0.00 297 0.00 297 0.00 273 0.00 273	0.0 531 0.00 6.70 0.00 1.87 0.00 297 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27 0.00 27 0.00 1.18	0.00 531 0.00 6.70 0.00 1.87 0.00 297 0.00 27 0.00 27	0.00 297 0.00 2.70 0.00 2.70 0.00 2.70 0.00 2.73 0.00 2.73 0.73 0.73 0.73 0.73 0.73 0.73 0.73 0	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0 0 0.0 0.0	0.00 297 0.00 297 0.00 297 0.00 297 0.00 297 0.00 297 0.00 297 0.00 293 0.00 0.00 293 0.00 0.00 293 0.00 0.00 0.00 293 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	0.0 0 0.0 0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.00 297 0.10 297 0.00 277 0.00 2
XOLO 3.87 3.87 1.95	89 3.87 45 1.95	45 1.95		24 44 0.3 2.02 1.90 0.01	6 155 1.4 .42 6.75 0.04	224	9.74	9.74 51 2.22	2.22 1.28 1.38	25.22 2.22 1.90 1.90	9.74 5.22 2.22 1.90 1.90 1.70 9.8 4.25	9.74 2.72 1.14 1.190 1.190 1.190 1.190 1.190 1.190 1.190 1.190 1.190 1.190	9.74 2.22 1.4 1.90 1.90 1.43 6.20 6.20 270	9.74 2.12 2.12 1.1.70 1.1.70 1.4.3 6.12 1.1.75 1.1.75 1.1.75 1.1.75 1.1.75	9.74 2.12 2.12 1.19 1.19 1.19 1.13 6.13 6.15 1.14 6.15 1.14 6.15 1.14 6.15	9:72 2:22 2:22 1:30	9.71 2.12 2.12 2.13 2.13 2.13 5.13 5.13 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10 6.10	9.71 2.12 2.12 3.13 3.14 5.15 5.15 6.15
1.28	1,28 1,28 1,28	26 1.28	2	2.01	1.3 29 66 5.42	7.7 169 150 8.43 12.35		33 42 1.65 3.50	33 1.65 43 2.13	33 1.65 43 2.13 36 1.82	33 1.65 1.65 2.13 36 1.82 82 4.09	33 1.65 1.65 2.13 3.6 1.82 1.82 1.82 0.83	33 1.65 2.13 36 3.6 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03	33 1.65 1.65 1.38 1.88 1.09 1.09 1.09 1.24 1.24 1.24 1.09	11.65 1.1.65 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3 1.3	11.65 1.1.65 1.1.3 1.1.32 1.1.32 1.1.32 1.1.32 1.1.32 1.1.33 1.1.33 1.3.55 1.3.	11.65 1.1.65 1.1.32 1.1.32 1.1.32 1.1.24 1.1.35 1.1.35 1.1.35 1.1.35 1.1.35 1.1.35	33 1.65 1.65 1.33 3.82 1.84 1.82 1.84 1.82 1.84 1.85 1.85 1.35 1.35 1.35 1.35 1.35
70 880 8.5	880	550		69 540 8.4	71 1300 8.3	7.7 2710 7.7		70 704 8.2	104	095	560 70 ⁴ 1080	70 ⁴ , 560 560 1780 1780	704 560 1080 1720	704 560 1,280 1780 1720	704 560 1080 1780 1150	704 560 11080 1720 1150 500	704 560 1080 1780 1150 500 869	704 560 11080 1720 1150 500 500 518
7-11-62		_	_	7-12-62 69	7-12-62 7	7-9-62		7-9-62									0, 0, 0, 0, 0, 0, 0	
NOBEM 10W/1E-1561	10N/1E-15G1		-26A1	10N/1W-4B1	-36K2	10N/2E-1Q1	-1681		-27H1	-27H1	-27H1 10N/2W-1M1 -16L1	-27H1 10N/2W-1M1 -16L1 -17U2	-27H1 10N/24-1vd -16L1 -17J2	-27H1 10N/24-1M1 -16L1 -17J2 -18F1	-27H1 10N/2W-LMG -16L1 -18F2 -18F2 -18F2	-27H1 10N/2W-LMG -16L1 -18F1 -18F2 -18F2	-27H1 -16L1 -17U2 -18F1 -18F2 -18L1 -23A1	-27H1 -16L1 -17J2 -18F2 -18F2 -18L1 -23A1
		N. Corcoran Dom.	A. Summ	C. Davis	Ferro & Canepa Irr.	W. K. Lowe Dom.	Spreckels Sugar	Ind.	Ind. City of Woodland Dom.	Ind. City of Woodland Dom. J. Wonroe Irr.	Ind. City of Woodland Dom. J. Monroe Irr. J. Peterson Dom. & Irr.	Ind. 1ty of Woodland Dom. Monroe Irr. Dom. & Irr. Howard Stock	Ind. 1ty of Woodland Dom. Monroe Irr. Dom. & Irr. Howard Stock Stock Dom. & Bowles	Ind. 1ty of Woodland Dom. Monroe Irr. Peterson Dom. & Irr. Stock Stock Bowles Dom. & Irr. W. McClary	Ind. Ity of Woodland Dom. Wonroe Irr. Peterson Dom. & Irr. Stock Stock Dom. W. W. McClary Dom. W. McClary Dom. W. Witte	Ind. City of Woodland Dom. J. Wonroe Irr. J. Peterson Dom. & Irr. J. Howard Stock M. Bowles Dom. W. W. McClary Dom. & Irr. C. A. Kutsuris Dom. C. A. Kutsuris	Ind. City of Woodland Dom. J. Wonroe Irr. J. Feterson Dom. & Irr. J. Howard Stock M. Bowles Dom. W. W. McClary Dom. & Irr. C. A. Kutsuris Dom. C. A. Kutsuris Dom. D. Schlissor Dom. D. Schlissor	Ind. City of Woodland Dom. J. Wonroe Irr. J. Peterson Dom. & Irr. J. Howard Stock M. Bowles Dom. W. W. McClary Dom. & Irr. C. A. Kutsuris Dom. Dom. J. J. Slaveo Irr. Dom.

Determined by addition of constituents.
 Grovimetric determination.
 Grovimetric determination.
 Andysia by U.S. Geological Survey, Quality of Water Bronch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Iron (Fe), Aluminum (Al), Areanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 caccept as shown

	State well			Specific conduct-					Minsral	constituents	ents in	unbe	parts per millian equivalents per millian	Der millen	lē l		Total	à	Hord	Hordness	
Owner and	number and other number	Dafe sampled	Temp in • F	ance (micra- mhos at 25° C)	PH Cale	Calcium sium (Ca) (Mg)	Sodium (Na)	ium Potas-II sium (K)	as-Carbon- are () (CO ₃)	harate banate (HCO ₃)	- Sul - fate (SO ₄)	O Sign	frate (NO ₃)	Flug- ride (F)	Boran S (B)	Silica Other constituents	solios baylos solios mdd ui	T S S S	as Co	N.C. PPM	Analyzed by c
	MDB&M						SAC	SACRAMENTO COUNTY	COUNTY												
G. Rosellini Dom,	4N/3E-22Q	8-23-62		230	8.4 4.6	6 3.4 23 0.28	1.80	0.8	3 1.5	108	8.1	0.33	0.0	0.10	0.1	65	156	92	56	0	USAC
R. C. Whittemore Irr.	6N/TE-23A1	8-30-62		180	7.5 8.4	4 7.4 42 0.37	7 0.95	2.2	0.00	0.95	20 50	7.1	7.2	0.02	0.1	75	168	53	39	0	USAC
F. J. Ovesto	6N/8E-15J1	8-30-62	72	160	8.2 13	9E°0 99	8.8	2.8 33 0.07	0.0	5 57 0.93	1.9	7.1	0.13	0.2	0.0	99	143	56	17	5	USAC
M. Perry Irr.	7N/4E-4RI	8-23-62	农	210	8.5 21	057 057	7 0.43	2.8	8 4.5 07 0.15	1.78	0.0	3.5	0.0	0.00	0.1	62	131	8	82	0	USAC
G. F. Rothfelder Irr.	7N/7E-27B1	8-29-62		320	8.5 II	28 1.40 1.22	16 0.70	1.4 70 0.04	4 4.5 04 0.15	5 2.45	1.9	17	9.3	0.00	0.0	81	215	21	131	0	USAC
E. Pilliken Dom.	8n/8e-29kl	8-29-62		180	8.2	14 4.2 0.72 0.34	T 0.80	35 0.03	0.0	09.0	30	12 0.33	0.0	0.2	0.1	20	154	715	53	13	USAC
K. Kimura Irr.	9n/4E-8L1	8-16-62	99	1060	8.2 69	144 3.96	101 2	2.3	30.00	27 F.98	104	87	8.4	0.0	0.3	04	699	37	370	21	USAC
L. M. Swalley Irr.	-27F1	10-5-62	19	720	8.2 41	17. 17. TO	1 3.70	70 0.05	0.0	223	0.00	3.42	0.0	0.00	0.5	94	1417	51	174	0	USAC
Air Products Inc. Dom. & Ind.	9N/7E-21D1	8-10-62		326	8.2	$\frac{31}{1.55}$ $\frac{13}{1.07}$	7 0.61	1.8 0.12	8 0.0	162	0.27	10 0.28	2.7	0.0	0.04	25	722	18	131	0	DWR
F. E. Olean Dom.	-26H	8-10-62		136	7.7	14 0.70 0.20	8.6 0.37	5 1.0 37 0.02	0.00	5 5th	5.4	5.8	5.9	0.00	0.00	式	123	53	145	٦	DWR
Aerojet General Corp	-28KI	8-3-62		235	7.7	23 7.9 1.15 0.65	5 0.61	51 2.3	3 0.0	0 2.15	3.4	7.1	0.0	0.2	0.0	63	185	25	8	0	DWR
J. A. Rodgers Dom.	-32B1	8-10-62		181	7.3 15	15 0.75 9.4 0.77	8.0 7 0.35	35 0.01	0.00	13/8	4.6	5.4	5.4	0.00	90.0	911	138	19	92	Cu .	DWR
B. Petrucci Dom. & Ind.	-33E1	8-10-62		342	7.7	31 18 1.47	7 0.48		0.09 0.0	0 3.05	6.4	0.31	0.0	0.00	0.00	88	207	77	151	0	OWR
Irr,	10N/4E-13F1	8-16-62	19	0111	8.8	$\frac{35}{1.75} = \frac{16}{1.25}$	36 1.55		1.3 0.03 0.50	0 2.68	5.3	1.15	4.1	0.0	0.0	61	562	3,4	150	0	USAC
H. A. Sorensen Dom. & Irr.	10N/6E-27L	10-9-62	72	340	8.7	29 13 1.46 1.08	8 21 0.90		1.4 4.5 0.04 0.15	5 2.47	0.01	26	0.0	0.00	0.1	39	230	28	721	0	USAC
Determined by addition of possitioners	of constituents				-				-									1	٦	7	

Determined by addition of constituents.
 Gravimatric determination.
 Analysis by U.S. Geological Survey, Quality at Water Bronch (U.S.G.S.), Pacific Chemical Cansultants (P.C.C.),
a Analysis by U.S. Geological Survey, Quality at Water Brounds (D.W.R.) as indicated.
 Terminal Testing Laboratory (T.T.L.) ar State Department of Water Resources (D.W.R.) as indicated.
 Iran (Fe), Alventum (Al), Arsanic (As), Capper (Cu), Lead (PD), Manganese (Mn), Zinc (Zn), reported here as God escept as shown

-368-

	Anolyzed by c		USAC	USAC		DA'R	#E	DWR	DWR	DAR	DWR	DA-R	DWR	DAR	 	
350	_		0	0		0	0	0	12	0	132	0	142	0	 	
Hord	as CoCO ₃ Totol N.C.		L84	22		66	516	250	268	208	395	431	338	216		
i	S E		37	ಕೆ		78	643	35	35	35	17	27	25	r r		
Totol	solved solved solids in ppm		048	514		557	939	954	457	370	819	554	191	336		
	Silico Other constituents ^d (SiO ₂)															
	Silico (SiO ₂)		쾨	和		81	귉	21	티	24	얽	প্ল	77	ଥ		
1001	Boron (B)		10°4	1.2		96.0	1.08	0.21	0,12	0.10	0.21	0.70	0.84	0.17		
millor	Fluo- ride (F)		0.00	0.00		0.01	0.03	0.02	000	0.01	0.2	0.01	0,00	0.00		
parts per million equivolents per million	NI- frate (NO ₃)		2.8	0.00		60.0	0.03	54 0.87	0.14	0.02	0.12	2.8	0.14	60.0		
o danive	Chlo- ride (CI)	Cont,)	176	2.75		1.97	25 0.70	29.0	1.32	21	45.0	25 0.62	33	0.56		
ë.	Sul - fate (SO ₄)	COUNTY	0.03	69.63	ZI	66.0	95.0	1.07	1.65	52 1.18	1.34	09.0	39	31.00.04		
Mineral constituents	Bicor- bonote (HCO ₃)	SACRAMENTO CO	10.00	296	SOLANO COUNTY	256	1060	31.5	10 to 10 to	285	25.5		761 5.91	305 1.95	 	
rol co	Corbon- ote (CO ₃)	SACRA	12 0.40	18	S	118		0.00	0.00	0.00	000	0000	37	0.00		
Mine	Patos-Casium (K) (2.5	20.0		2000	20.06	0.0	0.02	3 0.08	0.02	0.00	0.02	0.05		
	Sodium (Na)		133	175		2,00	277	2.64	2.2	स्रुह,	37	2.26	22.2	245		
	Magne- sium (Mg)		5.84	0.59		1.24	8.07	22.2	2°07	1.77	70°9	81 29.9	250 48:41	2,82		
	Colcium (Co)		3.89	0.84		350	45	3.08	3.32	48	37	39	38	30		
	Ŧ		7.8	8.7		4.8	8.3	7.8	7.3	7.5	8.9	8.0	4.8	8.1		
Specific conduct-	once (micro- mhos of 25° C)		1390	8440		788	1470	753	265	969	1010	925	265	559		
	Temp in • F		63				63		65	29	\$	67	65	89		
	Sompled		11-20-63	8-23-62		5-23-62	5-23-62	5-23-62	5-23-62	5-24-62	5-23-62	6-8-62	5-23-62	5-23-62		
Stote well	number and other number	MDB&M	4N/3E-13J1	-14F1		4N/3E-31F2	5N/2E-25K	6N/1E-1912	-1901	-23L	6N/2E-20H2	7N/2E-2D1	-3462	8N/1E-26F1		
	Owner ond		J. Barba Irr.	Reclamation Dist. 3 Dom.		City of Rio Vista	Calif. Packing Corp.	Elmirs Fire District . Ind.	City of Vacaville	City of Vacaville	Priddy Irr.	Buckley Irr.	T. Rose Irr.	R. Schulte		

o. Determined by addition of constituente.
b. Grawmetric determination.
c. Analysts by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.),
framnal festing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.
d. Iran, Atwainum (Al.), Arsanic (As.), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as <u>Gra</u>except as shown

-369-

	P																		
	Analyzed	5			USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC	USAC
Jue Se	os CaCO 3	PP.C.			0	0	7,02	0	0	0	0	0	0	0	0	1285	0	0	0
		Total			217	8	523	143	ま	107	69	95	85	110	99	1610	8	73	79
	o o	. E			29	83	19	81	33	27	53	43	23	17	87	9	88	36	31
Total		mdd ui			713	371	1767	296	207	टाट	172	219	178	184	88	2919	185	188	159
		(SiO ₂) Other constituents ^a																	
					62	83	23	91	ढ	정	9	24	8	147	98	띪	칭	67	8
Lion	Boron	@			1.2	0.6	0.9	9.6	0.1	0.1	0:1	0.2	0:0	0.1	1.6	1.0	0.1	0.1	0.0
millor er mil	Fluo-	ĘE.			0.00	0.00	0.2	0.00	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.0	0.2	0.2	0.0
parts per millian equivolents per millian	-iz	trate (NO ₃)			3.6	0.0	0.0	0.00	7.7 0.03	2.8	15	1.4	3.8	0.0	0.0	0.0	3.3	5.2	0.09
e duive	100	2 (0)			158	87	933	1.62	8.9	8.9	7.8	7.1	1.8	7.4	204 5.75	1679 47.35	12 0.33	0.31	6.0
ints in	ļ.	(804)			8.0	2.0	3.0	0.01	0.10	5.3 0.11	2.4 0.05	9.1	2.9 0.06	12 0.25	20 0.42	0.0	2.9	0.5	5.0
constituents		(HCO ₃)	5-22	Ĕļ.	467 7.65	3.25	1 ⁴ 7 2,42	174 2.85	133 2.18	2.45	81 1.33	171 2.80	123 2.01	133 2.18	3.62	396	11.88	11.85	1.45
Mineral	Carbon	(CO ₃)	VALLE	N CON	0.50 51	0.20	0.0	4.5	3.6	0.10	000	4.5	2.1 0.07	0.0	0.10	000	0.0	0.05	0.00
3	Potos	E)	SAN JOAQUIN VALLEY	SAN JOAQUEN COUNTY	1.5	0.03	7.5	0.0	3.2	3.8	2.8	3.5	6.3	3.1	1.3	2.0	1.6	2.5	0.00
	⊢	(ON)	SAN J	SAN	8.70	114 4.95	461 20.05	84 3.65	20 0.87	19 0.83	13	34	일:0	111 0.47	200 8.70	498 21.65	0.60	20 0.87	0.60
	Moone	sium (Mg)			26	6.0	51 7.20	0.25	9.4	0.87	6.6	8.5	7.8	9.0	5.6 0.46	206 16.90	10 0.85	7.2 0.59	9.6
	1	(CO)			44 2.21	9.0	125 6.25	27 0.60	22 I.11	25 1.26	15 0.76	24 1.19	21 1.05	29 1.45	17 0.85	307 15.30	20 0.99	17 0.86	0.60
<u></u>	Ŧ				7.8	·*.	8.2	4.8	4.8	4.8	8.1	9.4	8.3	8.2	8.3	7.6	8.2	8.3	7.9
Spacific	ance	mhas at 25°C			1210	88	2950	084	290	315	208	360	235	270	86	5200	540	252	185
	Temp in eF				98	17	22			99	99	8	88	39	88	99	88	88	69
	Date				7-20-62	7-3-62	7-20-62	7-3-62	7-3-62	7-16-62	7-6-62	7-19-62	7-16-62	7-26-62	7-19-62	7-19-62	7-16-62	7-16-62	7-19-62
State well	number and			MDB&M	ln/4e-3nl	1N/6E-4D1	-10P1	-14H1	ועון-17%ון	-1201	1N/9E-18G1	2N/6E-27L1	2N/8E-15L1	2N/9E-7G1	4N/4E-14C1	4N/5E-8HI	4N/6E-11P1	4N/7E-23B3	5N/8E-31J1
	Owner and	980			San Joaquin County Dom.	Calif. Water Service	Fiberboard Products Ind.	Calif. Water Service	J. Sanguinelli Irr.	R. Duarte Irr.	Slang Irr.	Calif. Water Service	Linden Water Service Dom.	F. DeBenedetti Dom. & Irr.	M. T. Coop Dom.	O. C. Gallagher Dom.	Jahant Ranch Dom. & Stock	K. Elston Dom. & Irr.	A. T. Sims Irr.

Determined by addition of constituents.
 Gravimatric determination.
 Analysis by Calculated Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Cansultants (P.C.C.), Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (O.W.R.) as indicated.
 Trannal Terminal Mail, Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as 600 except as shawn

-370-

	Analyzed by c		9	D.	ပ္ မ	ρ _γ	ر ک	AC C	AC .	AC .	AC	AG .	AC	AC	AC	USAC	USAC	
			USAC	228 USAC	342 USAC	USAC	9 USAC	189 USAC	182 USAC	317 USAC	269 USAC	66 USAC	30 USAC	123 USAC	288 USAC	37 U.S.	203 US	 \dashv
ardness	as CaCO s Fotal N.C. ppm ppm		•			0	19											 4
	cent as C wod ium Total ppm		і пз	611)	8	2 49	107	327	3 297	954 6	43 554	58 194	26 185	9h2 0h	38 433	46 325	61 308	
<u> </u>	dis- solved salids in ppm		85	<u>8</u>	35	36	179	84	53	6t Ls								
Ē			916	652	979	192	389	803	8/2	7911	1244	282	330	531	893	194	963	
	Silica (SiO ₂) Other canetituents ^d																	
			73	티.	위	9	20	8	E .	45	27	22	14	2	8	38	8	
Hian	Boron (B)		1.6	0.1	1.6	0.2	9.0	1.3	0.1	1.8	10.4	0.5	10.0	0.8	0.0	0.9	1.4	
r millic	Fluo- ride (F)		0.00	0.2	0.0	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	0.2	
parts per million equivalents per million	Ni- trate (NO ₃)		0.0	0.0	0.0	8.0	6.6	27 00.50	14 0.23	88	7.2	0.00	444	64 1.03	32 0.52	25	18 0.29	
oviupa Bquivo	Cige (Ci		174	205 5.78	503 14.18	10000	1.35	3.55	222 6.25	348 9.80	270 9.00	3.30	19 0.53	2.75	2.80	2.00	330	
ts in	Sul - fate (SO ₄)		264 5.50	89 1.86	26 0.54	9.1	128 2,67	299	136	226	203	163	0.59	89 1.87	377	371	197	
stituen	Bicar- banate (HCO ₃)	(CON'T.)	241 3.95	233 3.82	168 2.75	100	107	169	140 2.30	2.78	348 5.70	2.55	181	152 2.50	2.90	107	128 2.10	
Mineral constituents	Carbon- ofe (CO ₃)		0.30	0.0	000	000	0.00	000	000	000	000	0.00	3.9	0.0	000	0.0	0.0	
2	Patas-0 sium (K)	UIN CO	0.0	2.2	2.0	2.9 0.07	1.1	3.5	3.0	1.8	3.2	2.0	3.3	2.5	1.8	2.0	2.9	
	Sodium (Na)	SAN JOAQUIN COUNTY	05.21	3.20	11 ^{4,3}	0.83	8 8	1143	157 6.83	8.8	190 8.25	125	1:30	3-13	125	5.50	225 9.80	
	Magne- sium (Mg)		13	3.92	61 5.03	6.6	8.9	2.90	36 2.96	61	66 5.38	19	1.20	26 2.07	36	34 2.79	37	
	Calcium (Ca)		1:18	93	131	17 0.86	1:41	73	% % %	82 4.12	1114 5.70	2.33	2.50	82 % 88 88	1113	3.72	61 3.07	
	£		8.4	7.6	8.0	8.2	8.0	8.1	8.0	8.1	7.7	8.2	8.3	7.8	8.0	8.1	8.0	
Specific	ance (micro- mhas at 25° C)		1450	1140	1800 1800	320	615	1290	1250	1,800	1900	046	061	820	1350	1140	1625	
	Ten Fi		99	17	88	02	69	73	11	79	65	69	88	75	7-	1.2	65	
	Date sampled		7-20-62	7-20-62	7-20-62	7-26-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	7-27-62	
State well	number and ather number	MDB&M	15/4E-14M	15/5E-10H2	15/6E-4A1	1S/9E-8H1	2S/4E-1P1	-36P1	2S/5E-22Q1	-23F1	-2901	28/6E-20J4	2S/TE-20R1	38/5E-811	-24FI	-26M	3S/6E-7F1	
	Owner and use		Calif. Packing Corp.	L. Brooks Dom.	G. S. Calcagno Dom. & Irr.	Irr.	A. Dusios Dom.	H. C. Jepson Irr.	West Side I.D.	West Side I.D.	West Side I.D.	State of Calif.	W. E. Lee Dom.	L. Huck Dom.	James Clayton Co.	W. Moler Irr.	Benta-Carbona I.O. Irr.	

Defermined by addition of consituents.
 Growmetric defermination.
 Analysia by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.),
Terminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) as indicated.
 Alaminum (AI), Arsenic (As), Capper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 600 axes shown.

	State well			Specific conduct-	-				Miner	Mineral constituents	tifuents	Ë	ports per million equivolents per million	ports per million volents per mill	million			Totol	à	Hordness		
Owner ond	number ond other number	Date sampled	Temp in •F	ance (micro- mhos ot 25° C)	3°	Calcium Mc	Mogne - S sium (Mg)	Sadium Po (No)	Potos-Cal	Carbon-Bi ote bo (CO ₃) (H	Bicor-S bonote ((HCO ₃)	Sul - (fote (SO ₄)	Cilo- (Cilo-	rrote (NO ₃)	Fluo-Bo-ride	Boron Sil	Silica Other constituented	solived solids in ppm (b)	E BE	Totol mppm		Analyzed by c
							AOL JOAC	SAN JOAQUIN VALLEY (5-22)	— (5-5		STANISLAUS COUNTY	COUNTY										
A. Groves irrigation	1N/10E-17G	8-16-62	74	27.2	8.1	22 1.11	1.00	16 0.70	2.0	00	2.23	8.7 0.18 0	0.33	8.2	2.00	० ०	41	178	75.	106	0	USACL
J. Dunn irrigation	1S/10E-33R1	6-6-62	72	53				2.4	0.02	•		010	0.01		01	0.10			18	8		DWR
J. Demartini irrigation	1S/11E-36E1	8-22-62	77	201				0.48	3.2			440	5.6			0.13			23	75		DWR
A. Ramirez irrigation	28/10E-10D1	8-16-62	70	160	8.2	13 0.67 5.	5.7	0.41	2.8	00	1.30	00.0	0.00	5.2 0.08 0.08	0.0	00.00	48 0.00	135	25	57	0	USACL
Oakdale Land Co.	2s/10E-27G1	6-6-62	73	380	8.2	38 1:91	13.11	36	2.9	8	3.64	0.10	0.30	0.21 0	0.0	0000	- FE	228	23	151	0	USACL
Modesto I.D.	3S/TE-13A2	7-13-62	19	867	8.4	23 24	2 ^t 25 2	57 2.48	0.12	0.00	3.38	1.02	27.0	0.39 0.39	0.01	0,13	ZZ	377	∄	155	0	DWR
Modesto I.D. irrigation	3s/7E-24J1	7-13-62	99	676				3.18	2.7 0.07			-10	39			0.18			742	213		DWR
J. E. Cardner domestic	3s/7E-33C1	8-15-62	73	01011				145 6.31	3.6				3.61		-,	0.35			đ	170		DWR
Modesto I.D. irrigation and stock	3s/8e-6n1	7-13-62	19	657				2.30	0.10			.010	% 0.73			0.17			88	237		DWR
Modesto I.D. irrigation	3S/8E-9C1	7-13-62	19	423	8.3 14.0	2,14 1	1.80	28 1.22	0.12	8	3.57	0.23	다. 다.아	0.29	0.01	0.00	91	278	%	191	0	DWR
Modesto I.D.	38/8E-2011	7-13-62	69	1755				33	2.0				17. 5.48			0.14			₹.	223		DWR
Modesto I.D.	3s/8E-23E1	8-15-62	99	1439				50 2,18	2.0				13 0.37						017	157		DWR
Modesto I.D. irrigatioo	3S/9E-6R1	7-18-62	19	548				1.39	2.8				18 0.51			0.10			₹	210		DWR
Atlas Olympia Co.	3S/10E-13Al	8-8-62	72	617				2.7	1.0				0.01			0.00				19		DWR
V. A. Rodden Ranch domestic and irrigation	3S/11E-9D1	8-16-62	71	285	न %	1:11	0.0 P. 0	0.90	3.6	8	1.91	0.32	0.63	0.13	0.01	00.00	<u></u> 되	782		86	N S	USACE
H. E. Ketcham irrigation	3s/12E-26F1	8-10-62	72	14,000	7.1	313 4	41 3.43	410 17.83	28	0.00	75	0°.10	36.50	000	0.1	0,40	26	2,730	2	951	888	DSACL
a. Determined by addition of constituents.	ion of constituen	ta.																				

a. Determined by addition of constituents.

b. Gravinetric determination unless otherwise noted.

c. Analysis by D.S. Geological Survey, Quality of Water Branch (U.S.6.9.), U.S. (Extenditural consultants laboratory (A.A.C.L.b.) Eathe Department of Water Resources (DrR) as indicated.

d. Iron (Re), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 0.00 except as shown.

Per Hordness	dis-
	solved sod solids sum in ppm ium (b)
solved sod	(P)
pevios pevios mdd ui	
Sirco Other constituents	
Boren (B) 3.30	3.30
NI – Flug- Boron (NO ₃) (F) (B) (B) (NO ₃) (F) (B) (B) (NO ₃) (B) (B) (NO ₃) 26 0.12 0.03	
Chio- ride (N)- ride (N)- (CI) (N)- (N)- (CI) (N)- (N)- (N)- (N)- (N)- (N)- (N)- (N)	31.9 86 9.00 0.12 8.22 81.23 282 7.95
Sul- (50,) (50,) (5,1)	282
Carbon- 016 (CO ₃)	US COUNTY (CONTINUE COUNTY (CONTINUE COUNTY (CONTINUE COUNTY (CONTINUE CONTINUE CONT
	206 1.5 8.96 0.04 1.52 1.6 6.61 0.04 7.61 0.04
Colcium Magna- Sodium (No) (Mo) (Mo) (Mo) (Mo) (Mo) (Mo) (Mo) (M	5.54
F 8 2	8, 5,
0 0	
Fampled In *F	
¢	

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural consultants Laboratory (U.S.A.C.L.), State Department of Water Resources (DMR) as Indicated.

d. Iron (Pe), Aluminum (Al), Arrente (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as \$\frac{0.0}{0.00}\$ except as shown.

		Analyzed by c			E	E	nses	DWR	USACL	USACL	DWR	DWR	DWR	DWR	DWR	DWR	DWR	SDSD	DWR	
-		- 1	\rightarrow		DWR	AND .		ជំ			ñ	Ä			A	Ä	ñ		Ā	
	Hardness	ŏL	2 E			531	25		278	588			Z 77	0				19		
L			Tatal		717	8111	236	156	588	194 /	173	900	808	3 134	961 9		20		386	
-	<u>-</u>	pos sp	Ę .		917	96 36	17 1/1	75	37	988 37	T 17	98	362 34	323 43	26	25,	517	378 28	8	
	Tate		mgg ni (a)			876	531		1,104	×			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	<u>~~~</u>				m		
		0	(SiO ₂) Office Constitution										ABS 0.00	ABS 0,00						
		Silica	(8:02)			웨	웨		27	웨	*		옑	E		700	~1	81	101	
	ign	Boron	<u>@</u>		09.0	0.42	8	0.31	0.70	0,40	0.14	0.17	0.10	0.10	0.21	0.13	8	00.0	0.35	
	J. Will	Fluo-	(F)			0.1	0.07		0.0	0.02			0.0	0.03				0.0		Ì
	equivalents per millian		(NO ₃)			0,16	0.18		24 0.39	0.16			35	28				0.19		ŀ
	equivo	5	<u>•</u> 55		277 7.81	5.33	2.93	153	5.00	39	0.70	27 0.76	1.38	18	1.18	다. 이 3년	0.22	0.39	85 2,40	
	e in	- Ing	(SO ₂)		235	263 5.48	2.06		7.50	506 10.54			1.23	0.23				78		
	constituents	Bicor-	bonate (HCO ₃)	ontinued		192 3.15	3.41		378	3.45			3.31	3.52				252		
	Mineral Co	arbon	00°3)	El El		000	8		000	0.00			00.00	0000				3.10		
1	M	Potas-C	(K) (CO ₃)	us cour	2.1	3.6	0.03	0.10	2.5	0.05	1.7 0.04	2.6 0.07	0.11	2.0	2.6 0.07	1.9	3.1	1.7	2.3	
			(NO)	STANISLAUS COUNTY (continued)	164	5.13	% 1.18	133 5.78	163	126 5.47	2.39	2.35	2.22	48 2.09	5.05	33	0.87	1.78	68 2.96	
		- euboy	sium (Mg)			66 5.41	27.5		7.96	26 1.64			15	11 0.88				30 2.47		
		Colcium	(Ca)			3.54	2.30		3.79	92 1.58			2.94	1.80				2,15		
		F				8.3	8.3		8.2	8,2			8.3	8.1				8.3		
	Specific	ance (mlcro-	mhas at 25°C		1,550	1,360	869	920	1,700	1,240	549	119	598	991	852	161	192	589	1,000	
		Temp in °F			72	17	¹ / ₂ /	89	69	72	65	8	%	L 9	99	99	69			
		Date			7-18-62	7-18-62	7-24-62	8-28-62	8-15-62	8-15-62	8-28-62	8-22-62	7-13-62	8-20-62	8-22-62	8-20-62	8-22-62	7-6-62	7-6-62	
	State well	number and			58/7E-9R1	58/TE-23B1	58/TE-35A1	58/8E-1R1	58/8E-8G1	58/8E-27MI	58/9E-9A1	58/9 E- 13 G 1	5s/10E-23E1	5S/10E-28H1	5S/10E-30F1	58/11E-7P1	58/12E-6D1	68/9E-18F1	7s/8E-12Pl	
		Owner and	950		H. Raines	C. Zacharias irrigation	State of California domestic	Turlock I.D. drainage	T & T Rench irrigation	R. L. Davis domestic and irrigation	Turlock I.D. drainage	Turlock I.D. drainage	E. Cristofferson domestic and industrial	Turlock I.D. drainage	Turlock I.D. drainage	Turlock I.D. drainage	R. Perkins irrigation	J. W. Campbell 1rrigation	Central Calif. I.D. irrigation	

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural consultants laboratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Fb), Manganese (Ym), Zinc (Zn), reported here as \$\frac{1}{0.00}\$ except as shown.

	Analyzed by c		DWR	DWR								
ness	as CaCO 3 Total N.C. Ppm ppm			257								
Hore	Total Ppm		348	143								
	Pog.E		37	42				 				
Total	eolids maga ni ppm (a)			1,010								
	Silico (SiO ₂) Other constituente ^d			ABS 0.00								
	Silico (SiO ₂)			잃								
uoi	Baron (B)		0.57	0.45								
million Ser mil	Fluo- ride (F)			0.3								
parts per million equivolents per million	NI- trate (NO ₃)			9.3								
Podnivo	음년 (CE)		105 2.96	319								
ë	Sul – fote (SO ₄)			2.58	 		 		 			
Mineral constituents	Bicar- banote (HCO ₃)	ntinued		3.72	 			 				
arof cor	Carbon- ote (CO ₃)) <u> </u>		00.00					 			
Z Z	Potos-O Sium (K)	US COU	2.0	3.2		 ·						
	Sodium (No)	STANISLAUS COUNTY (continued)	450	14.8 6.44								
	Magne- sium (Mg)			- T								
	Calcium (Co)			14				 				
	Ŧ			8.0								
Specific	ance (micro- mhos ot 25°C)		1,050	1,540								
	Tamp in °F											
	Sampled		7-6-62	7-6-62								
State well	number and ather number		7S/8E-13F1	7s/8E-23R1								
	Owner and		Simon Newman Co.	Central Calif. I.D. irrigation								

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants laboratory (U.S.A.C.L.). State Department of Water Resources (WH), as indicated. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Fe), Manganese (WH), Zinc (Zn), reported here as O.Q except as shown.

	pezz	,			75						CL	CL	CL			CL	CL		
		by c		DWR	USACL	DWR	DWR	DWR	DWR	DWR	USACL	USACL	USACL	DWR	DWR	USACI	USACE	DWF	DWR
	Hordness as CoCO ₃	N.C.		0	0		-				0	10	6			8	0	120	
		المعار		7 ^t	- 6	8	£ [†]	191	183	98	1115	8	153	61	88	142	26	287	97
-	- I	pos E		33	5 37	715	13	30	84	57	9 67	6 43	96 36	143	8	1 39	0 43	2	79
	P P	solved eolids in ppm		70Z	226		8				396	914	356			304	170	602	
		(SiO ₂) Other constituented												ABS 0.00				ABS O.CC	
				디	<u>지</u>	<u>67</u>	[2]	.#I	ω1	6/1	31	93	14.5	व	~-II	917	87	13.	ੰਜ <u>਼</u>
_	5	Boran (B)		0.03	00.00	0.19	0.12	41.0	0.18	0.19	0.10	0.10	0.10	0.14	0.11	0,10	0.0	0.54	0.21
per millio	s per m	rrote ride (NO ₃) (F)		0.24	24 0.1 0.38 0.01		0.6 0.0				0.10	54 0.86 0.01	0.74 0.01			54 0.1 5.57 0.01	0.15 0.1	0.16 0.02	
porfs per million	aquivolent	Chlo- ride (CI)		21 0.34 0.0	8.2 0.23 0.0	8.7	0.05	17 0.48	47 1,32	25th	60 1.70	28 0.80 0.80	16 0,45 0,45	6.7	6.7	23 0.55 0.55	1.8 0.05	28 1.64 0	3.10
٩	 	Sul - fote (SO ₄)		3.0	0,21	<u>ω</u> [Ο	0.08		مار 		13	1.12	37.0 0.76			32 66	13 0.26	213	
advanting of		Bicar- banate (HCO ₃)		26	2.13		51.04				274	3.22	2.88			2,43	164	3.34 3.34 3.34	
	Minerol Co	Carbon- ate (CO ₃)	TI II	000	000		0.0				12 0.40	8	0000			000	000	000	
1 2	£	Potas-C Sium (K)	MERGED COUNTY	0.08	1.4	3.8	0.5	2.5	3.7	2.2	2.0	1.8	2.4	4.0	2.8 0.07	1.7	6.3	1.5	0.00
		Sodium (No)	MERCH	17 0.74	1.13	15	3.0	34	3.44	57.2	108	63	40 1.75	1.00	25	1.80	0.95	3.87	1.35
		Magne- sium (Mg)		5.2	8.3		3.2				7.4	13	8.5 0.70			8.5	3.5	8.2	
		Calcium (Ca)		21	23		0.60				34	51 2.54	2.35			43 2.13	17 0.83	2.79	
		£		7.8	8.2		6.8				8.4	8	8,2			8.0	8,1	٠	
Soncific	conduct-	(micro- mhas at 25°C)		526	295	157	102	452	689	124	099	605	01.47	241	288	7460	216	930	928
	, E	E .		71.	19	72	72	99	99	29	99	99	19	68	67	89	89		
	Oote	admpled		7-10-62	8-20-62	7-10-62	7-10-62	8-22-62	8-22-62	8-22-62	8-20-62	8-16-62	8-24-62	6-25-62	6-20-62	9-10-65	6-20-62	7-6-62	7-9-62
	State well	other number		4S/14E-8J	58/11E-29F1	5S/12E-32P1	5S/14E-3P	6s/10E-2H1	6s/10E-9B1	65/10E-24L1	6s/10E-28K1	6s/11E-3B1	6s/11E-9C1	68/11E-27K1	68/11E-36F1	63/128-611	68/12E-21N1	7S/9E-32H1	75/10E-7M1
		Owner and		J. Rosasco domestic	Turlock Irr. Dist.	W. Batterman irrigation	Merced County domestic	Turlock Irr. Dist.	Turlock Irr. Dist.	Turlock Irr. Dist.	Riverelde School drainage	Turlock Irr. Dist.	Turlock Irr. Dist. drainage	Merced Irr. Dist. irrigation	Merced Irr. Dist. irrigation	Turlock Irr. Dist. drainage	Merced Irr. Dist. irrigation	Gustine Drainage Dist.	C. Fawcett irrigation

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants Laboratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated.

d. Iron (Pe), Aluminum (Al), Areanic (As), Copper (Cu), Lead (Pb), Manganese (Mr), Zinc (Zn), reported here as G.O. except as shown.

	Anolyzed by c	T			DWR	DWR	USACL	USACL	DWR	USACL	USACL	USACL	DWR	DWR	TOYED	DAR	DWR	USACL	DWR	DAR
		mdd				<u> </u>	0	0	Д	0	0	0		-	199T	Δ	152 D	0		
Hordness	2000 s	udd			103	811	777	110	797	85	155	135	107	339	316	272	283	125	63	148
	sod Ium To	-			28 10	<u>ж</u>	R)	ਜ ਲ	ਜ਼	32	ਜੋ ਲੈ	्र <u>च</u>	23_10	<u> </u>	33	17	- 7 -	12	<u>-0</u>	24
oto	solids and or	3					516	270		184	576	326		_	069		1,570	310		
 		- 1		_								_								
	Silico Other constituented					ABS 0.00	ना	60 ABS 0.00		81	H	22 ABS 0.00			21 ABS 0.00		ol	52 ABS 0.00		
		_		_			17		01		77		OL	01		-1	웨			0.1
TITION	Boron (B)	\downarrow			0.17	0.10		<u></u>	00.00	000	0.10	0.10	0.10	0.10	05.50	0.84	2.90	0.10	0.10	600
r millic per m	- oui'r						0.01	0.1		0.01	0.01	0.01			0.1		0.02	0.01		
parts per million equivolents per million	trate	(NO3)					000	0.29		9.5	3.3	6.2			11.0 0.18		1.8	3.6		
d viupe	Sep.	<u> </u>			0.54	0.37	0.39	10°	9.9 0.28	0.30	6.0	0.55	0.22	13 0.37	2.20	89 2.51	304 8.57	23 0.65	0.22	0.00
ts in	Sul - fote		ned)				3.7	6.7		3.4	0,21	14 0.23			25.75		597 12.43	0.23		
Mineral constituents	Bicor- bonote	(HCO ₃)	(continued)				160	147 2,42		2.15	280	3.57			2.84		160	3.24		
erol cc	Corbonate	Ç.	COUNTY				00.00	0.20		000	0.0	8			5.16		0.0	0.30		
Min	Potos-C sium	3	WE'BCED 65		5.7	0.05	3.7	3.3	3.2	0.00	2.6	0.11	5.6	2.4	2.0	0.03	3.0	0.6	2.7	6.6
	Sodium (No)		W.		3.09	71.17	2500	1.17	21 0.91	22 0.95	38	2,10	0.78	2.57	27 02.1	97	397	2.10	1.30	1.00
	Mogns-	(M)					7.5	7.9		8.9 0.73	18	21			30		2.06	21 1.73		
	Colcium						33	31		90.0	33	8			76 3.78		3.59	0.76		
	王						8	8.6		8.2	8.1	8.5			4.8		8.1	8.6		
Specific	(micro- mhos	ot 25° C			507	361	310	330	904	980	435	0917	284	848	970	952	2,360	1,30	318	387
	Te ci				67	19	19	19	88	69	L9	8	2	L9	89		92	69	69	89
	Dote				7-2-62	8-2-62	6-27-62	7-30-62	7-16-62	7-26-62	9-6-62	6-25-62	7-26-62	8-6-62	11-19-62	7-9-62	7-11-62	11-20-62	7-23-62	7-17-62
State well	other number				78/11E-4MI	7s/12E-1Q1	7s/12E-19A1	75/13E-4P1	75/13E-22C1	7S/14E-9R1	75/14E-28JI	7S/14E-31M1	7S/15E-18KI	7S/15E-30E1	8S/9E-2P	8S/9E-16E1	8s/10E-29D	8s/13E-16н	8S/14E-2D1	8S/14E~24A1
	Owner and				Merced Irr. Dist.	Merced Irr. Dist.	Merced Irr. Dist.	Merced Irr. Dist. irrigation	Merced Irr. Dist.	Merced Irr. Dist. irrigation	Merced Irr. Dist.	Merced Irr. Olst.	Merced Irr. Dist. irrigation	Merced Irr. Dist.	Lone Tree Cattle Co. domestic	Gustine Drainage Dist.	F. Herrison irrigetion	W. P. Hoduner domestic	Merced Irr. Dist. irrigation	Merced Irr. Dist. irrigation

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S., Geological Survey, Quality of Water Branch (U.S.,0.S.), U.S., Agricultural Consultants laboratory (U.S.,A.C.L.), State Department of Water Resources (DRR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as \$0.00 except as shown.

fordness	as CaCO ₃ Analyzed Tatal N.C. by c		344 DWR	334 DWR	240 15 USGS	380 208 DWR	75 DWR	119 DWR	211 0 DVR	65 DWR	DWR	337 DWR	183 71 USGS	219 55 DWR	252 DWR	
	Trebui Tum To Tum To To To To To To To To To To To To To			34	797	<u> </u>	8.	72 1	~ 78	83	88	37	54 1	33	~ ₹	-
Total	solved solids mgg ni				915	681			291				562	717		
	Silica (SiO ₂) Other constituents ^d					ABS 0.00										
	Silica (SiO ₂)				티	Ħ			12				19	લા		
lo	5_		1.60	0.59	1.10	0.63	2.60	0.30	₽.0 10.0	0.06	0.06	9.0	0.00	0.05	0.46	
million er mill	Fluo- ride (F)				0.0	0.02			0.03				0.0	0.0		
parts per million equivalents per million	rote (NO ₃)				0.19	0.7			8° 7° 0° 08				2.3	9.1		
pd	Pigin Pigin Pigin		7.64	99.1	2.91	3.24	3.58	152	14 0.39	135 3.81	0.56	281 7.92	5.59	2.85	56 1.58	
.E	Sul - fote (SO ₄)	(par			1.15	2,138			\$ 0° 54				17 0.35	0.20		_
constituents	Bicar- banate (HCO ₃)	contin			258	3.44			268				136	3.28		
Mineral ca	Carbon- ate (CO ₃)	COUNTY (continued)			0.27	00.00			8 -				00.00	00		
Z.	Potos-C sium (K)	MERCED CC	2.4 0.06	0.9	1.6	2.2 0.00	1.2	0.0	0.0	1.6	0.04	1.8	1.3	3.7	2.6 0.07	
	Sodium (No)	見	220 9.57	81 3.52	% 1.18	3.22	304 13.22	15 K. 9	1.22	150 6.52	2.96	1.3 4.3	101	2.04	37	
	Magne- sium (Mg)				35 2.85	1.30			31 2.57				1.71	1:14		
	Calcium (Ca)				39	3.39			33				39	3.24		
	Ŧ				8.3	8.3			89.2				8.2	7.7		
Specific	ance (mlcro- mhas at 25°C)		1,660	957	853	1,030	1,650	921	503	830	1771	1,160	87.1	682	949	
	Te a						72	72	22	47	T3	#2		89		
	Date		7-9-62	7-6-62	7-6-62	7-4-62	7-11-62	7-11-62	7-10-62	7-11-62	7-11-62	7-11-62	7-4-62	7-11-62	7-9-62	
State well	nymber and ather number		98/95-21.1	98/9E-5B1	98/95-2151	9S/10E-36R1	98/11E-7N1	9S/11E-26N1	9s/12E-1C	9S/12E-17B	98/132-80	9S/13E-29L	98/13E-31D1	9S/14E-20B	10S/10E-26D1	
	Owner and use		Wolfsoo Bros. stock end irrigation	Gustine Dreinage Dist.	Central California Irrigation District irrigation	State Game Refuge irrigation	R. Mueller domestic and stock	Delta Ranch domestic	U.S. Fish and Wildlife Service irrigation	Newhall Land and Farming Co.	Newhall Land and Farming Co. irrigation	Newhall Land and Farming Co. irrigation	Miller and Lux irrigation	M. Cotta 1rrigation	Central Callfornia Irrigation District irrigatioo	

a. Determined by addition of constituents.

b. Gravimetric determination unness otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.0.8.), U.S. Agricultural Consultants laboratory (U.S.4.C.L.), State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Alumium (Al), Arsenic (As), Copper (Cu), Lead (Fb), Manganese (Mn), Zinc (Zn), reported here as a shown.

		Analyzed by c			DWR	DAR	uses	DWR	USGS	
	Hardness		E dd		0		576		1380	
		1 .	mdd		煮	370	374	180	1500	
	ě	S S E			55	26	19 (88	27	
	Toto	pevios spilos					1,230		3,500	
		Silico Other constituentsd								
		Silico (SiO.)	2				9		গ্ৰ	
	Lion	Boron (B)			0.18	0.45	0.70	0.09	2.00	
millor	er mi	Fluo-					0.0		0.0	
rts per	ente p	trote	(NO ₃)				3.4		1.56	
ports per million	equivol	은 epic			3.07	11.53	510 14.39	36	875 24.68	
	<u>e</u>	Sul - fote	(°0s)	red)			2.50		1,020	
	Mineral constituents	Bicar- bonote	(HCO ₃)	MERCED COUNTY (continued)			1:9		2.43	
	o los	Carbon	(003)	OUNTY			0.0		0.00	
	\$	Pates-Cerbon- sium ofe	3	ERCED	1.6	0.07	0.12	6.1 0.11	9.0	
		Sadium		Z 1	82 3.57	216 9.40	278	*\f\f\f\f\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	500 21.75	
		Mogne -	(SM)				53 1.34		208	
		Calcium	(5)				3.14		258 12.87	
	. ,	됩	5				8.1		8.1	
Casa	conduct-	(micro-	at 25° (069	1,760	5,000	529	1,620	
	1	Temp in • F								
	ė	sompled sompled			7-4-62	7-6-62	7-6-62	7-7-62	7-9-62	
	Stote well	other number			108/12E-25L	10S/12E-27K1	10S/12E-35KI	108/13E-1A1	11S/10E-23KI	
		Owner and			San Lais Canal Co. irrigation	Central California Irrigation District domestic and irrigation	Central California Irrigation District	Eving Ferms irrigation	R. Lindemann irrigation	

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S., Geological Survey, Quality of Water Branch (U.S.G.S.), U.S., Agricultural Consultants laboratory (U.S.A.C.L.). State Department of Water Resources (DWR) as indicated, i. Iron (Fe), Alumium (A1), Arenic (A8), Copper (Cu), Lead (Fb), Manganese (Mn), Zinc (Zn), reported here as 0.00 except as shown.

	Analyzed by c		DWR	DWB	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
			<u></u>	· · · · · · · · · · · · · · · · · · ·	<u>F</u>	<u>8</u>	<u>중</u>	<u></u>	<u></u>	<u>\$</u>		42 64 64	<u> </u>	<u></u>	దే	
ordness	os CaCO ₃		23	65	98		7	0,	8	118	02		198	196	077	
	sod- ium Totol		30	36 5	35	36 133	29 261	26 249	<u>8</u>	32 11	35.	28 317	26 15	28 19	2 = = =	
otot	and and and and and and and and and and			169ª		299a					200g	8775	<u> </u>			
					—											
	(SiO ₂) Other constituented		ABS 0.00	Zn <u>0.01</u>	ABS 0.00	Pb 0.01					Abs 0.00 A1 0.02 Pb 0.01 Zn 0.01	Z C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	Silico (SiO ₂)			ଥ		89					<u>87</u>	Ħ				
Lion	Boran (B)		0.0	90.0	0.07	0.07	0.0	0.08	0.10	0.08	0.08	0.08	0.05	0.10	0.08	
parts per millian equivalents per millian	Fluo-			0.00		00.0					0.0	0.01				
ents per	NI- trafe (NO ₃)			0.03		15					0.22	0.04				
pd	8 5 D		18	18 0.51	24	33	3.84	HE:	0.34	23	16 0.45	3.69	3.47	2.93	21 0.59	
ē	Sul - fote (SO ₂)			1,2		11:0					0.13	0.48				
Mineral constituents	Bicar- banate (HCO _a)			1.31		3.06					1.38	230				
arol co	Carbon- ate (CO.,)	COUNTY		00.0		8					0.00	0.0				
M.	Potos-O sium (K)	HADERA C	2.2	2.8	1.7	0.10	0.11	0.2	2.3	2.4	0.07	5.4 0.14	3.5	3.6	0.07	
	Sadium (No)		15	16	22 0.96	36	2.18	41 1.78	16 0.70	26 1.13	18 0.78	2.57	33_	36	29 1.26	
	Mogne- sium (Mg)			5.8 0.48		0.86					0.60	22 1.84				
	Calcium (Ca)			7.9 14 0.70		7.7 36					7.8 16	7.6 90				
	Ŧ			7.9		7.7					7.8	7.6		8.1		
Specific	mhos		216	197	276	877	802	707	243	351	230	933	909	980	L07	
	Ten E• ci		72	17	17	69	20	69	17	17	77	22	89	69	89	
	Date		8-3-62	6-19-62	8-3-62	6-19-62	8-12-62	6-21-62	6-21-62	6-21-62	6-19-62	6-19-62	6-21-62	6-21-62	8-12-62	
State well	number and ather number		98/15 E-24F 1	95/16 E- 30C1	9S/16E-35N1	10S/14E-881	10S/14E-24B1	10S/15E-31A1	10S/16E-24HI	10S/16E-30K1	10S/17E-25N1	11S/14E-1A1	113/14E-5B1	115/14E-16A1	118/15E-23L1	
	Owner and use		R. Jessup irrigation	Gity of Chowchilla municipal	L. Baker irrigation	Red Top Ranch irrigstion	E. Hughes 1rrigation	H. Probert 1rrigation	J. Lilles irrigation	W. Haynes irrigation	Madera Country Club domestic and irrigation	Red Top Ranch 1rrigation	G. Turnbrow Ent.	G. Turnbrow Ent. irrigation	H. Shein irrigation	

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.O.S.), U.S. Agricultural consultants laboratory (U.S.A.C.L.). State Department of Water Resources (DRR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsente (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as G.O. except as shown.

	Stote well			Spacific conduct-				Miner	Mineral constituents	1 1	ni pe	ports per million equivolents per million	ports per million volents per mill	on illian			Total	à	Hardness		
Owner and	number and other number	Sompled	F. C.	ance (micro- mhos	품 공항 2	Colcium Sium (Co) (Mg)	Sodium (No)	Potos: eium (K)	Carbon Bi ate ba (CO ₄) (H	Bicor-St banote fo (HCO ₄)	Sul - Chlo- fote ride (SO ₄)	0- trafe (NO ₃)	Fluo- ride (F)	Boron (B)		Silica (SiO ₂) Other constituents ^d	eolids eolids in ppm	t pos	Total N.C.	\neg	Anolyzed by c
							MADERA	COUN	(eantin	ned)											
Red Top Ranch Irrigation	118/15E-29H1	6-21-62	69	736			35	2.7			36	424		0.07				34 1	142	ň	DWR
L. Peatman irrigation	11S/16E-22K1	8-12-62	2	807	8.4 35	5 1.25	29	4-1 8 0-10 0.	8 0.27 2.	173 7.0 2.84 0.15	5 29 0.82	0.23	0.00	0.00	81		304	29 1	150 0	o ns	nscs
City of Madera municipal	113/175-2581	6-19-62	r.	197	7.8 15 0.75	3.5	18 0.78	3.3	0.0	80 1.6 1.31 0.03	3 0.45	0.02	0.00	0.07	99	ABS 0.00 Fe 0.02 A1 0.31 2n 0.53	166ª	17	25	<u>a</u>	DWR
W. Jay domestic	11S/18E-20E1	6-21-62	78	509			18 0.78	4.4			0.45	1		0.07				38	57	ă	DWR
G. Houk Ranch irrigation	12S/14E-10N1	7-12-62	29	2,820	7.8 217 10.83	83 2.42	353 15.36	0.18	00.00	125 220 2.05 4.58	8 21.80	30 0.04	0.01	0.22	શ્રી		1,790	53 6	663 561		DWR
G. Houk Ranch irrigation	12S/14E-16K1	6-20-62	89	788	8.1 9.6	0.14	150	0.04	0.00	161 67 2.64 1.39	9 3.21	0.5	0.0	0.35	99	Fe 0.11 Ar 0.01 Zn 0.01	4.84,8	91	31	<u>8</u>	DWR
Red Top Ranch irrigation	12S/15 E -4Kl	6-21-62	69	267	8.0 39	5 14	35	3.7	0.00	136 11 2.23 0.23	3 2.12	0.03	0.07	90.0	ଥ	A1 0.05 A6 0.01	317ª	32	154 4	75 DW	DWR
Red Top Ranch Irrigation	12S/15E-22F1	6-21-62	69	331			1.39	1.8			0.70	10		0.06				74	93	<u>s</u>	DWR
W. Gill irrigation	12S/15E-27G1	6-22-62	69	366			1.61	2.2			0.90	le.		0.07				3	- 16	<u> </u>	DWR
G. Weer irrigation	128/17 E-5R 1	8-13-62	89	198			17.0	3.3			0.48	te-		90.0				38	99	<u> </u>	DWR
S. Thomas irrigation	12S/17E-7F1	6-22-62	69	797			33	6.12			28 0.79			0.11				38 1	113	<u> </u>	DWR
Libbiee Ranch irrigation	125/17 E-24A1	6-22-62	89	246			0.70	0.10			0.37			0.13				29		ă	DWR
Mordecai irrigation	125/18E-7L1	6-22-62	899	205			0.65	01.0			0,28	len.		0.10				23 1	104	<u> </u>	DWR
					-						-	-		-					+	4	7

e. Determined by addition of constituents.

b. Oravinetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, quality of Water Branch (U.S.O.S.), U.S. Agricultural Consultants Laboratory (U.S.A.C.L.), State Department of Water Resources (DRR) as indicated.

d. Iron (Pe), Aluminm (Al), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported hare as \$\overline{0.00}{0.00}\$ except as shown.

-381-

		Analyzed by c		DAR	USGS	DWR	DWR	DWR
-		$\neg \neg$		15 [0			16
	Hordness	Total Ppm		77	2	2	77.	296
+	ż	t o c		35	76	95	%	8 8
	Tofol	solved solved in ppm		217ª	165			5198
		Silico Other constituented		Fe 0.01				중 국 중 운 전 1919년 전 191
	ļ			8 <u>1</u>	34			2
	lion	Boron (B)		0.08	0.00	0.10	0.08	हा;
i e	E E	Fluo- ride		0.2	0.2			-18 -18
and the same	ents per	Ni- trote (NO ₃)		0.31	0.0			0.37
	equivolents per million	0 € (D)		25 0.70	0.34	18 0.51	18 0.51	1.47
	ri si	Sul - fote (SO ₄)		0.17	3.0			0.0 0.0
	constituents	Bicor- bonote (HCO ₃)	COUNTY (continued)	1.24	1.80			5.46
	Mineral c	Corbon- ofe (CO ₃)	(cont	000	00.0			8
	¥	Patos-(sium (K)	COUNT	3.6	0.03	0.0	0.05	න්.0 ල
		Sodium (No)	MADERA	0.87	7.00 2.00	2.13	30	22.39 39
		Mogne- sium (Mg)		7.8	0.0			1.57
		Calcium (Co)		18	1.8 0.09			1.34 1.34
		¥		7.8	8.2			ر. در
	Specific conduct-	ance (micro- mhos at 25°C)		1/2	205	230	351	794
		Temp T+ ni		72			69	- 28
		Oote		6-19-62	7-10-62	7-10-62	6-21-62	6-19-62
	State well	nymber and other number		125/18E-14J1	135/15E-22J1	13S/15E-25C1	135/16E-2C1	138/17E-5F1
		Owner and		Iverson and Carlton irrigation	Columbia Canal Co. irrigation	Columbia Canal Co.	K. Selbert irrigation	G. Roberte 138/17E-5Pl

a. Determined by addition of constituents.

b. Gravinetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants Imboratory (U.S.A.C.L.), State Department of Water Resourcee (DKR) se indicated.

d. Iron (Pe), Aluminm (Al), Arrende (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported bere as \$0.00 except as shown.

-382-

	Stote well			Specific					Mine	ral con	Mineral constituents	<u>.e</u>	parts per million equivalents per millian	ports per million valents per mill	million	l _e		Total		Hardness	\vdash	
Owner and	other number	Dote	Temp Temp	ance (mlcra- mhas	Ŧ.	Colcium Mc	Mogne - S sium (Mg)	Sodium P (Na)	Potos - Co sium (K) (c	Corbon B ate (CO ₃) (H	Bicar- bonate (HCO ₃) (Sul - ((((((((((((((((((Chia- ride (CI)	Ni- trote (NO ₃) (Flug- ride (F)	Boron Sil (B) (Si	Silica Other constituented (SiO ₂)	- sib salvad salids in ppm (b)	t pe	as CaCo Tatal N		Analyzed by c
									FRESNO	FRESNO COUNTY	haf											
Dos Palos Drainage District drainage	115/125-13J1	7-6-62		1,770	318	3.99	5.31	188 8,18	0.10	0.00	3,44	2.42	11.34 0.	0.05	0.00	8	굺	1,190		1,65	293 t	uscs
Central California Irrigation District Irrigation	11S/13E-17F1	7-6-62		1,310				192 8.35	2.9 0.07				7.67						19	198	н	DWR
Miller and fux irrigation	11S/13E-36B1	7-6-62		1,190				192 8.35	1.7				235			0.30			92	621		DWR.
Hanson irrigation	12S/12E-30MI	7-31-62	81	1,540	4.8	36	25.84	254	2.1	0.40	182 2.98	9.62	82 2.31 0	0,02	0.02	2,40	35	1,050	و ع	232	63 1	Sosu
Redfern Ranches irrigation	128/13E-9C1	7-16-62		3,870				573 24.92	3.2				14.02			2.60			- 62	754		DWR
J. G. Indart irrigation	12S/14E-29B1	7-6-62		1,160				152 6.61	2.9				5.72			94.0			62	900		DWR
Pinedale Water Company municipal	12S/20E-32J1	6-22-62	78	227	7.9	0.95	0.63	15 0.65	0.10	000	1.77	0.05	9.1 0.26 0	0,19	0.0	0.07	23 Fe 0.02, Zh 0.09,	185	88	62	0	DWR
B. Barber 1rrigation	12S/21E-31P1	6-18-62	83	258	8.1	1,10	0.92	12 0.52	2.0	000	2.06	12 0.25	0.12	01:00 00 01:00 01:00 01:00 01:00 01:00 01:00 01:00 01:00 01:00 01:00 01:	0.0	0.07	971	1808	8	101	0	DWR
irrigation	13S/14E-15B1	4-25-62	L.	2,320	8.1 13	1.89	0.20	1,97 21,60	2.0	00.0	3.40	22.31	270 7.60 0	000	0.03	1.19	জ	1,620	120	100	0	DWR
		6-20-62	F														Fe A1000.58					DWR
domestic and irrigation	13S/14E-34M	14-26-62	72	1,420	7.9	207 10.35	183	25.80 25.80	14 0.36	000	228 3.73	1, h17 29,50	672 18.91	8.0	70.0	0.50	ત.	3, 150	50 1,	50 1,272 1,085		DWR
Locke Brothers irrigation	13s/15E-18L1	7-6-62		924	8.1	0.70	0.38	2.96	2.0	000	1.95	31	1.52	0.05	0.03	0,10	141	273	72	475	0	USGS
Kenneson irrigation	13s/1 7E- 29L1	6-20-62	19	725				67 2.91	5.6				2.14			0.13			01	500		DWR
G. Meisner irrigation	138/19E-3011	8-2-62	7	257				17 0.74	0.10				0.26						58	257		E.M.O
a. Determined by addition of constituents.	ion of conetituen	te.			-					-									1			

a. Determined by addition of constituents.
b. Gravinentic determination unless otherwise noted.
c. Analysis by U.S. declogate unless otherwise noted.
c. Analysis by U.S. declogate unless otherwise the manner of Water Resources (DWR) as indicated.
consultants Laboratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated.
d. Iron (Fe), Aluming (Al), Arenic (As), Copper (Cu), Lead (FD), Wanganese (Vm), Zinc (En), reported here as 0.00 except as shown.

-383-

b. drawinetric determination unless constituents.

b. drawinetric determination unless constituents
c. Analysis by U.S. decological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural
c. Analysis by U.S. decological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural
commutants inboratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated,
d. Iron (Fe), Alaminum (Al), Areanic (Al), Copper (Cu), Lead (Fb), Manganese (Mn), Zinc (Zn),
reported here as 0.770, except as shown.

-384-

	Analyzed	by c		USACL	DWR	DWR	DATE	DWR	RAG.	DWR	DWR	SDSN	DWR	DWR	nsas	DWR	DWR
		7		0	0	0		59	0		550	1,120	572	0	0	-	0
1	OS CACOS	Tatai		65	166	155	287	307	106	130	710	1,260 1	656	77	87	₹ S	8
		S E		49	37	8	Q ₇	8	35	82	58	37	49	8	9	20	2
10101	000	solide (a)		182	356	279		8 694	196		1,280	2,860	1,5408	306	281	524	17
		(SiO ₂) Other constituents ^d			ABS 0.00	ABS 0.00	ABS 0.00	ABS 0.00	ABS 0.00		7 4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Zh 0.02 N 0.08 N 0.08 N 0.08				ABS 0.00
		Silica (SiO ₂)		쿼	51	S		26	ଷା		31	A	<u> </u>	Ħ	ಪೆ	84	6.4
		Boran (B)		8	0.06	0.08	0.11	0.06	0.24	8.2	0.98	1.60	0.23	0.53	8	0,14	8
millian		- P. C.		0.1	0.1	0.2		0.1	0.1		0.02	0.01	0.0	0.0	000	000	000
parts per millian		rote (NO ₃)		0.32	21 0.34	0,32		0.32	0.3		0.03	1.7 0.03	0.08	000	0.21	9.0	0.0
ports per million		음 한 한 한 한 한		7.1	41 1,16	15	39	30	1.0	2,12	22.12	184 5.19	24.14	1.41	0.71	2,42	0.05
Ē	-	Sul - fate (SO ₄)		0.42	39	0.23		81	3.8	12.7	14.64	31.08	0.31	0.54	4.0 0.08	1.14	0.02
constituents	-	Bicar- banate (HCO ₃)	1nued)	101	3.59	3.34		208 1.88	180 2.95		3.20	175 2.87	102 1.67	2.44	2.36	3.93	0.18
		Carbon ate (CO ₃) (F	COUNTY (continued	000	00.0	0.03		2 0.07	3 0.10		8.00	00.00	8	0.0	5.17	000	000
Mineral	-	Potos - Cc sium (K)	COUNT	2.5	6.5	5.4	0.12	3.6	2.0	0.05	7.4	6.0	0.38	0.07	7.2 0.18	5.4	0.03
		Sodium (Na)	FRESTIO	30	2.04	36	3.87	36	1.17	26.11	130	348	295 12.83	3.96	38	98	0.07
		Magne- sium (Mg)		7.8	2.27	1.50		3.63	7.5		7.29	163	40 3.33	0.1	6.0	8.4 0.69	0.1
		Calcium (Ca)		13	21 1.05	32		2.50	30		138 6.89	236	196 9.78	5.4	1.25	68	3.0
	:	£		7.9	8.3	4.8		8,3	4.8		& C1	8.0	7.6	8.2	8.3	8.2	7.1
Specific	conduct-	(micro- mhos at 25°C)		86	548	428	870	732	314	1,640	1,740	3,2T0	2,920	1,To	349	862	24
		ē,		89	69	73	19	69	72	88	7.77	72	72	72	7.	75	74
	Date	pelduos		10-24-62	7-30-62	6-20-62	6-19-62	6-20-62	8-15-62	7-31-62	9-20-65	7-31-62	29-02-9	6-20-62	7-30-62	6-19-62	8-9-62
	number and	other number		14S/19E-14P1	14s/19E-22R1	14s/20E-2JJ	148/20E-27C1	148/21E-12F1	14s/22E-25P1	158/14E-36Q2	15S/15E-20N2	15S/15E-25N1	15s/17e-10R1	15S/17E-34A1	15S/18E-16G1	158/19E-35L1	15\$/21E-24.L1
		Owner and		F. Errico	P. Rommart irrigation	City of Fresno municipal	C. Fore irrigation	O. W. Leeban irrigation	City of Sanger dowestic	F. Yearout irrigation	Pucheu irrigation	Reece Bros. irrigation	James Irrigation District irrigation	James Irrigation District irrigation	James Irrigation District irrigation	W. Anderson irrigation	P. G. & E. industrial

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted,
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.Q.S.), U.S. Agricultural
Consultants laboratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated,
d. Iron (Fe), Aluminum (A1), Arsenic (As), Copper (Cu), Lead (Pb), Manganess (Mn), Zinc (Zn),
reported here as 0.00 except as shown.

	Anolyzed by c			DWR	DWR	DWR	DWR	DWR	DWR	DWR	spsn	DWR	DWR	DWR	DWR	DWR	DWR
8 8		mdd		0	304	357	961	219	0	0	0	39			1,040	0	
Hardn	os CoCO ₃ Totol N.C.	mdd		101	707	519	625	339	83	88	57	fi	292	292	1,100	178	3%
	E S E			32	1,51	36	36	574	72	75	1,8	83	59	55	33	J 76	19
Total	solids solids	_1		221	1,1304	1,040	1,2808	1,010	386	1374	160	9138			2,560	876	
	Silico Other constituents ^d				2 8 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0			Fe 0.04, Mn 0.23, A1 0.01, As 0.01	ABS 0.00				Fe 0.01, Ma 0.09, A1 0.16, Zn 0.11				
	Silico (SiO ₂)	<u>'</u>		82	ॢ	M	젊	45	궑	길	A	치			ଧ	81	
loi	Boron (B)			0.05	1.70	0.74	1.30	1.30	0.14	0.03	8	1.8	0.73	0.78	70.7	1.60	2.60
millor er mil	Fluo-	=		0.0	0.3	0.2	0.2	0.0	0.3	0.3	0.1	0.0			0.6	8.00	
ports per million equivalents per million	trafe	(NO3)		0.31	6.7	1.4	0.02	0.5	0.00	1.1 0.02	12 0,19	2.0			0.36	0.00	
po	- Spirit	(15)		0.45	34 0.96	60 1.69	76 2.14	1.61	0.73	0.11	12 0.34	3.02	1.35	1.35	5.01	83 2.34	222
ri si	Sul - fote	(50%)		0.10	13.74	2 ⁴ 7 11.39	730	532	21	3.8	8.0	10°6	470 9.78	500	30.51	387	906
Mineral constituents		(HCO ₃)	FRESHO COUNTY (continued)	2.08	1.95	3.23	2.57	2.41	255	13.54	1.67	87.			1.24	263 1.31	
eral c	Carbon	(°)	<u>ق</u> الا	00.0	000	000	0.00	0.0	0.0	0.0	0.0	0.00			000	2 0.07	
2	Potas-C sium	3	Mnoo o	1.8	0.08	3.0	3.6	3.8	0.00	3.2	2.6	0.03	0.05	0.05	2.0	10.0	0.4
	Sadium (No)		FRESI	22 0.96	192 8.35	133	163	182 7.92	101	28	26 1.13	258	7.48	163	322	258	377
	Magne	(BM)		8.1	2.64	5.93	87 7.15	34 2.83	2.7	0.7	0.5	9.0			88. 6.88	9.4	
	Calcium			27	108 5.39	1.4	5.34	3.94	28	10 0.50	22 1,10	32			302	2.79	
	Ŧ			8,1	89	8,2	8.2	8.2	8	8.0	8.2	7.9			7.9	8.4	
Specific		of 25° C		289	1,560	1,460	1,740	1,440	583	185	228	1,450	1,290	1,310	3,000	1,440	2,400
	Tamp in °F			69	8	79	62	15	99	73	69	88	76	92	92	77	ま
	Sompled			10-24-62	6-21-62	6-19-62	6-19-62	6-21-62	7-30-62	6-19-62	7-30-62	6-19-62	6-21-62	4-25-62	14-25-62	6-19-62	4-25-62
State wall	number and other number			15S/24E-23KI	165/14E-1091	16S/15E-8N1	16s/15E-25@	16S/16E-9N2	16s/17E-10G	16S/18E-10A1	16S/21E-21F	17s/16E-18E1	17s/17E-23Q1	17S/17E-27R1	17S/17E-28R1	17S/18E-3501	18S/15E-24N1
	Owner and			J. E. Monson domestic and irrigation	W. Deal irrigation	F. Yearout 1rrigation	Vista Del Llano irrigation	Rabb Bros. irrigation	irrigation	C. Phillips domestic	L. Mason irrigation	Vista Del Llano irrigation	H. Deavemport irrigation	H. Deavemport irrigation	San Joaquin Cotton Co. industrial	Errataberry 1rr1gation	Harris Parms

a. Detarmined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Mater Branch (U.S.G.S.), U.S. Agricultural analysis by U.S. Accological Survey, Quality of Mater Branch (U.S.G.G.S.), U.S. Additional definition (Fe), Aluminum (Al), Aresule (As), Copper (Cu), Lead (Fb), Manganese (Mn), Zinc (Zn), reported here as G.O. except as shown.

- -386-

	D .								_					
	Anolyzed by c		DAR	TWE	DWR	USGS	DWR	DWR	DWR	DWR.	DWR	DWR	DWB	TWR.
88	S ON E		0	269	291	299	267	527		1,060				0
Hordness	Toto Ppg		65	366	1,16	382	388	169	182	1,170 1,060	1,68	371		80
	E BE		87	2	113	727	53	74	68	32	100	η-7		92
Total	solved solved mgq ui		735	1,710a	ъ₁196	1,150	1,050	1,4908		2,260a				1,100
	Silica (SiO ₂) Other constituents ^d			Fe 0.03, Mn 0.03, Zn 0.01,	As O.OI			Fe 0.04, Zn 0.02, Al 0.09					Fe <u>0.02</u> , Pb <u>0.01</u> , A1 <u>0.09</u> , 2n <u>0.01</u>	
		_	17	29	29	22	22	75		27				52
Tion	Boron (B)		1.06	1.60	0.64	0.80	8.0	2.10	1.10	0.82	0.99	0.62		1.34
milla	- our pride (F)		0.0	0.3	0.2	0.2	0.4	0.5		0.3				0.02
ports per millian valents per mill	Ni- trote (NO ₃)		0.0	5.3	2.6	3.2	0.00	11 0.18		72 1.16				00.0
ports per millian equivalents per million	Olegi olegi		103	623 17.57	57	77 2.17	62 1.76	3.92	H	3.98	71.	34		13.49
ri si	Sul - fote (SO _e)		230	398 8.29	522	585 12.18	551 11.47	785 16.34	69h 11.113	1,330	581 12.10	10.35		70
Mineral constituents	Bicor- bonate (HCO ₃)	FRESNO COUNTY (continued)	100	11.93	152		271.2	3.28		133				342
o lore	Corbon ote (CO,)	iğ (c)	0.00	00.00	0	8 00	0.00	0.00		0000				00.0
ž	Potos - Sium (K)	COUNT	2.0	3.14 0.09	2.9	2.2	0.0	3.7	2.2	5.2 0.13	3.1	0.06		0.06
	Sodium (No)	FRESN	8.90	20.11	11,7	206	200 8.70	9.37	274 11.92	258 11.22	11,8	127 5.52		18.90 18.90
	Mogne- sium (Mg)		0.11	3.12	93	38	525	122 10.07		167				0.50
	Colcium (Ca)		2h 1,19	81 <u>4</u> 1.19	68	3.39 1.31 1.31	3.50	3.74		193				20 1.00
	¥		8.2	7.8	8.2	7.7	3.1	8.2		8.1				o
Specific	ance (micro- mhos		1,060	2,880	1,370	1,590	1,450	2,100	1,850	2,320	1,490	1,270		2,760
	Te ci		85	8	81	77	8	73	82	77	7.8	92	92	86
	Dote sampled		4-25-62	6-21-62	6-19-62	8-16-62	11-211-62	6-21-62	1,-25-62	6-19-62	1,-25-62	h-25-02	6-21-62"	1,-25-62
Stote well	number and ather number		18S/17E-13Wl	18S/17E-30P1	19S/17E-13NI	195/185-23D2	19S/18E-28E1	20S/1£E-25D2	20S/16E-4P1	20S/17E-941	20S/17E-11N1	20s/17E-36D1		208/185-2lp1
	Owner and		F. Diensr irrigation	Benson 1rrigation	Giffen, Inc.	irrigation Boston Land Co.	Roston Land Co.	Allen irrigation	Shell Oil Company industrial	Giffen, Inc. irrigation	P. Kuchen Ranch irrigation	V. Thomas Manch domestic, stock and irrigation		Boston Land Company irrigation

a, Determined by addition of constituents.

b, Gravimetric determination unless otherwise noted,

c, Analysis by U.S. Geological Survey (auxility of Water Branch (U.S.O.S.), U.S. Agricultural
Consultants indoratory (U.S.A.C.i., State Department of Water Resources (DWR) as indicated,

d, Iron (Fe), Aluminum (A1), Arcente (A2), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (En),
reported here as 0.0.

reported here as 0.0.

-387-

	P			ے	٠,	ے ۔	נו	٦		ы		.1			۔				
	Analyzed	60		USACL	USACL	USACL	USACL	USACE	DWR	USACE	DWR	USACL	DWR	DWR	USACL	DWR	USGS	DWR	DWR
	as CaCO ₃	N.C.		52	0	33	শ্ৰ	٥		0		0			0		1463		
		Tatal		88	193	310	170	187	94	55	87	70	101	142	101	198	568	961	350
	F 6 5			8	28	01	82	8	8	26	22	9	319	O#	62	37	× -	3	₹.
1		eolids in ppm (b)		86	308	640	308	380		991		760			315		1,230		
		(SiO ₂) Other constituents							ABS 0.00					ABS 0.00					ABS 0.00
	2	(SiO ₂)		킾	치	81	치	킈		ክ		প্রা			계		뗐		
lion	Boron	<u>e</u>		00.00	0,0	0.10	0.10	00.00	0,10	0.00	0.10	0.00	0,10	0,12	0,10	89	8	0.18	0,16
million mil	Fluo-	şe.		0.01	0.1	0.01	0.01	0.01		0.01		0.1		-	0.01		0.1		
parts per millian	ī	trate (NO ₃)		0.55	7.8 0.13	15°0	0.23	0.29		5.6		9.3			0.31		0.24		
od DAINO®	- old	(C)		1.56	0.90	102 2,87	まる	1:12	0.13	5.7.6 5.16	4.0	6.0	1.9 0.14	1,18	62	21 0.59	538 15.18	3.47	23th 6.60
da in		fot• (SO ₄)		33	0.36	57 1.18	12 14 14	09.00		28 0.58	-	0.37			23 0,18		0.42		
constituents	Bicar-	banate (HCO ₃)	緖	3.12	1.10	3#1 5.58	3.02	3.63		11.85		121			167 2.74		128 2,10		
Mineral c	Carbon	(CO 3)	TULARE COUNTY	000	000	000	1, 0,14	000		00.00		000			0.0		0.0		
M	Patas -	Sium (X)	TULAR	0.06	3.6	2.5	3.0	3.4	0.0	0.2	0.5	0.03	1.0	2.7	1.9	2.3	5.8	3.1	5.3
	Codium	(NO)		1,80	35	98	31 1,35	41 1.80	32 1.39	33	15 0.65	1.20	9.0	1.96	3.35	2.26	152	3.09	3.74
	Magne	mis (Mg)		1.82	2°00 2°00	24 1.98	17 1.39	1.62		1.7 0.14		0.05			12 1.03		85 7.02		
	Colour	(Ca)		2,33	37.	18 ± 18 ± 18 ± 18 ± 18 ± 18 ± 18 ± 18 ±	2°00 1000 1000	2.11		19 0.97		1.34			800		87 1.34		
	¥			8,1	8.2	7.8	8.3	8.2		8.0		8,1			8.2		8.2		
Specific	ance	at 25°C		 &	28	96	98 ₄	530	88	230	529	980	222	₹8 ⁴	55	611	1,920	726	1,150
	Temp in oF			r r	91	17	2	92	72	89	73	88	7	73	72	2	72	7	
	Date			7-26-62	8-1-62	6-18-62	6-21-62	7-3-62	6-18-62	7-24-62	6-18-62	6-21-62	6-18-62	6-18-62	6-18-62	7-24-62	8-14-62	7-10-62	9-15-65
State well	number and			16s/24E-3JJ	16S/25E-32N	17S/23E-8H1	178/24E-15A2	17S/25E-34P	18S/24E-19M1	18S/26E-10N	195/238-2461	198/24E-22C1	198/25E-31J1	198/26E-3KI	19S/26E-26MI	20S/23E-27P	208/26E-3F1	20S/26E-5R1	208/26 E-13A1
	Owner and	9 50		R. Kalender irrigation	California Growers Wineries industrial	J. Agutav domestic	R. E. Stapleton irrigation	Yaquda Brothers irrigation and domestic	A. Castro domestic	D. Shannon irrigation	Jinett Brothers domestic	Pacific States irrigation	J. Lewis domestic	City of Exeter domestic	R. Montgomery irrigation	Harris and Cade irrigation	C. Pruner irrigation	A. W. Purze irrigation	H. O. Carr 208/26E-13A1 9

a. Determined by addition of constituents.

C. Auslysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants Indooratory (U.S.A.C.L.). State Department of Water Resources (DMR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Fb), Manganese (Mn), Zinc (Zn), reported here as Occopy.

-388-

	100			Specific	-				Minera	Mineral constituents	fuents in		parts per million equivalente per million	Der milli	on Illion			Totol		Hardne	-	
Owner and	ather number	Date	F. C	ance (micro- mhos	Ŧ	Calcium Ma	Magne - Si sium (Mg)	Sadium Pc (No)	Patas-Carbon- sium ate (K) (CO ₃)	bon- Bicar- te banate 7,3 (HCO3)	or- ofe fate O ₃) (SO ₄)		- trate (NO ₃)	Flug Fige	Boran (B)		Silica Other constituents ^d (SiO ₂)	adived solids in ppm (b)	T D E	as CaCO ₃ Total N.C.		Analyzed by c
								TULAFE	COUNTY (Continued	(Contin	ned)			_								
Rogera Farms & S. A. Camp irrigation	20S/26E-19F	6-25-62	72	144			~,-	1.87	3.2			95.0	In		0,16				77	711	н	DWR
Jensen irrigation	20S/27E-31J1	8-14-62	7.2	164	4.8	1.30	1.16	10.2 2.04	3.9 5.0	5.0 0.17 2.56	56 21	# 1.02	37.00	S	800	<u> </u>		310	75	138	2	nses
J. G. Boswell irrigation	21S/23E-22A	9-27-62	72	388	8.2	9.5 0.46 0.46	0.5 0.04	3.10	0.4 0	0.00 2.65	2 65 0.38	38 0.43	0.0	0.0	3 0.20	ଷ		210	8	25	0	DSACL
J. Torrez, Jr.	21S/24E-10N1	7-3-62	73	235	0.6	0.21	0.00	2,30	0.3	0.47	1.45 21 1.45 0.45	7.1 0.20	0.0	000	3 0.20	티		186	16	7	0	USACL
W. Narness domestic and irrigation	21 s/27 E-15P2	7-31-62	02	900	8,1	2.56	1.53	1.35	0.06	0.00	252 4.13 0.31	31 0.70	0.26	250 0.01	1 0.10	% 		280	۲ <u>۲</u>	505	0	USACL
City of Forterville industrial	215/27E-27F1	8-14-62	10	619	8 3	2.34 0	7.0 0.58	666 2.87	7.2 0.18 0.	0.00 0.00	168 31 2.75 0.64	T 1.38	19°0	64 0.04 64	0 0	77	ABS 0.40	1,13	84	146	0	DWR
W. Murray irrigation	22S/23E-6A1	8-2-62	2	740	8.2	30 1.18	10 0.82 0.82	125 5.13 5.13	0.03	0.00	3.90 0.60	56 101 101 101 101 101 101 101 101 101 10	0.00	700	S	<u></u>		432	02	115	0	USACL
J. G. Schott lrrigation and domestic	22S/27E-22A	6-21-62	72	%				33	1.7 0.04			0.25	lio.		त.0	OIL			7₹	8		DWR
Schenley Ranch irrigation	223/26E-16M1	8-12-6	8	270	8.2	9.4 0 0.47 0	000	2.37	0.8 0	0.00	137 10 2.25 0.21	21 0.30	0.04	5 0.2 04 0.01	0.20	177		172	83	7g	0	USACL
J. Pemberton	22S/27E-11C1	7-31-62	78	28				0 0 1 30 1 1 1 1	0.00			0.31	ic.		0.17	N1			8	†25		DWR
G. C. Marshall irrigation	23S/23E-32N1	7-26-62	83	1,970				250 10.88	19 0.49			12.07	20		0.65	int			69	555		DWR
J. Faris irrigation	23S/24E-32P	8-20-62	62	243				2.22	0.0 0.0			0.31	Id		0.23	act.			₹ 	7.3		DWR
T. Kirksey irrigation	23S/25E-9F1	7-26-62	73	883				32	10.0 0.01			0.56	No.		0.12	0.1			775	28		DWR
R. Burke irrigation	23S/2TE-21H	9-15-65	ま	582	8.1	9:0	000	5.35	0.04	0 0 0 0 0 0	2.48 1.01	01 2.18		0.8	09.00	<u> </u>		356	88	23	0	USACL
O. Classen irrigation	23s/27E-27G1	9-12-65	8	585				1,18	2.8 0.07			0.87	-41		0.19	61			₹.	2		DWR
H. Mitchell irrigation	24s/23E-8D	7-26-62	79	95	8 010	0°.98	3.2	100	3.3 0.08 0.0	1 0.0 11/2	170 31 2.78 0.64	54 2:03 64 2:03		0.00	0°30	約		364	=	29	0	USACL
2004					1	-	1		-		1				-							

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants laboratory (U.S.A.C.L.). State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Aluminum (A1), Arsenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as 0.00 except as shown.

		Analyzed by c	T		USACL	USACL	<u> </u>	
					ns/	ns/	DWR	
	sseup		Z da		8	0		
			ppm		137	18	검	
-	<u>.</u>		E		35	8	ま	
	Tota	eolved solids			78	168		
		Silica Other constituents						
		Silica	(2012)		띥	ম্		
	col	5.			0.00	0.10	0.35	
	millian er mill	Flua-			0.0	0°0		
	parts per millian equivalents per millian	- iva			14.0 0.74	0.05		
	equive	의 사이트 N	<u> </u>		23	0.55	30 0.85	
	ui 1	Sul -			38	00 ti		
	constituents	Bicar-	(K) (CO ₃) (HCO ₃)	tmued)	2.16	1.70t		
۱ ۲	Mineral ca	arbon	<u>(</u> 2	Coop i	000	000		
7061	Mine	Solos-C	3	TULATE COUNTY (Continued	2.2	0.0	1.9	
		Sadium	(NO)	TOLAR	34	25.40	% 1:18	
		Magne-			7.4	0.00		
		Calcium	(S)		21.2	7.2		
		Ĭ			8.0	8 . 1		
	Spacific conduct-	ance (mlcro-	at 25°C)		1,10	570	1,58	
		Temp or or			1/2	79	ಹೆ	
		Date eampled			6-12-62	9-12-65	6-12-62	
	State well	number and ather number			24s/25E-23H1	248/26E-3112	24s/27E-32P1	
		Owner and			M. Hall irrigation	Schenley Ranch 1rrigation	M. Gutinich irrigation	

a. Petermined by addition of constituents.

b. Gravimetric determination unless otherwise noted.
c. Analyzis by U.S. Coclogical Survey, Quality of Mater Branch (U.S.G.S.), U.S. Agricultural c. Analyzis by U.S. Coclogical Survey, Quality of Mater Breanch (DMR) as indicated.
Consultants laboratory (U.S.A.C.L.), State Department of Mater Recourses (DMR) as indicated.
d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Fo), Manganese (Mn), Zinc (Zn), reported here as \$\frac{\chi_0}{\chi_0}\$ except as shown.

																					Ì	
	Stote well			Specific					Miner	Mineral constituents	tifuents	ië.	parts per million equivolents per millian	s per m	millia	l _c		Totol	å	Hardness	80	
Owner and	number and other number	Sompled	in • F	(micro- mhos at 25°C)	¥	Calcium Mo	Mogne- sium (Mg)	Sodium s (No)	Patos-Col sium (K) (C	Corbon Bi	Bicar- S bonate f (HCO ₃)	Sul – Co fote (SO ₄)	Chlo- ride (CI)	Ni- frote (NO ₃)	Plud- Pige (F)	Boron Sili (B) (Si	Silico Other constituents ^d	eolved solids in ppm (b)	sod in	as Ca(Total PPm	_	Anolyzed by c
								- ×1	KINGS C	COUNTY												
R. Hallsten domestic	178/22Е-2Н	8-13-62		1),9				5.8 0	0.03			mlo	3.6		cl	0.08			17	8	10	DWR
Woods & Grognani irrigation	188/19E-661	8-30-62	29	1,900	8.3	60 2.99 16	16 1	413 1 17.95 0	0.05	0.00	272 61.10 1.106	682 11	115 0.0 3.22 0.00		0.8	1.60	19	1,370	81	215	0	USACL
D. Johns irrigation	188/19E-26H1	8-15-62	68	1,73				103 0	0.5			010	26 0.73		cl	0.82	¥tra-		96	01		DWR
W. Verboon irrigation	18S/21E-14F1	8-29-62	63	293				20 0.87 0	0.03			710	0.39		ol	0.65			59	103		DWR
Weddeburn Bros. irrigation	19S/19E-15N1	8-15-62	78	1,370	8-1-2	51 6. 2.57 6.	6.4	275 11.95 0	0.05	8.1 2 5.0	2lp 1.00	352 II	3.33	2.9 0.05 0	0°0 1'	1,70	35	986	79	155	c	USACL
West Lake Farms irrigation	195/19E-25L	8-24-62	78	1,050	9.1	8.4	0.10	252 11.00 0	0.03	1.05	65.7	0.0	7/4 2.10 0.5	0000	0.2	1,30 11	115 ABS 0,00	689	88	56	0	USACL
Serpe domestic	19S/20E-33A1	8-14-62	78	557				121 5.26 0	1.0 0.02			MIO	30 0.85		حا	1.80			96	10		DWR
Mussel Slough Farms irrigation	195/213-391	8-11-62	179	2115	8.3 0	0.21 0.21	0.00	2,43	0.10.0	0.00	2.37	0.10	3.9 0.0	0.00	0.0	0.30	38	173	92	11	0	USACL
Manzanillo Ranch stock & irrigation	193/235-841	8-16-62	71	152				28 0	0.5			Mo	5.6		ol	0.11			81	7		DWR
C. Orton irrigation	205/205-1011	8-15-62	72	81,0	6.8	11h 0.52 0	2.2 0.18	190 1 8.25 0	0.03	31 3	398	25 31 0.52 0	34 0.95 0.	7.1	0.0	1,30	36 ABS 0.00	552	36	35	0	USACL
H. Yokum & Sons domestic	20S/21E-12A1	8-16-62	774	1,120				5.52	1.0			410	192		01	0.30			525	255		DWR
Salyer Land Company irrigation	20S/21E-16D	8-14-62	76	163		613	98	1.1		-		55.		01	0.42				8	22		DWR
J. Hahsey domestic and irrigation	203/22E-1A1	8-16-62	70	217		E I	36	0.00				0.10		01	0.12				69	35		DVR.
J. G. Stone Land Co. domestic and irrigation	215/136-101	8-15-62	75	1,440	8,1	89 37	3.09	190 8.25	0.05	0.00	93 52 1	591 6 12.31 1	6lu 1.81 0.	0.15	0.0	0.70	22	1,130	52	375	299	USACL
E. H. Aldrin irrigation	213/1812-1741	8-23-62	76	1,180	8.0	81, 1,18	3.12	5.35	2.6	0.00	109	10.00	0.70	0.12	0.0	0.50	9-6	910	175	365	275	USACL
J. Verboon irrigation	215/21E-1A2	8-23-62	68	1,840				362 2	2.8			NIO .	27.1		٦١	1.00			£	182		TWIR
														-	-	-				-	┪	

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural consultants laboratory (U.S.A.C.L.), State Department of Water Recources (DRR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Fb), Manganese (Mn), Zinc (Zn), reported here as G.TO except as shown.

-391-

ſ		P			_	_	_						
		Analyzed by c	TAMO.	USACE	USACL	USACL	TWR	IISACL	USACL	USACL	USACL	USACL	
	888	N.C. PPR		0	82	0		165	0	195	713	0	
	Hard	as CaCO ₃ Tatal N.C. ppm ppm	56	52	106	72	56	765	010,1	1,20	888	76	
	å	S S E	19	89	8/4	89	72	65	83 1	á	37	£	
	Tatol	solved solved in ppm (b)		21/9	890	750		2,3140	6,640	960	1,820	272	
		Silica Other canstituents ^d (SiO ₂)	ABS 0.00	A8S 0.00									
		Silıca (SiO ₂)		28	92	55		36	53	66	37	50	
	ē	Baron (B)	0°.11	0.10	0.30	0.10	0.27	2.70	7.140	1.60	1.80	0.30	
	millian er mill	Flua- ride (F)		0.1	0.02	0.0		0.02	0.1	0.01	0.1	0.01	
	parts per millian equivalents per millian	rate (NO ₃)		3.1	0.0	3.3		1.8	0.0	6.7	28	c/8 6/6	
	oviupe	음. - 10 (고)	16 0.45	11,17	1.20 1.20	222	23 0.65	106	3369	69 1.95	258	0.35	
	ë	Sul - fate (SO ₄)		0.00	535	96		1,326 27,01	7.2	9.23	831	67 1.11	
	constituents	Bicar- banate (HCO ₃)	continued	325	68	260		157	23.01	263	3.40	1778 2.92	
306	Mineral ca	arbon- ate (CO ₃)		12 0.140	00.00	11 0.38		0.0	00.00	5.4	0.00	8	
-	M	Potas-Carbon- sium ate (K) (CO ₃)	0.6	0.8	0.03	1.1	3.5	0.12	23	3.4	6.8	0.01	
		Sadium (Na)	146 2,00	207	265	270	3.09	505	2,360 102,61	173	238 10.35	3.93	
		Magne- sium (Mg)		0.35	1.7	5.6		98 7.12	203	73	140 11.46	0.0	
		Calcium (Ca)		17 89°0	07 1.98	19 0.97	-	3.76	3.50 16	2.43	126 6.29	0.50	
		Hd		9.8	7.8	9.1		8.1	8.1	8.3	0.8	2 8	
	Specific conduct-	ance (micra- mhos at 25° C)	316	980	1,320	1,265	h28	2,920	000,11	1,420	2,400	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7	
	, -	Ten n • F	29	72	81	79	78	8/1	7.1	7.1	76	6	
		Sampled	8-20-62	8-20-62	8-23-62	8-20-62	8-20-62	8-23-62	3-20-62	8-29-62	9-23-62	8-21-62	
	State well	nymber and ather number	215/22E-13G1	215/27E-22M2	225/175-1512	22S/19E-20N	225/22±-10A1	. 23S/18E-29El	233/212-18D1	24s/18E-1901	245/19E-30N1	21s/2 2P-35t1	
		Owner and	J. Boyett stock and irrigation	P. Rietkerk domestic	Avenal High School domestic	W. F. Prouty irrigation	P. Hansen domestic	Tidewater Assoc. Oil Co. 23S/18E-29El industrial	South Lake Farms irrigation	P. Rowe irrigation	South Lake Farms irrigation	irrigation and stock	

a. Determined by addition of constituents.

b. Gravinetric determination unless otherwise noted.

c. Analysis by U.S., Geological Survey, Quality of Water Branch (U.S.O.S.), U.S., Agricultural consultants laboratory (U.S.A.C.L.), State Department of Water Resources (DRR) as indicated.

d. Iron (Fe), Aluminum (A1), Areenic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reported here as O.D. except as shown.

	Store well			Specific					Minsrol	Minaral constituents	uents in	eden	ports per million equivolents per million	r millo	Ligh			Total	à	Hardness		
Owner and	ather number	Somplied somplied	Temp n • F			Calcium Ma	Magne- Sad Sium (Mg)	Sadium Pote (No) Siu	Potas-Corbon- sium ate (K) (CO.)	e benote	r- Sul - fate (SQ.)	8 E E	frote (NO ₃)	Fiug-	Boren (B)	Stica (SiO ₂)	(SiO ₂) Other constituents ^d	solved solids in ppm	e de la composition della comp	Total N		Analyzed by c
					-			KERN	IN COUNTY	, _E 1	L											Т
Tejon Ranch domestic	TW71-M9T/NTT	6-19-62	7/4	7671			2.13	3 5.4	_ -4			12 0.34			0.28				37	174		OWR .
Tejon Ranch domestic and irrigation	11N/19W-25F1	6-19-62	89	1,79	8.1	1.85 185	1.57	7 0.06	00.0	0 3.23	1.02	0.56	0.08	0.03	0.35	77.	Zn 0.05 Fe 0.01	301	32	165	3	DWR
W. Fry irrigation	11N/20M-8R1	9-56-62	8	1,580			52.44	4 0.19	16:			54 1.52			0.52				32	558		DWR
Kern Rock Company industrial	11N/20W-25K1	6-19-62	8	2,390			206 8.96	5 0.28	180			1.92			94.0		13 0,00		33	905		DWR
Mazzie 1rrigation	11N/22W-8G1	9-5-62	83	3,070	8.1 91 91	340 16.97 16.97	5 274 11.92	92 0.28	000	0 2.23	1,500	143	31	0.05	3.10	ଯା		2,760	31,	1,320 1,210		nsgs
R. Hildebrand 1rrigation	12N/19W-33R1	6-19-62	72	359			1.39	3.6	عاير			7.7			0,18				38	807		DWR
Parks Brothers 1rdgation	12N/21W-33N1	6-26-62	8	1,540	8.1	168 48 8.38 3.93	33 4.74	8.4	000	0 2.00	700	28 0.79	0,22	0.06	0,39	521	Zn 0.02 Fe 0.06	1,260	27	616 5	D 975	DWR
Gilland Oil Company industrial	255/18E-3N2	7-26-62	72	4,120	8.0 26	260 25	257 21.13 256 15.49	7.0	0.00	0 2.92	24.57	20.37	0.13	0.02	2.10	73		3,270	31,	1,700 1,550		ณรบร
K.K. Fanch # 25 irrigation	25S/19E-602	7-26-62	78	1,100	8.2 13	136 20	201 16.51 23.92	92 20	0.00	0 3.25	29.98	482 13.60	0.11	0.2	2,30	77		3,320	50 1,	1,160 9	30 B 66	USGS
K.K. Ranch # 29 irrigation	25S/19E-7P1	7-26-62	76	5,120	8.1 12	128 26. 6.39 21	262 21.51 33.06	9E*0 90	00:00	348	2,150	400 11.28	0.24	0.0	7.20	77		14,1470	54, 1,	54 1,400 1,120		USGS
		8-23-62	78														Fe 0.28;As 0.01 Al 0.31;Zn 0.01				ă ———	DWR
J. Errotebarre Stock	255/19E-2381	6-6-62		3,430	8.3	134 6.69 11	142 11.67 465 20.23	23 0.18	18 0.33	3 3.34	1,230	320 F 9.03	0.29	0.02	3.30	32		2,740	Z	913	n 782	usos
G. Fiarini Domestic	255/24E-27R1	6-27-62	980	770	801-3	85 10 4.24 0.86	86 2.70	0.00	0.00	- 11 1.87 1.87	3.79	1.27	0.65	000	2.50	প্ল		576	35	255	162 U.	nses
The state of the state of the state of	don of conctituen	0			-			-	-											-	-	7

e. Determined by addition of constituents.

b. Gravinetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants indoratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Fe), Manganese (Mn), Zinc (Zn), reported here as 0.00 except as shown.

-393-

Magne- Sodium Poics-Carbon- Bicar- Sul- sium (Na) (K) (CO ₃) (HCO ₃) (SO ₄)
KERN QOUNTY (continued)
$\frac{31}{1.35}$ $\frac{2.3}{0.06}$
46 3.2 2.00 0.62 0.62
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
815 35.45 0.09 32.71
$\frac{142}{11.70}$ $\frac{205}{13.27}$ $\frac{2.5}{0.06}$ $\frac{14}{0.47}$ $\frac{202}{3.31}$ $\frac{855}{17.80}$ $\frac{216}{6.09}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
$\frac{0.00}{0.00}$ $\frac{61}{2.65}$ $\frac{0.7}{0.02}$ $\frac{0}{0.00}$ $\frac{51}{0.84}$ $\frac{29}{0.60}$ $\frac{108}{3.05}$
32 0.4 0.24 0.22 0.22
$\frac{66}{5.40} \frac{109}{4.74} \frac{114}{0.36} \frac{0}{0.00} \frac{11.0}{2.29} \frac{490}{10.20} \frac{207}{5.84}$
205 1.030 14 0.00 236 236 762.46 21.44 21.01 0.35 0.00 3.87
485 14 19 476 198 342 21.10 0.36 0.63 7.80 4.12 9.64
18.84 0.03 123 20.67

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants Laboratory (U.S.A.C.L.). State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Aluminum (A1), Arsenic (As), Copper (Cu), Lead (Fo), Manganese (Wn), Zinc (Zn), reported here as 0.00 except as shown.

-394-

	7														
	Analyzed by c		DWR	DWR	DWR	DWR	0.905	DAR	0303	nsgs	DWR	DWR	USUS	THE COMME	ರ್ಜಿ ಕ್ರಾಂಕ್
dne se	os CaCO ₃ Fotal N.C. ppm ppm		675			0	0		23	520		282	19		21
			649	250	35	ឌ	772	76	132	9719	432	325	219		211
	P & E		26	89	85	82	17	38	2	13	173	72	62		26
Toto	eolved solids in ppm (b)		2,000			105	111		राग्र	1,110		1,530	785		625
	Silce (SiO ₂) Other constituents ^d					Fe 0.06;Al 0.03		ABS 0.00						Fe 0.43; Zn 0.02 A1 0.04 As 0.05 Nn 0.36	
			%]			2	낆	- 1	<u> </u>	32		Zī .	ম		97
Hien	Baron (B)		1,40	0.72	0.12	0.08	0.00	0.07	00.0	0.10	0.34	0.86	8		0.20
r millic	Flug- ride (F)		0.0			0.1	000		000	000		0.02	0.2		0.03
parts per million equivalents per million	NI- trate (NO ₃)		3.1			0.05	2.1		30 0.48	30		0.02	0.8		0.01
doinbe	Chla- ride (CI)		<u>561</u> 15.82	188 5.30	1.49	6.3	11 0.31	0.28	0.42	352	366 10.32	13.14	98 2.76		24 1.52
nite in	Sul - fote (SO ₄)	(continued)	<u>592</u> 12.32	413		0.25	14 0.29		31 0.65	82 1.71		10.56	248 5.16		210
Mineral constituents	Bicar- bonote (HCO ₃)		159 2.61			52 0.97	1.11		2.18	154 2.52		52 0.85	3.80		3.80
•rol co	Carbon- ote (CO ₃)	COUNTY	00.00			00.00	00.00		0.03	000		000	0.20		8
	Patos-O Sium (X)	KERN	2.7	1.0	0.4	0.01	0.02	1.9	2.4	5.2	3.6	1.4	0.03		0.04
	Sødium (No)		397	250 10.88	92	27_	28 1,22	27_1	26 1.13	46 2,00	150	425 18.49	166 7.22		5.39
	Magne- sium (Mg)		2,14			0.0	0.01		3.5	3.74		0.80	6.0		0.63
	Colcium (Ca)		229			4.9	9.4		2.35	9.18		5.69	3.89		3.59
	£ E		7.9	<u>.</u>		7.8	7.8		8,3	8.1		7.6	8.3		7.7
Specific	mhos or 25°C)		2,960	1,630	517	148	174	324	366	1,540	1,640	2,100	1,200		937
	Temp in • F		89	89	89	75	92	72	71	20	71		89	29	29
	Sampled		10-9-62	8-6-62	7-11-62	7-11-62	9-9-6	6-25-62	9-7-62	6-13-62	6-19-62	9-10-62	8-6-62	B-22-62	8-6-62
State well	number and other number		275/22E-21P1	275/22E-28G2	275/23E-27J1	275/24E-5R1	27S/24E-34F1	275/25E-5R1	27S/25E-34A2	275/26E-27R1	275/27 E- 29J1	283/22 5-4 A1	285/22E-10R1		uehin Banch 285/22E-26Jl demestic and irrigation
	Owner and use		B.M. Crawford 1rrlgation	A. Palla irrigation	R. Neumand 1rrigation	Kern Co. Land Co.	Kern Co. Land Co. 1rrigation	Kern Co. Land Co.	Kern Co. Land Co domestic and irrigation	C. West 1rrigation	E. West 1rrigation	Houchin Ranch domestic and irrigation	Bluemoon Farms Domestic		Houchin Ranch domestic and irrigation

a. Determined by addition of constituents.
b. Gravimetric determination unless otherwise noted.
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants Aboratory (U.S.A.G.L.), State Department of Water Resources (DWR) as indicated.
d. Iron (Fe), Aluminum (A1), Arsenic (As), Copper (Cu), Lead (Pb), Wanganese (Wn), Zinc (Zn), reported here as G. & except as shown.

-395-

	State well			Specific					Minerol		constituents	ï	parts per mittlen equivolents per million	parts per million volents per mill	million	ا		Totol	1	fardness	
Owner ond	number and other number	Date eampled	Temp in •F	once (micro- mhos ot 25°C)	F.	Colcium Mg	Magne - Si Gium (Mg)	Sodium P	Polas-Cor sium o (K) (C(Corbon- Bic ote bor (CO ₃) (HC	Bicor-St bonote for (HCO ₃)	Sul - C fote (SO ₄)	Chlo- cide (CI)	rote ri (NO ₃)	Fluo-Bor ride (F)	Boron Silr (B) (Sir	Silco Other constituented	eolved solids in ppm (b)	ing T	os CoCO ₃ Totol N.C. ppm	Anolyzed by c
									KERN COU	COUNTY (co	(continued)										
B. Issac domestic and irrigation	171-352/582	6-19-62	- 89	181			t- ilm	1.35	0.8			910	6.6		ं।	0.10			774 2	23	TIME
S. A. Camp #12 irrigation	285/265-11A1	6-13-62	77	1,02	7.8 17	17 0.85 0.	0.6 0.05 2	2.52	0.03	0.00	118 38 0.79 0.	38 6 0.79 1	63 1.78	3.1	0.2	0.04	Fe 0.07; Al 0.15 Zn 0.02	231	73 1	9 54	DWR
Kern Co. Land Company irrigation	285/26E-30A1	6-19-62	714	854			Origo	57 2.4 ³	2.5			010	2.54		ol	0.03	11 0.00		30 284		TWE
Kern Co. Ind. Farm dom. and 1rr1g.	28s/27E-7C	9-7-62	33	281, 8	8.3	2.8 0.11 0.0	00.0	5.52	0.8	3 86 0.10 I.	86 1.41	5.0 4	1.13	000	0.2	0.10	1	163	94	0 2	usas
Houch'n Ranch #7	29S/23E-24HI	8-6-62	99	384			O HEO	57 2.13	0.01			010	25 0.62		ं।	0.16	ABS 0.00		77	<u>8</u>	DWR
P. Curtis irrigation	295/25E-10N1	6-19-62	7/7	384 7	7.9 10	10 1. 2.00 0.	0.10	31 (1.35	1.2 0.03	0.00	77 34	34 5	20 1.11	0.08	0.2	0.16	Re 0.07; Al 0.05 Zn 0.02	240	39 10	105 42	DAR.
Kern County Land Co. irrigation	295/25E-32F1	6-6-62	72	23lt R	8.2 1.6 0.	1.8 0.90 0.	1.0 0.08	30	0.03	0.00	98 1.61 0.	15 0.31 0	13 6.37	2.6 0.01 0.01	0.1	0.10	~1	156	295	0 61	USGS
Kern County Land Co. irrigation	29S/26E-9R1	6-6-62	72	879 F	R,0 13	111 4.5 5.54 0.	1.6 0.38	65 2.83	3.0	0.00	110 20	205 8	83 2.34 0	15 0	0.00	0.20	01	585	32 23	502 562	usos
l'. Grimes irrigation	295/26E-35KI	7-11-62	63	221				17 00-71	0.02			W10	8.1		ol	0.14			32	9/	DAG
D. C. McCan irrigation	295/285-1261	6-13-62	78	425	8,2 23	21 1,05	1.1 0.09	3.01	0.07	0 0.00	162 2.66 1.9	1.02	16 51.5	2.0	0.1 0.0	0°-14 25	Fe 0.03;ABS 0.00 Al 0.01; Zn 0.09	279	72	57 0	DAR
Galifornia Water Service municipal	295/28E-31F1	8-2-62	69	720	8.2 RI	84 4-19	1.22	1:78	3.7	0.00	3.31 1.	71 1.48 2	86 2.42	0.13 0.13	0.2 0.01	0.25 30	ABS 0.00	974	277 2.1	271 105	DWR
Kern Oil Company domestic and irrigation	295/29%-34/1	6-13-62	78	581	8,2	0.95	3.3	11.87	0.07	0.00	296 0.	0.0	1.32	0 0 1 0 0 1	0.1	0.24	TFB 0.62; Mn 0.43 A1 0.07; As 0.45 Zn 0.05	362ª	9 62	61 0	DWR
L. & P. Dadini domestic	30S/23E-1C1	8-6-62	70	581	7.5	0.50	0.01	101	0.03	0.00	38 1.8	18 0.37 L	145 0-109	000	0.6	0.30	ωI	317	89	56 0	nsos
		8-27-62	73											-			Fe 0.09; As 0.01.				DWR
State of California stock and irrigation	30S/24E-11411	6-26-62	72	3 952	8.1	3.94	0.34	3.78	0.03	0.00	1.80	20.5 5.02	21 0.59 0.59	0000	0.00	0.24 <u>23</u>	1 L4 0.00	5710	175 27	214 126	DWR
						1				-		-	-	-		-			\dashv	-	4

a. Determined by addition of constituents.

b. Graymetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey Quantity of Water Brench (U.S.G.S.), U.S. Agricultural Consultants Laboratory (U.S.A.C.L.), State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Aluminum (Al), Arsenic (As), Copper (Cu), Lead (Pe), Manganese (PM), Zinc (Zn), reported here as 0.00

-396-

			S	Specific	-			3	Mineral co	canstituents	Ē	parts per million	parts per millian	millian millian					1		
Owner and	number and ather number	Oate sampled	Temp in • F	conduct- ance (micra- mhas	pH Calcium (Ca)	ium Magne sium (Mg)	Sadium (Na)	Potas- sium (X)	Carbon ate	Bicar- banate (HCO-)	Sul - fate (SO _a)	음 - 등 - 등 - 등 - 등 - 등 - 등 - 등 - 등 - 등 - 등	Ni- trate (NO ₃)	Flua (F)	50	Silica (SiO ₂) Other canstituents ^d	solids perios in ppm	T S S S		as CaCO ₃	Analyzed by c
			,			1		KERR	COUNTY	COUNTY (continued)	(pa										
C. Samuels domestic and irrigation	30S/28E-11:2	6-26-62	92	2775			% % % % % % % % % % % % % % % % % % %	0,12				32 0.30		CI	0.20			33	191		DWR
Douglas Oil Company industrial	30S/28E-25Al	6-13-62	83	503			1.91 1.91	1. L				20 0.50		01	0.21			36	163		DAR
Sandrini irrigation	30S/28E-29Bl	9-5-62	11	333 7.	7.9 27	55 6.2	34	3.0	00.0	136	252	18 0.51	1,7	0.2	0.10	133	112	1 43	93	0	nsas
T. Panella domestic	30S/29E-5D2	6-13-62	78	1,360 8.	8.0 104 5.19	35 2.88	112	6.7	00.00	168	178	156	136	0.1	7770	28 Li 0.00	01/6	37	707	566	DAR
H. Parter 1rrigation	30S/29E-20A1	9-55-95	69	781			2.18	5.5				63		01	0.18	Li 0.00		28	273		DWR
F. Alexas domestic and irrigation	30S/29E-27Jl	6-22-62	29	775 8.	8.2 41	30 2.18	62 2.70	6.3	0000	130	88 1.83	1.64	110	0.02	01.0	37 Li 0.00; Al 0.03 As 0.01; Zn 0.04	755	1 36	226	119	DI-R
R. Banduchi irrigation	315/24E-28B1	7-18-62	79	5,920 8.	8.0 500	500 126 24.95 10.41	1 33.02	0.31	0.00	1.56	2,160	823 23.21	0.31	0.2	14.50	66 Li 0.20; Fe 0.00 Al 0.21; Cu 0.00 Pb 0.01; Zn 0.00	4,870	43	1,770 1,690	0,690	世后
Houchin Farms irrigation	315/256-2541	9-5-65	73	1,60	8.2 21	0.1 0.01	3.48	1.3	0.00	117	100 2,08	9.8	7.0	3.7	9.58	91	324	1 76	53	0	DAR
Kern County Land Co.	315/26E-32C1	9-5-65	73	1,60	8.2 23 1.15	0.1 13 0.01	3.26	0.05	000	126 2.07	101	10 0.28	10.0	3.0	05.0	<u>아</u>	307	7 73	53	0	020S0
Kern County Land Co.	313/275-1451	9-5-62	89	377 8	8.2 44	20 0.14	33	0.05	0000	2.70	37	16 0.45	2.3	0.3	01.0	32	21/14	38	117	С	US0S
Palm Dairy-J. DeVries domestic	31S/28E-7R3	6-14-62	29	526			2.18	2.0				28		01	0.10			41	151		DAR
E. Yaksitch irrigation	315/296-1761	6-22-62	70	195			61 ₁ 2.78	3.6				28						51	130		TAME.
G. Preston irrigation	328/256-3461	8-2R-62	88	3,810 8	8.0 52.	521 98 26.00 8.10	365 15.88	11 0.28	000	140 2.29	2,230	1.11	0.0	0.01	3.10	27.7	3,800	32	1,705 1,590	1,590	USGS
G. Preston irrigation	328/25E-3461	9-5-62	87	3,820 8	8.0 54.5	545 27.20 7.20	395	10	00.0	135	2,200	1.38	0,02	0.1	1.60	811	3,410		33 1,720 1,610	019,1	USOS

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geologica Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants laboratory (U.S.A.C.L.), State Papertment of Water Resources (DRR) as indicated in Iron (Fe), Ananium (All), Arsente (As), Copper (Cu), Lead (Fb), Manganese (Wn), Zinc (Zn), reported here as Ed. except as shown.

-397-

	pez.	Т							
	Analyzed by c			DWR	DVR	DWR	DWR	USGS	
888		Edd				0		175	
Hard	OS CC	E dd		28	288	77	279	316	
	E SE			81,	38	26	53	39	
Tatol	dis-	(a)				227ª		745	
	Silica (Sig.) Other constituents ^d	25,				20 Fe 0.04; Mn 0.03 Al 0.03; Zn 0.01		221	
	5.) 	- 18		읪		
ian	Boran			0.35	0.36) Signature 10,222	1.50	0,20	
per mill	Flug-	E				0.9 0.05		0.2	
parts per millian equivalents per millian	r ote	ON.				0.02		159	
inbe	S P S	(0)		0.31	25 0.62	0.37	30h 8.57	94 2.65	
=	Sul -	(80%)	ed)			100 0.92		2.33	
Mineral constituents	Bicar- bonate	HCO ₃)	KERN COUNTY (continued)			2.34		172	· · · · · · · · · · · · · · · · · · ·
S	arbon-	(°E)	-) <u>-</u>			000		00.00	
Min	Patas-Carbon-	3	CERN CO	0.9	2.9	2.4 0.00	3.6	5.4	
	Sodium		900	69 3.00	82 3.57	1,7 2,01	188 8,18	9h	
	Magne -					0.34		26 2.13	
	Calcium Me	Ĝ				1 02°1		8h 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	
	_ § `					8,2		7.5	
Spacific	ance (micra-	25°C		390	898	359	1,490	1,090	
3 3	den i	6		25	02	69	62	73	
	Date			8-13-62	6-14-62	6-11-62	7-11-62	9-5-62	
S S S S S S S S S S S S S S S S S S S	, i			32S/27E-6n1	32S/27E-16R1	32S/28E-12F1	32S/29E-11R1	32S/29E-35M2	
	Owner and			L. A. Athletic Club irrigation	Kern County Land Co. domestic	H. Harford domestic and irrigation	C. Dickey irrigation	Tejon Ranch irrigation	

a. Determined by addition of constituents.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), U.S. Agricultural Consultants Laboratory (U.S.A.G.L.,), State Department of Water Resources (DWR) as indicated.

d. Iron (Fe), Aluminum (Al), Arenic (As), Copper (Cu), Lead (Fb), Manganese (Yn), Zinc (Zn), reported here as \$\frac{0.0}{0.00}\$ except as shown.

-398-

1962

	9	T										
	Analyzed by c		DWR	DWR	DWR	DWR	DWB	DWB				
Hardness	N. C.		127	#	171	275	272	639				
Hard	Tata C		312	183	379	785	164	823				
à	E SE	-	36	877	38	35	38	47				
Tatal	spilos pevilos spilos		909	907	956	1,090	927	2,050				
	Silica Other canstituents ^d											
		_	23	7	#	#	77	3	_	 		_
60	Borgn (B)		1.00	5.30	1.60	1.00	5-40	6.10				
E	Flug-		0.02	0.6	0.02	0.00	0.6	0.01				
equivalents per millian	rrate (NO ₃)		0.39	0.18	5.9	20	9.3	5.6				
equival	₽ ₽ ₽ ₽		35	0.79	1.61	1.66	1.47	200				
<u>e</u>	Sul - fate (SO _a)				_	_	_	1,050 21,86				
Mineral Constituents			PANCE VALLET (1-23) SAN BEALTO COUNTY 59 81 2.44 0 00 226 211 57 0.06 0.00 2.70 4.39	206 3.38 2.12	254 308 4.16 6.41	252 4.13 8.72	194 430 3.18 8.95	3.67				
	-Carbon Bicar- ate banate	+	3 22 AN								 	_
Minne	Potas-Corbon- sium ate (K) (CO.)	+	0.00	05 0.00	3.5 0	00.00	000	477				_
		+	2-4-50 0.00	2.1	~lo	0.09	3.2	5.4			 	
	Sadium (Na)		3.52	3.44	110	121 5.26	120	334		 		
	Magne- sium (Mg)		31 2.59	2.01	3.88	57	3.82	105 8.61				
	Catcrum (Ca)		8.1 73	8.2 33	7.8 74	8.2 99	8.0 96	8.2 157				
	Ŧ		8.1	8.2	7.8	60	8.0	8.2				
-tonduct-			890	628	1,820	1,380	1,240	2,560				
	Ten E o ci		72	72	3/5	73	23	75				
	Date eampied		7-12-62	7-12-62	7-12-62	7-12-62	7-12-62	7-12-62				
State well	number and other number		15S/10E-15G1	15S/10E-16A1	15S/10E~20D	158/10E-2111	15S/10E-22D1	15S/11E-30C				
	Owner and use		F. Mendsz stock and irrigation	Rey Brothers irrigation	Rey Brothers irrigation	S. Serirsan domastic	Rey Brothere 1rrigation	H. Berg 1rrigation				

a. Determined by addition of conditioning.

b. Gravimetric determination unless otherwise noted.

c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.Q.S.), U.S. Agricultural Consultants Laboratory (U.S.A.C.L.). State Department of Water Recourses (DRR) as indicated.

d. Iron (Fe), Aluminm (A1), Arsenic (A2), Copper (C3), Lead (Fb), Manganese (M3), Zinc (Z3), reported here as \$\frac{0.0}{0.00}\$ except as shown.

	P. S														
	Analyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	PA-R
	as CaCO ₃		0	0	0	0	0	0	0	0	0	0	0	0	0
			83	112	88	73	17	160	186	74	64	15	146	10	16
	T P E		23	28	148	34	79	77	15	39	99	89	29	8	a
Total	eolids solids in ppm		138	204	268	139	154	254	475	156	208	184	244	435	777
	Silica (SiO ₂) Other constituents ^d		A1 0.05 Cu 0.01 Mn 0.01 Zn 0.03	Fe (total) 0.01 Al 0.03 Mn 0.01 Zn 0.08	Fe (total) 0.02 Al 0.03 Mn 0.05	A1 0.06 As 0.01	A1 0.01 As 0.01	Fe (total) 0.03 Al 0.10	A1 0.05 As 0.02	A1 0.04	Fe (total) 0.00 Al 0.04 As 0.01 Cu 0.01 Nn 0.01	A1 0.01 As 0.01	As 0.01 Cu 0.01		Fe (total) 0.02 As 0.02 Mn 0.03
			81	45	8	58	75	34	M	8	<u></u>	퀹	웨	55	8
Ligh	Borgn (B)		0.0	90.0	0.18	90.0	0.19	90.0	0.05	0.06	0.1	0.12	0.11	5.5	5.8
parts per million equivalents per million	- PE-C		0.0	0.07	0.3	0.01	0.3	0.1	0.00	0.0	0.00	0.0	0.00	0.8	0.0
arts pe	N trate (NO ₃)		1.4	0.05	0.02	0.0	0.0	14	0.04	0.05	0.5	6.9	0.24	0.01	00.00
d Ainbe			0.03	2.4 0.07	2400.68	1.6	5.2	8.5	0.08	1.4	0.04	0.00	4.7	70 1.97	2.03
ni afe	Sul - fate (SO ₄)		0.03	0.21	36	0.10	15 0.31	13 0.27	0.19	0.08	0.00	0.08	6.7	0.00	0.00
Mineral constituents	Bicar- banate (HCO ₄)	6-1)	2.11	2.88	2.15	2.08	81 1.33	3.41	249	2.28	3.06	161	3.65	278	277
neral c	Carbon ate (CO,1)	LLEY (U	0.00	0.00	000	00	00.00	0.00	00.0	0.00	000	0.00	0.00	0.03	0.13
3	Patas- sium (X)	LAHONTAN RECION SURPLISE WILLEN	0.05	0.00	5.5	0.0	2.1	0.03	0.03	0.08	3.1	0.0	0.02	0.07	0.00
	Sadium (Na)	IAHON	12 0.52	0.91	10	18 0.78	33	1.00	0.65	22 0.96	η ₄₈ 2.09	2.61	28 1.22	147	6.31
	Magne- mium (Mg)		5.6	0.84	5.6	2.6	0.4	13	14 1.18	3.4	3.4	0.00	8.8	0.0	2.00
	Calcium (Ca)		1.20	28	26	25	6.2	2.14	2.54	24	14 0.70	0.30	44	3.3	0.30
	Ŧ		8.1	8.1	7.8	8.0	7.8	7.8	8	8.0	8.2	8.3	8.2	8.3	4.8
Spacific	ance (micro- mhas		208	301	374	216	181	ξ0η	110	227	300	274	397	652	999
	Temp in • F		26	58	56	59	28	95	53	57	19	89	63	92	· =
	Date		7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-10-62	7-11-62	7-11-62	3-20-62	7-11-62
State	number and other number	MDB&M	40N/16E-11G1	-36F1	40N/17E-20C1	41N/16E-4G1	-2503	42N/16E-4P1	-6R2	-2111	-34F1	43N/16E-20Bl	-33M3	44N/16E-6E2	
	Owner and		L. Cockrell domestic	D. I. Grove domestic	B. Cambron stock and fish pond	L. Heryford stock	H. Malitz domestic	M. Urrels irrigation	Surprise Valley Lumber Co. domestic and coaling	J. B. Laxague domestic and stock	E. Cook domestic	G. W. Warren domestic	F. Arreche domestic and stock	M. Quirk irrigation	

o. Determined by addition of constituents.

b. Growinstric determination.

c. Analysis by U.S. Geologicoi.

Terminal Testing Deboratory (T.T.L.), U.S. Apprendibute Consultants (U.S.A.C.) at Flade Department of Water Resources (D.W.R.) as indicated.

d. fron (Fe), Aluminum (Al), Aranic (Ae), Copper (Gu), Lead (PD), Mangonese (Mn), Zinc (Zn), reported here os Goo except as shown

	ō	\top							_								_	
	Anolyzed by c			DWR	DWR	DWR	DWR	DWR		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR
Hardness	N O S			0	0	0	0	0		0	0	0	0	0	0	0	0	0
	1.			151	104	68	153	97		113	105	18	98	108	224	61	166	147
4	P E	1		13	# <u></u>	22	37	56		25	8	99	20	P. 24	36	55	72	73
Total	solids mad ui			221	212	165	321	217		186	170	8	165	200	427	177	859	244
	Silica Other constituents ^d			A1 0.02 As 0.01 Zn 0.08	As 0.01 Mn 0.08	A1 0.02 Mn 0.02 Zn 0.41	Fe (total) 0.09 Al 0.04 As 0.01 Mn 0.13 Zn 0.48	Al 0.04 As 0.01						Fe (total) 0.01 Al 0.10 As 0.01 Cu 0.01 Zn 0.25				Fe (total) 0.13 Al 0.06 Cu 0.01 Pb 0.02 Mn 0.21 Zn 1.1
				45	44	었	N N	23		श्र	#	ଷ	41	772	777	₩ 100	677	귅
Tian	Boron (B)			0.05	0.07	90.00	0.36	0.10		0.01	0.05	0.0	0.06	0.05	0.12	0.02	0.12	0.04
equivolents per millian	Flua- ride (F)			0.2	0.0	0.0	0.0	0.0		0.00	0.00	0.00	0.00	0.0	0.3	0.2	0.0	0.03
lents	rofe (NO ₃)			0.24	0.0	0.04	0.02	0.8		0.00	14.7 0.08	0.00	13	0.21	36	0.00	9.7	0.00
adnive	음 : : :			0.13	3.8	0.08	13 0.37	0.37		4.3	3.5	0.00	4.8	3.2	0.48	6.2	46 1.30	0.20
r si	Sul - fote (SO _e)		<u></u>	0.10	64	90.0	23	21		12 0.25	0.05	2.3	4.8	0.0	15	01.0	11 0.23	0.0
Mineral constituents	Bicar- banate		(contd.)	3.15	3.02	2.00	255	120	(2-9)	167 2.74	2.46	72	105	2.49	369	159 2.61	653	3.03
neral c	Carbonate		(6-1)	00.00	00.00	00.00	00.00	00.00	AINS (00.00	00.00	00.00	00.00	2 0.07	00.00	00.00	60 2.00	μ 0.13
Ξ	Patos- sium (K)		VALLE	2.7	3.1	5.8	5.8	4.3 0.11	MADELINE PLAINS	4.5	0.07	4.0 0.10	1.7	3.5	8.8	3.8	30	0.12
	Sadium (Na)		SURPRISE VALLEY	11	26	16	1.91	17 0.74	MADE	18 0.78	0.56	0.91	10	0.70	62 2.70	37	238 10.35	58 2.52
	Magne- sium (Mg)			9.5 0.78	0.73	6.8	13	7.8		12 0.96	0.90	0.00	0.62	14 1.16	35 2.88	23.0	8.9 0.73	3.9
	Calcium (Ca)			2.24	27	16	39	26		26	24	5.4	22	1.00	32	20	2.59	10 0.50
	Ŧ.			8.3	8.3	8.0	8.2	8.3		8.1	8.1	7.8	7.9	8.4	7.8	8.2	8.8	8.5
conduct-	(micro-mhos			343	312	213	478	276		303	253	130	213	274	489	268	1,250	325
ı	e ci GF			62	69	61	59	54		54	479	57	54	61	53		51	25
400	sompled			7-11-62	7-11-62	7-11-62	7-11-62	7-11-62		7-12-62	7-12-62	7-12-62	7-12-62	7-12-62	7-12-62	7-12-62	7-12-62	7-12-62
State well	other number		MDB&M	45N/16E-17D1	1901-	46N/16E-4K1	-13C1	46N/16E-14R1		34N/14E-15H1	-22A1	34N/15E-21L1	-31H1	35N/12E-20B1	35N/13E-26J1	35N/14E+24G2	35N/16E-18D1	-19F1
	Owner and			L. Hanks domestic	L. Hill domestic and irrigation	C. A. Youngman domestic	R. W. Peterson	Fee Ranch Inc. irrigation and stock		G. Drumond domestic	Southern Pacific Railroad domestic and industrial	T. Garate stock	D. E. Hatch stock	Rock Hill Ranch stack	State of California domestic	H. Marr stock	P. C. Fredrickson stock	W. Michaud stock

o. Determined by addition of constituents.

b. Growinstric determination.

c. Analysis by U.S. Geological Survey, Ovality of Water Branch (U.S.G.S.), Pacific Chamical Consultants (P.C.C.),

c. Analysis by U.S. Geological Survey, Ovality of Water Branch (U.S.G.S.), Pacific Chamical Consultants (D.G.), or State Department, of Water Resources (D.W.R.) as indicated.

d. Iron (Fa.), Aluminum (Al), Arsanic (As), Copper (Cu), Lead (Pb), Manganese (Mn), Zinc (Zn), reparted here as \$\frac{Go}{Go}\text{except}\$ as shown

	Anolyzed by c		DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	DWR	
1055	R G		0	0	0	526	193	m	0	0	9	0	0	0	0	
Hordness	Toto I Ppm		122	133	54	350	359	22	208	107	717	27	29	141	27	
å	End-mu		40	748	38	2.5	37	7Z	70	52	91	73	73	87	28	
Totol	solved solids in ppm		294	303	164	1,260	823	177	998	300	198	190	201	994	184	
	Silco Other constituents		Al 0.01 As 0.01 Cu 0.05 Zn 0.08	Fe (total) 0.01 A1 0.02 As 0.01 Pb 0.01	Fe (total) 0.01 Cu 0.03 Fb 0.02 Zn 0.10	Fe (total) 0.04 As 0.01 Cu 0.02 Mn 0.35 Zn 0.08	Fe (total) 0.02 Cu 0.01 Fb 0.01 Mn 0.64 Zn 0.01	Fe (total) 0.33 Cu 0.01 Fb 0.02 Zn 0.01		Al 0.01 As 0.01	As 0.16 Pb 0.01	Fe (total) 0.02 Al 0.10 Fb 0.01 Zn 0.01	Fe (total) 0.01 Fb 0.01		Fe (total) 0.01 As 0.02	
			디	83	77	12	171	77	93	67	a	N	기	워	얾	
lion	Boron (B)		0.0	0.37	90.00	0.40	0.24	0.09	0.32	0.14	1.4	0.08	0.10	1.4	1.6	
er mi	ride (F)		0.0	0.0	0.00	0.0	0.03	0.00	0.03	0.5	4.8	0.00	0.2	0.10	0.08	
equivolents per million	trofe (NO ₃)		26	4.2 0.07	0.24	5.3 0.08	0.12	27.0	0.04	2.7 0.0	0.2	2.8	0.7	0.01	0.0	
equivo	은 <u>후</u> (5)		12	16	6.0	435 12.27	38 1.07	3.1	230 8.18	4.6	167	0.34	0.28	1.58	1.61	
	Sul - fote (SO ₄)		8.6	70	13	2.21	346	2.6	26	0.16	276	19	0.31	3.62	3.60	
an illeu	Bicor- bonote (HCO ₃)	(6-4)	198 3.24	198 3.24	72	2.47	3.31	88 1.14	278	255	38	101	1.93	87 1.42	88	
Minerol constituents	Carbon- ate (CO ₃)	VALLEY	0.00	2 0.07	0.00	00.00	0.0	0.00	10	6	1000	00.00	0.00	00.00	00.00	
E	Potas-C sium (K)	LAKE	2.7 0.07	3.4	5.00	17	0.13	1.5	8.0	5.4	5.2	0.12	0.12	0.00	0.00	
	Sodium (No)	HONEY	39	58 2.52	16 0.70	224 9.74	98	11 0.48	231	2.52	235	1.83	43 1.87	133 5 • 78	136 5.92	
	Mogne- sium (Mg)		10 0.84	0.86	0.08	1.55	2.73	3.6	1.82	9.5	0.08	2000	1.8	2.1	2.0	
	Calcium (Co)		32	1.80	1.00	109	4.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1	24 1.20	2.34	27 1.35	16	0.50	8.7	13	0.00	
	Ŧ		8.2	4.8	7.4	8.3	8.2	7.7	8.6	8.5	8.5	0.0	8.1	8.0	7.9	
conduct	once (micro- mhos ot 25°C)		409	519	192	1,830	1,100	205	1,440	1,33	1,270	252	254	736	731	
	Temp in •F			59			63	2,6	96		212	19	78		11	
	sompled		8-9-62	8-6-62	8-6-62	8-7-62	8-7-62	8-6-62	8-8-62	8-9-65	8-7-62	8-7-62	8-7-62	3-22-62	8-8-62	
State well	number and other number	MDB&M	22N/17E-4K1	26N/16E-15E1	27N/14E-26E1	27N/16E-11E1	-3602	28N/13E-9E1	28N/14E-2G1	-1731	28N/16E-8B	28N/17E-18K1	-2011	29N/12E-4G1		
	Owner and		R. Brasher domestic	J. Garnier irrigation	R. L. Slaughter domestic	U.S. Army domestic		City of Janesville irrigation	State of California irrigation	Triami Cattle Corp.	J. Humphrey Hot springs	Hooper and Tinsley public fountain	E. Filipeli irrigation	Fruit Growers Supply Co. industrial		

o. Determined by addition of constituents.
b. Growinstic determined by U.S. Growey, Quolity of Woter Branch (U.S.G.S.), Pacific Chemical Consultants (P.G.C.).
c. Analysis by U.S. Geological Survey, Quolity of Woter Branch (U.S.G.S.), Pacific Chemical Consultants by U.S. Growey, Charles of Survey, Quolity of Woter Branch (U.S.G.S.), or State Printment of Mater Resources (D.M.R.) as indicated.
d. Iron (Fe), Alvanium (Al), Arsanic (As), Copper (Cu), Leod (PD), Mongonese (Mn), Zinc (Zn), reported nere as Grown

	3																
	Analyzed by c			NA.	DWR	DWR	DAR	DWR	DWTR	DWR	DWR	RAZ	DWR	NATA DATA	DWR	TWG C	
8 8 0	as CaCO ₃ Tatal N.C.			0	0	0	0	35	17	0	0	0	0	0	0	0	
				75	11	65	917	113	112	96	98	8	187	742	8	72	
	TO E			30	\$	79	82	- 22	. 23	83	85	8	8	89	69	99	
Total	solved solids in ppm			171	717	164	544	230	237	590	106	782	1,500	577	394	324	
	Silica Other constituentsd			Zn <u>0.03</u>	Al 0.03 As 0.04 Zn 0.02		Fe (total) 0.05 As 0.03 Cu 0.01 Zn 0.06		Fe (total) 0.0 Mn 0.02 Zn 0.19	Fe (total) 0.01 As 0.02 Zn 0.01		Fe (total) 0.01 Al 0.05 As 0.05 Zn 0.01	As 0.13 Zn 0.06	Fe (total) 0.0 Al 0.01 Cu 0.0	Fe (total) 0.22 Al 0.08 As 0.07 Cu 0.02 Pb 0.01 Mn 0.27 Zn 0.00	Fe (total) 0.27	
			_	恕	91	81	SI	舏	컨	2	<u>41</u>	챙	77	임	<u>م</u>	리	
Lion	Boron (B)			0.0	0.고	0.18	0.28	0.02	0.0 <u>T</u>	0.44	0.84	0.8	Z-2	0.49	0.34	78.0	
millio	Pico Pige (F)			0.00	0.0	0.0	0.03	0.02	0.2	0.5	0.00	0.05	0.08	0.6	0.0	æ•0	
parfs per million equivalents per million	Ni- frate (ND ₃)			0.05	0.31	110	1.05	50	35	0.08	17 0.27	0.19	72	0.31	0.8	7.00	
Anbe	음흔			0.05	0.59	38	0.70	12	0.31	2 ¹ 4 0.68	27.0 0.76	27 0.76	1.30	52	0.25	0.93	
ë.	Sul - fote (SO ₆)		-	0.05	1.60	34	28 0.58	10	8.9	84 1-75	5.69	223	\$49 11.43	8.4	6.9	90 1.87	
Mineral constituents	Bicor- bonate (HCO ₃)	, (con	1000	2.06	2,66	3.21	3.29	1.62	1.90	339	47.5 <u>4</u>	351 5.75	1.01	430	342	1.64	
eral c	Carbon ate (CO.)	, (6-		00.00	00.00	0.00	0.00	0.00	0.00	0.23	000	00.00	0.20	0.00	0.30	000	
3	Poras-Carbon- sium ate (K) (CO.,)	VALETY S		0.03	3.6	3.6	3.1	0.05	2.4	10	6.1	5.8	16	5.0	0.11	0.07	
	Sodium (No)	ONEY TAKE	TOMO!	0.65	112	121 5.26	108	0.65	16 0.70	96.9	270	9.22	371 16.14	8.09	102	3.00	
	Magne- eium (Mg)		या	6.1	0.03	6.7	4.5	10 0.86	9.6	3.9	110.0	10 0,82	13	5.2	0.72	6.4	
	Calcium (Ca)			200	3.9	0.75	0.55	28	29	16	21	1.10	43 2.14	8.3	1.20	0.95	
	Ŧ.			8.1	7.9	8.0	ه دأ	7-7	8.0	8.5	8.2	8.5	8.4	7.9	2.8	8.1	
Specific				198	543	698	589	309	292	809	1,320	1,100	2,010	865	765	12.27	
	Temp in • F					53		847	25				28	62		r r	
	Date			8-8-62	8-7-62	3-55-62	8-8-62	3-55-62	8-9-62	8-7-62	3-55-62	8-8-62	8-8-62	8-7-62	8-7-62	8-8-62	
State well	number and other number		MDBsw	29N/12E-15A1	29W/13E-1N1	-1461		-34NL		29N/14E-4NI	-18R1		-1942	29N/15E-21N1	-30A2	30N/12E-33N2	
	Owner and			M. A. Mallery domestic	Johnston Ranch domestic	G. Brabham domestic		E. D. Summers		C. L. Curtis domestic and garden	M. Long domestic		M. Tinnin domestic	State of California irrigation	J. Dewitt domestic	CalifPacific Utility Co. industrial	

o. Defermined by addition of constituents.
b. Gravimetric defermination.
c. Analysis by U.S. Geological.
c. Analysis by U.S. Geological Survey, Quality of Water Branch (U.S.G.S.), Pocific Chemical Cansultants (U.S.A.C.) or State Department, gf Water Resources (D.W.R.) as indicated.
Terminal Testing Laboratory (T.T.L.), U.S. Agriculture Consultants (U.S.A.C.) or State Department, gf Water Resources (D.W.R.) as indicated.
d. Iron (Fe), Aluminum (AI), Arsenic (As), Copper (Cu), Lead (PD), Mongonese (Mn), Zinc (Zn), reported here as \$\overline{agg} \overline{agg} \overline{

N	
ö	
σ	
_	

	State well		5	Specific					Miner	Mineral constituents	fuents in		ports per million	parts per million volents per mill	lian			Total		1 2		
Owner and	number and		Temp	-tonduct-	-\- <u>-</u>		Н,			Big			Z	E I	1			- sip	100	os CaCO 3	003	Anolyzed
esn	other number	peiduos	<u> </u>	(micro- mhas of 25° C)		Calcium sium (Co) (Mg)		Sodium Por (No)	8 ium 0 (K)	(CO ₃) (HCO ₃)		(SO ₄)	trote (NO ₃)	a.c. ≨€	(B)		(SiO ₂) Other constituents ^d			Total	N.C. Ppm	o Ag
	MDB&M						S	SOUTH TAHOE		ALLEY 6-5.01	10											
South Tahoe P.U.D.	12N/18E-3A1	9-17-65		8	7.8	11 0.55 2.	2.3 0.19 0.26		0.02	0.00 53	5.4 57 0.11	2.9 0.08	3 0.0	0.0	0:01	- El	Fe 0.03 A1 0.08	83	25	37	0	DWR
Taboe Sierra Water Co Mun.	-3F1	9-17-62		131	7.9 HB	18 0.90 0.90	2.4 0.30 0.38		0.02	0.0	6.6 0.14	0.00	0.01	0.00	8	91	A1 0.03 Cu 0.04	91	8	25	0	DWR
C. Gregor Dom.	-311	9-17-62		88	6.6	8.1 0.40	1.2 0.10 0.19		0.02	0.0	4.8 0.10	0.00	0.0	0.00	8	킹	- zn 11.9	63	27	8	0	DWR
R. Doud	.5E	9-17-62		%	7.6	9.3	3.6 6.0		0.0	0.0	35 0.03	2.0	0.00	0.00	9 8	<u>1</u>	Fe 0.01 A1 0.01	83	25	<u>۾</u>	0	DWR
Garden Mt. Water Co. Mun.	-5P1	9-17-62		72	7.5 7.	7.3	0.17 6.0		0.08	0.0	72 0.11	0:00	0.6	0:00	8 8	웨	Zn 1.3	92	31	25	0	OWR
State of California	-2911	9-17-62		82	7.3	8.8	0.2 8.0		0.04	0.00 43	3.6	2.0	6 0.01	0.00	0.0	61 0	A1 0.03 Zn 0.12	69	171	23	0	DWR
Tahoe Paradise Homes Dom.	-29N	9-17-62		89	7.3	9.2 0.46 0.46	0.7		0.04	0.0 177	17 17 0.08	0.00	6 0.01	1 0:0	9	<u>ଥା</u>	Zp 0.78	02	39	56	0	DWR
	MOB&M						8	NORTH TARGE	OE VALLEY	LEY 6-5.02	8											
H. E. Rauscher Dom.	14N/16E-1C1	9-54-62		160	7.5	22 1.10 0:	4.0 6.0 0.28 0.25		0.0	0.00 93	1.0	2.0	0.00	0.0	; 	2]		103	15	\$	0	USAC
G. Minor	באנ-	9-54-65		146	7.4 17	17 0.86 0.	4.0 4.5 0.32 0.20		0.00	0.0 85	39 0.00	0:0	0.00	0.10	-1 8 	<u>श्</u>		16	17	59	0	USAC
T. L. Quinn Dom.	IN/17E-8N1	9-54-62		130	7.5	14 0.72 0.0	3.0 6.0		0.03	0.00 69	0:00	0.03	3 0.02	0.10	-18	<u>8</u>		98	ನ	617	0	USAC
V. L. Douglass	15N/16E-24A1	8-54-62		165	7.6 21	21 1.05 0.	0.33 0.20		0.03	0.00	000	5 0.04	0.00	0.00	اه اه	리		85	2	69	0	USAC
T. Stollery Dom.	-2501	9-54-62		160	7.9	24 1.20	1.0 4.4 0.06 0.19		1.4	0.0	0.00	0 00	0.16	00:0	0:0	씨		119	13	63	0	USAC
State of California Dom.	15N/17E-6J1	9-54-65		997	8.2	18 0.88	7.0 5.6		0.12	0.0	75 0.03	0:00	0.00	0:00	-1 8 -0	<u> </u>		113	ಬ	1/2	0	USAC
Tahoe City Lumber Co. Dom.	-7E1	8-54-62		144	7.2	0.66	5.0 6.3 6.3 6.2 6.0		0.05	0.0 75	23 0.03	0000	0:0	0.00	0	%		8	19	25	0	USAC
Winding Cr. Water Co. Dom.	16N/16E-28E1	9-52-65		245	27-1	23 1.13 0.	3.6 0.41		0.02	0.0 0.02	02 02 11.98	3 0.03	0.00	0.0	0.0	<u> </u>		159	ผ	92	75	USAC
o. Determined by addition of constituente.	of constituente.				-			-		-						-			1			

O Determined by addition of constituents.

B. Gravimetric determination.

C. Analysis by U.S. Sedagled Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (PC.C.),

C. Analysis by U.S. Sedagled Survey, Quality of Water Branch of Water Resources (D.W.R.) as indicated.

G. Iron (Fs.), Alveninum (Al.), Arsenic (As.), Copper (Cu.), Lead (Pb.), Manganess (Mn), Zinc (Zn.), reparted here as \$\overline{\overli

																					-	
	1000		0,	Specific					Mineral	of constituents	tuents in	·	ports	ports per million	Hion			Totol		Hordnes		
Owner and use	other number	Dote	in emp	conduct- ance (micro- mhos at 25° C)	8°	Colcium Mo	Mogne - Sod sium (Mg)	Sodium Poir (No)	Potas-Corbon- sium ofe (K) (CO ₃)	Corbon-Bicor- ote bonote (CO ₃) (HCO ₃)	or- ote fote 0 ₃) (SO ₄)		o- trote (NO ₃)	Fluo- ride (F)	Boron (B)		Silica Other constituents ^d	solved eolids in ppm	E S C S	Totol N.C.		Anolyzed by c
	MDB&M						NORTH TAHOE	AHOE VAI	VALLEY 6-	6-5.00 (0	(con.r.)											
Riolo Club Dom.	16N/17E-13B1	29-72-6		117	7.5 17	17 0.84 0.	1.0 3.4	5 0.02		0.0 66	1.0 8	0.00	0.05	5 0.00	0.0	34		92	13 4	0		USAC
H. Chanda Dom.	-1481	29-77-6		235	8.0 27	27 1.33 6.	6.0 10	13 0.10		0.00 130	3	0.00	5 0.25	0.1 5 0.00	0.0	35		161	18 9	0 26		USAC
M. Martin Dom.	-1401	9-24-62		592	8.2 29	29 <u>29</u> <u>9.</u>	9.0 10	13 0.11		0.00 2.55	1.0	1.0	3 0.05	5 0.00	0.0	31		165	16 1	108 0		USAC
M. Bennett Hot Springs	16N/18E-30B1	8-54-62		059	8.0	8.0	1.0 113 0.10 4.90	3.1		0.0	3 0.78	3.20	0.00	0.03	3.1	99		384	89	92	Sn o	USAC
	MDB&M							CARGON	CARSON VALLEY 6-	9 - 9 J												
A. Riggs Dom.	11N/19E-24B1	9-17-62		138	7.6 113	13 0.65 0.05	3.0 0.25 0.14	1.7		0.00 72	1.6 0.03	0.00	5.8	0.0	0.05	8	Fe 0.01 Al 0.07	1,00	32 .4	547	O DWR	<u> </u>
Alpine Co. School Dept.	-3502	6-17-62		128	7.6 12	12 0.60 0.00	2.4 10	2.0		0.00 66	14.3 SG 0.09	0.00	0.00	0.0	0.0	8	A1 0.04 Zn 0.03	8	77.5	017	O DM	DIVIR
Alpine Co. Road Dept. Dom.	-35KL	9-17-62		18	7.5 8.	8.3 0.41 0.	2.3 0.19 0.26	26 0.03		0.0	0.3	1.0	3 0.6	0.0	0.02	35	A1 0.28 Zn 0.26	62	8	<u>.</u> ج	O DWR	<u> </u>
Alpine Co. School Dept. Dom.	111/20E-7MI	9-17-62		127	6.6	13 0.65 0.05	3.5 6.4 0.29 0.28	2.3 28 0.06		0.0 56	0.00	3.4	0 0.15	5 0.00	0.05	25	A1 0.08 im 0.02	91	22	24		
	MDB8M							TRUCKEE VALLEY	VALLEY	Y 6-6.7												
Donner Lake Development Co Dom.	171/16E-711	6-25-62		130	8.1 20	20 1.00	4.0 7.8 0.33 0.34	34 5.4 34 0.12		0.00 107	75 0.01	0.0	000	00.00	0.1	ಹ		125	19) 19	9	USAC
Truckee P.U.D.	-8м	6-25-62		980	8.2	19 4,00.93	4.0 4.5 0.30 0.20	20 0.03		0.0 87	1.0	0.0	0.00	0.00	0.1	32		105	17	29	O US	USAC
Truckee P.U.D.	-1451	6-25-62		165	8.2	15 9.	9.0		0.03	0.00 0.00	55 0.00	0.10	0.00	0.00	0.0	25		105	; ;	17	0 83	USAC
Truckee P.U.O.	-1561	6-25-62	917	160	8.2	21 1.04	4.0 6.7 0.30 0.29		0.0	0.0 0.00 1.58	33 1.0 53 0.02	0.00	0.00	0.00	0.0	31		7175	17 (19	0 R	USAC
Truckee P.U.D.	-1611	6-25-62	54	250	8.2	31 55	5.0 0.38 0.24		0.06	0.00 113	3 0.0	0 0.28	0.9	0.00	0.0	32		143	77	16		USAC
State of California Dom.	-17E1	6-25-62		120	7.7	15.0	2.0 4.5		0.00	0.0 57	94 0.01	4.0 1 0.10	0.0	0.00	0.1	24		79	19	171	0	USAC
o to the seal has addition	26 2224								-													

Determined by addition of constituents.
 Grovimetric determination.
 Grovimetric determination.
 Analysis Sealoglocal Survey, Quality of Water Branch (U.S.G.S.), Pacific Chemical Consultants (P.C.C.), Emminal Testing Laboratory (T.T.L.) or State Department of Water Resources (D.W.R.) os indicated.
 d. Iron (Fe), Aluminum (AI), Areenic (As), Copper (Cu), Lead (Pb), Mangoness (Mn), Zinc (Zn), reported here as 600 except as shown

1962

	Stote well		,,,,	Specific conduct-					Minerol		constituents in		parts per million equivolents per millian	parts per million volents per mill	Hion			Totol	à	Hardness		
Owner and use	other number	Date sampled	Tem in °F	once (micro- mhos ot 25°C)	£	Colcium M	Mogne- S sium (Mg)	Sodium Pc (No)	Patos-Ca sium (X) (c	Carbon Bic ate bor (CO ₃) (HC	Bicor- bonate fol (HCO ₃)	Sul - fote (SO ₄)		NI- frote ride (NO ₃) (F)	Boron (B)		Silico Other constituents ^d	mdd ui	sod- ium	os Cod Totat Ppm		Anolyzed by c
	MDB&M							TOT	TOPAZ VALLEY	EY 6-7												
D. Redley	8N/23E-16Pl	9-18-62		598	3.6	24 1.20 0.0	6.8 0.56 1.	23 1.00 0	3.0	5 1 ⁴ 1 0.17 2.31	1.9 51.0	- 5:9 - 0:08		11 0.18 0.01	1 0.13	8	A1 0.03 Zn 0.08	183	35 8	88		DWR
H. W. Huffman Dom.	-2853	9-18-62			7.7	0.95	1.8 33 0.15 1.	33 1	0.04	0.0 80	10 10 10 10 10 10 10 10 10 10 10 10 10 1	3 0.37		0.02 0.14	4 0.35	8	Fe 0.01 Zn 0.50	180	95	55 0	_	DWR
Mono Co. Road Dept. Dom.	-2902	9-18-62		827	7.6	0.60	3.4 10 0.28 0.	10 0.44	0.04	0.0	01.0	0.06		0.2 0.1	0.05	<u>a</u>	A1 0.11 Mn 0.03	42	<u>م</u>	<u> </u>		DWR
H. Williams Dom.	9N/22E-24D	9-18-62		542	8.0	22 5,	5.6 0.46	17 0.74	2.8 0.07	0.0	1 4.6	0.31		3.5 0.4	0.18	25	Fe 0.01 A1 0.04 Cu 0.02 Zn 0.25	145	к	0 87		DWR
E. Kinzy Dom.	-24M	9-18-62		555	8.0	1:00	5.6 0.46 0.45	118 0.78	0.00	0.00	6.9 71 0.14	3.4		4.1 0.4 0.07 0.02	1.º	27	A1 0.05 Zn 0.01	143	- *	73	•	DWR
East Camp Ranch	9N/23E-20P1	9-18-62		306	8.3	32 6	6.3 26 0.52 1.	26 1.13	0.03	0.0 173	34 7.2 54 0.15	5 0.07		4.0 0.6 0.06 0.03	3 0.27	87	As 0.06	213	35	901	•	DWR
A. Sciarani Dom.	-3002	9-18-62		331	7.9	14 0.70	1.4 49	49 2.13	0.00	0.0	16 0.33	3 1.10		0.5 3.6	2.9	E	Fe 0.03 Al 0.01 As 0.09 Zn 0.12	506	7	177	0	DWR
Bellview Ranch Dom.	-32 A1	9-18-62		350	8.2	14 0.70	3.4 51	2.22	0.00	0.00 173	34 0.20	3.4		2.7 0.04 0.13	3 0.51	56	As 0.01 ^d	203	88	67	0	DWR
	MDB&M							BRIDGEPORT	PORT	VALLE: 6-8	φ <u> </u>											
Buckeye Hot Springs	4N/24E-4A1	9-18-62	126	1450	8.7	11 0.55 0	2.6 32 32 14	325 2	22 0.56	14 368 0.47 6.03	348	30 30		0.3 8.8	1:1 2	95		1040	16	<u> </u>	0	DWR
Hunewill Ranch Dom.	-13E1	9-18-62		901	7.8	12 0.60	2.9 4.	0.20	1.5	0.0 58	4.4 0.09	9 0.01		0.7	0°03	8	A1 0.01 cu 0.01 Zn 0.21	Ε.	87	27	0	DWR
F. Carner Dom.	4N/25E-4B1	9-18-62		795	77.00	2.64 1	18 1.46 3.1	88 3.83	0.33	0.0 164	1 53th	22 17 0.62		0.3 0.3	0.31	97	Fe 0.07 Zn 0.17	209	917	505	17	DWR
R. Snider Dom.	5N/24E-25G1	9-18-62		135	8.1	0.75	3.8 6.	6.6	0.05	0.00 78	3.6	1.1 0.03		0.1 0.1	.JQ	ह <u>।</u>	Zn 0.13	91	12	53 (0	DWR
K. C. Stewart Dom.	5N/25E-28K1	9-18-62		954	2.5	37 1	1.19 38	38 1	0.28	2.25 0.07 3.69	59 42 59 0.87	17 6.7 0.19		1.9 0.2 0.03 0.01	0.11	2	11.0 m2	314	33	152 (0	DWR
Bridgeport P.U.D. Mun.	-2801	9-18-62		344	7.00	26 1.30 0	10 0.84 1.18	28 1.22 9	9.6	0.0 178	25 26 26 26 27 26	5.0		2.0 0.03 0.01	0.00	57	As 0.14 2n 0.12	548	377	107	0	DWR
a. Determined by oddition of constituents.	n of constituents.					1								-								

o. Determined by addition of constituents.
b. Growinstic determination.
b. Growinstic determination.
b. Growinstic determination.
b. Growinstic determination.
b. Growinstic by U.S. Geological Survey, Quality of Water Browners (D.W.R.) as indicated.
c. Amalysis by U.S. Geological Survey, Duality of Water Resources (D.W.R.) as indicated.
c. Terminal Testing Laboratory (T.T.L.) or State Department of Worter Resources (D.W.R.) as indicated.
c. Iron (Fe), Aluminum (AI), Aremic (Ae), Copper (Cu), Lead (Pb), Mangonese (Mn), Zinc (Zn), reported here as <u>and</u> except as shown

APPENDIX C

ANALYSES FOR RADIOACTIVITY
GROUND WATERS
NORTHERN AND CENTRAL CALIFORNIA
1961 and 1962

Well number	Date sampled	Gross activity ^a	Date analyzed
	PITTSBURG	PLAIN (2-4)	
2N/1E-7R2	6-8-62	3•2 <u>+</u> 3•7	8-17-62
- 22Cl	6-8-62	3.7 ± 3.7	8-17-62
2N/2E-20Al	6-8-62	2.8 <u>+</u> 3.7	8-17-62

Weil number	Date sampled	Gross activity ^a	Date analyzed
SAN F	FRANCISCO BAY	REGION (NO. 2)	
	CLAYTON VA	LLEY (2-5)	
1N/1W-4A1	7-11-62	0 <u>+</u> 3.8	8-9-62
1N/1W-4R1	7-11-62	0 <u>+</u> 3.9	8-9-62
2N/1W-30J1	7-10-62	5.5 <u>+</u> 3.4	9-12-62
2N/1W-30K1	7-10-62	0 <u>+</u> 3.8	8-9-62
2N/1W-31D1	7-10-62	0 <u>+</u> 3.8	8-9-62
2N/2W-13P1	7-10-62	2.4 <u>+</u> 3.9	8-9-62
2N/2W-26B1	7-10-62	2.9 <u>+</u> 3.9	8-9-62
2N/2W-36J1	7-11-62	1.0 <u>+</u> 3.4	7-11-62
	YGNACIO VA	LLEY (2-6)	•
1N/1W-7K1	7-11-62	0 <u>+</u> 3.9	8-9-62
1N/1W-29G1	7-11-62	0 <u>+</u> 3.8	8-9-62
1n/2w-11n1	7-11-62	4.0 <u>+</u> 3.9	8-9-62
1N/2W-13P1	7-11-62	1.9 <u>+</u> 4.0	8-9-62
2N/2W-27R1	7-10-62	0 <u>+</u> 3.9	8-9-62
2N/2W-36E1	7-10-62	0.4 <u>+</u> 4.0	8-9-62
<u>s</u>	ANTA CLARA V	ALLEY (2-9)	
6s/1w-16A1	8-62	0 <u>+</u> 3.4	10-8-62
6S/1W-14E1	8-62	0 <u>+</u> 3.3	10-8-62
6S/1W-17M2	8-62	0 + 3.4	10-8-62

a - Micromicrocuries per liter _412_

SANTA CLARA VALLEY-EAST BAY (2-9) 1961 Radio Assay in Micro Micro Curies per Liter Dissolved Suspended Well Number Date Date Activity Activity Sampled Analyzed 0.3 ± 0.3 0.5 ± 0.3 3-13-61 Alpha Activity Beta Activity 4S/1W-21F2 3-6-61 3-9-61 0.0 ± 3.6 1.1 ± 3.7 Ø 7-14-61 0.00 ± 0.24 $0.28 \pm .41$ 6-5-61 4S/1W-21F2 13 11 2.5 ± 4.0 6-30-61 0.4 ± 3.9 Ø 9-27-61 0.08 ± 0.13 0.31 ± 0.36 11 11 4S/1W-21F2 9-5-61 9-21-61 1.2 ± 3.4 5.3 ± 3.5 11 α 1-23-62 $0 \pm .47$ $0 \pm .43$ B 11 10.1 ± 4.6 4S/1W-21F2 12-7-61 1-22-62 4.6 ± 4.5 d 11 0.6 ± 0.6 0.4 ± 0.5 3-13-61 B 11 4S/1W-21M1 3-6-61 3-9-61 0.0 ± 3.6 2.4 ± 3.8 Ø 11 $.07 \pm .12$ $-15 \pm .30$ 7-14-61 B 11 6-30-61 0.0 ± 3.8 0.8 ± 3.9 6-5-61 4S/1W-21M1 Ø 11 9-27-61 0.07 ± 0.22 0.00 ± 0.13 B 11 9-21-61 0.0 ± 3.2 4.1 ± 3.5 9-5-61 4S/1W-21M1 α 11 $0 \pm .37$ 1-23-62 $0 \pm .37$ B 11 12-7-61 1-22-62 6.9 ± 4.5 1.0 ± 4.5 4S/1W-21M1

RADIOASSAY OF GROUND WATER

SANTA CLARA VALLEY - EAST BAY (2-9) 1962

			Radio Assay in	Micro Micro (Curies	per Liter
				Dissolved	1	P 2200
Well Number	Date	Date	Suspended Activity	Activity		
	Sampled	Analyzed			. 1 . 1	
4S/1W-21F2	3/15/62	3/20/62	0 + .16	.21 + .22		Activity
-10/11 411	-	3/19/62	2.1 + 4.9	1.4 + 4.9	Beta	Activity
4s/1W-21F2	6/14/62	7/10/62	0 <u>+</u> 0.23	0 ± 0.21	α	11
15/11/2112		7/9/62	0 ± 5.1	0 + 5.1	ß	11
4S/1W-21F2	9/6/62	9/24/62	0 <u>+</u> 0.14	0.06 ± 0.16	α	11
15, 211 2222		9/21/62	0 + 4.6	0 + 4.6	B	11
4S/1W-21F2	12/5/62	12/21/62	0 + 0.17	0 + 0.16	α	11
45/1W=21F2	12/3/02	12/18/62	2.5 ± 4.5	0.4 + 4.5	B	11
/ 0 / 1 :	2/15/60	3/20/62	0 + .19	.18 + .24	X	H
4S/1W-21M1	3/15/62	3/19/62	0 + 4.8	0 + 4.8	ß	11
/ 0 / 111 0 11/1	6/11/160	7/10/62	0 + 0.23	0 + 0.20	Ø	11
4S/1W-21M1	6/14/62	7/9/62	0.9 + 5.1	2.7 + 5.1	ß	11
1-1	010100	9/24/62	0 + 0.19	0 ± 0.18	X	11
4S/1W-21M1	9/6/62	9/21/62	0 ± 4.5	0 ± 4.6	B	11
1010-00	10/5/66	12/21/62		0 ± 0.20	OK	11
4s/1W-21M1	12/5/62	12/18/6:		4.4 + 4.6	B	11
		12/10/0.	0 4.5	4.4 4.0		
					-	
			•			
		ļ				
	ļ					

	1962				
Well number	Date sampled	Gross activitya	Date analyzed		
SANTA	CLARA VALLE	Y (2-9) (Cont.)			
6S/1W-26D2	9-13-62	2.0 <u>+</u> 3.3	10-8-62		
6S/1W-28R1	8-62	0 <u>+</u> 3.3	10-8-62		
6s/1W-29C1	8-62	0 + 3.2	10-8-62		
6S/1W-30M1	8-62	0 <u>+</u> 3.4	10-8-62		
6S/1E-7C1	8-62	1.8 <u>+</u> 3.3	10-8-62		
6S/1E-11B1	8-62	0 <u>+</u> 3.3	10-8-62		
6S/1E-21G1	8-62	0 <u>+</u> 3.3	10-8-62		
6S/2W-9H1	8-62	0 <u>+</u> 3.3	10-8-62		
6s/2W-9K2	8-62	0 <u>+</u> 3.2	10-8-62		
6S/2W-20N1	8-62	0 <u>+</u> 3.1	10-8-62		
6S/2W-21A	8-62	0 <u>+</u> 3.2	10-8-62		
6S/2W-24M3	8-62	0 <u>+</u> 3.4	10-8-62		
6S/2W-29D2	8-62	0 <u>+</u> 3.2	10-8-62		
6S/2W-34M1	8-62	0 <u>+</u> 3.2	10-8-62		
6S/2W-36H2	8-62	0 <u>+</u> 3.3	10-8-62		
7s/1W-5L	8-62	0 <u>+</u> 3.1	10-8-62		
:	LIVERMORE VA	LLEY_(2-10)			
2S/2W-27K1	4-11-62	0 <u>+</u> 4.0	5-11-62		
2S/2W-35G2	4-11-62	0 <u>+</u> 3.84	5-11-62		
3S/2E-8H1	4-11-62	0 <u>+</u> 3.8	5-11-62		
4s/1E-3K1	4-4-62	0 + 3.9	5-11-62		

	1702	•	
Well number	Date sampled	Gross activity ^a	Date analyzed
		(0.10) (0.1)	
TTAE	KMORE VALLEY	(2-10) (Cont.)	
4S/1E-10G1	4-10-62	1.28 <u>+</u> 4.2	5-11-62
4S/1E-10H1	4-10-62	36.31 ± 4.6	5-11-62
		•	
<u>CEN'</u>	TRAL COASTAL	REGION (NO. 3)	
	PAJARO VALL	EY (3-2)	
12S/2E-30E1	7-23-62	0 <u>+</u> 3.4	10-22-62
12S/2E-30N1	7-23-62	0 <u>+</u> 3.4	10-8-62
12S/2E-31C1	7-23-62	0 <u>+</u> 3.3	10-8-62
12S/2E-31K1	7-24-62	0 + 3.4	10-8-62
12S/2E-32C1	7-24-62	5.1 ± 3.5	9-26-62
13S/1E-1A1	7-23-62	0 <u>+</u> 3.4	10-8-62
13S/2E-1K1	7-31-62	1.6 ± 3.5	9-26-62
13S/2E-6E2	7-24-62	4.2 <u>+</u> 3.5	9-26-62
	SALINAS VALL	EY (3-4)	
100/0- 1001			
13S/2E-10J1	7 - 31-62	-0 <u>+</u> 3.4	9-26-62
	CADMET WALL	UV /2 7\	
	CARMEL VALL	<u> </u>	
15S/1E-22C1	7-11-62	-0 <u>+</u> 3.4	9-26-62
15S/1E-23G1	7-11-62	-0 <u>+</u> 3.4	9-26-62
15S/1E-26N2	7-11-62	3.3 <u>+</u> 3.9	9-26-62

Well number	Date sampled	Gross activity ^a	Date analyzed
CA	RMEL VALLEY	(3-7) (Cont.)	
16S/1W-13L2	7-11-62	-0 + 3.3	9-26-62
			7 20 02
16S/1E-16L1	7-10-62	1.6 + 3.4	9-26-62
16S/1E-16N1	7-10-62	-0 <u>+</u> 3.5	9-26-62
16S/1E-17G1	7-10-62	-0 <u>+</u> 3.4	9-26-62
16S/1E-18K1	7-11-62	3.2 <u>+</u> 3.4	9-26-62
16S/1E-23F1	7-10-62	2.1 + 3.4	9-26-62
16S/1E-25B1	7-9-62	0.1 <u>+</u> 3.4	9-26-62

Well number	Date sampled	Gross activity ^a	Date analyzed
<u></u> <u>S</u>	ACRAMENTO VA	LLEY (5-21)	
	Placer	County	
10N/5E-6D1	8-3-62	0.0 <u>+</u> 3.6	8-17-62
10N/6E-5C	8-3-62	0.0 <u>+</u> 3.5	8-20-62
-10D	8-3-62	0.0 <u>+</u> 3.3	9-12-62
11N/5E-6A1	8-3-62	0.3 ± 3.6	8-20-62
-1 8H	8-3-62	1.8 ± 3.5	9-12-62
-31A1	8-3-62	0.0 ± 3.3	9 -11- 62
11N/6E-16M	8-3-62	0.0 <u>+</u> 3.6	8-20-62
- 27Q	8-3-62	0.4 ± 3.5	9-26-62
-34B	8-3-62	0.0 ± 3.5	8-20-62
12N/5E-2B1	8-3-62	5.2 ± 3.4	9-12-62
- 3D	8-3-62	4.2 <u>+</u> 3.6	9-26-62
-2301	8-3-62	2.2 <u>+</u> 3.6	8-17-62
12N/6E-16D2	8-3-62	5.3 ± 3.6	8-17-62
13N/5E-13D	8-3-62	2.1 <u>+</u> 3.6	9 -1 2 - 62
- 24P1	8-3-62	3.2 <u>+</u> 3.6	8-20-62
13N/6E-6D	8-3-62	0.0 <u>+</u> 3.5	8-20-62
- 16D	8-3-62	0.0 <u>+</u> 3.6	8 -17- 62
-3301	8-3-62	0.0 <u>+</u> 3.5	8-20-62
	Sacramen	to County	
4N/3E-13J1		8.3 <u>+</u> 3.7	1-28-63
-14Fl	8-23-62		1-28-63
- <u>T</u> 1,1 <u>T</u>	0-27-02		1-20-07

Well number	Date sampled	Gross activity ^a	Date analyzed			
Sa	Sacramento County (Con't.)					
- 22Q	8-23-62	5.1 ± 3.7	1-28-63			
5N/7E-7E2	9-26-62	0.0 <u>+</u> 3.5	1-24-63			
6N/7E-23Al	8-30-62	5.4 ± 3.7	1-29-63			
6N/8E-15J1	8-30-62	1.3 ± 3.6	1-24-63			
7N/4E-4R1	8-23-62	1.0 <u>+</u> 3.5	1-28-63			
7N/5E -7 Cl	9-26-62	0.0 ± 3.5	1-24-63			
7N/6E-22R1	9-25-62	0.0 ± 3.5	1-24-63			
7N/7E-27B1	8-29-62	4.2 <u>+</u> 3.6	1-28-63			
8N/5E-15H1	9-26-62	1.7 ± 3.6	1-24-63			
8N/8E-29Kl	8-29-62	7.6 <u>+</u> 3.6	1-28-63			
9N/4E-1R1	8-31-62	0.4 + 3.6	1-24-63			
-8L1	8 -1 6-62	2.1 <u>+</u> 3.5	1-28-63			
-27F1	10-5-62	2.5 <u>+</u> 3.6	1-24-63			
9N/5E-21E1	8-31-62	0.0 <u>+</u> 3.5	1-24-63			
9N/7E-21D1	8-10-62	1.6 ± 3.4	9-26-62			
- 26Hl	8-10-62	0.0 ± 3.4	9-26-62			
- 28KI	8 -17- 62	0.0 + 3.4	9-26-62			
- 32B1	8-10-62	0.0 ± 3.4	9-26-62			
-33E1	8 - 10-62	0.0 ± 3.4	9 - 26-62			
10N/4E-13P1	8-16-62	0.7 ± 3.5	1-28-63			
10N/6E-27L	10-9-62	2.8 ± 3.5	1-24-63			
	Sutton	County				
12N/2E - 9P2	6-12-62	0.0 ± 3.5	8_20_62			

a - Micromicrocuries per liter _419_

Well number	Date sampled	Gross activity ^a	Date analyzed
	Sutter Cour	ty (Cont'd.)	
-11N1	6-12-62	0.0 <u>+</u> 3.7	8-17-62
-14B1	6-12-62	0.0 <u>+</u> 3.5	9-12-62
-16R1	6-21-62	2.4 ± 3.6	8-20-62
-23Q1	6-12-62	9.5 ± 3.6	8-17-62
-26Al	6-12-62	3.3 ± 3.6	8-17-62
13N/3E-10M2	6-12-62	0.0 ± 3.5	8-20-62
- 11Q3	6-8-62	0.0 ± 3.2	9-11-62
-1301	6-8-62	0.0 <u>+</u> 3.6	8-17-62
-16R1	6-20-62	0.0 ± 3.4	9-12-62
-24Dl	6-8-62	0.0 ± 3.5	9-12-62
13N/4E-21A1	6-13-62	0.0 <u>+</u> 3.5	8-17-62
- 23Q1	6-13-62	0.4 ± 3.5	9-12-62
13N/5E-7R3	6-26-62	0.0 ± 3.5	8-20-62
-9R1	6-13-62	0.0 <u>+</u> 3.2	10-8-62
-1 9R2	6-13-62	0.7 ± 3.4	9-12-62
-33L1	6-27-62	1.4 ± 3.3	9-11-62
14N/1E-1A1	6-12-62	0.3 ± 3.5	8-20-62
-2A1	6-12-62	0.0 <u>+</u> 3.6	8-20-62
14N/3E-3G2	6-12-62	0.0 ± 3.5	8-17-62
-5A3	6-12-62	0.0 <u>+</u> 3.6	8_20_62
-1 4E2	6-29-62	0.0 ± 3.4	8-17-62
- 15H1	6-13-62	5.0 ± 3.4	9-12-62
-1 6B2	6-7-62.	0.0 <u>+</u> 3.5	8-17-62
-1 8A2	6-21-62	0.0 ± 3.6	8-20-62

Well number	Date sampled	Gross activity ^a	Date analyzed
	Sutter Count	ty (Con't.)	
-23M2	6-8-62	0.0 ± 3.5	8-20-62
_28Rl	6-29-62	0.9 ± 3.6	8-20-62
15N/2E-26D2	6-7-62	0.0 <u>+</u> 3.2	9-11-62
15N/3E-4C2	6-12-62	1.0 ± 3.6	8-20-62
- 26M	6-20-62	1.7 ± 3.4	9-12-62
- 29 G 1	6-20-62	0.0 ± 3.6	8-17-62

1962

Stanislaus County

Well number	Date sampled	Gross activity ^a	Date analyzed
MDB&M			
3S/7E-13A2	7/13/62	o ± 3.7	8/17/62
3S/7E-24J	7/13/62	1.3 ± 3.4	9/11/62
3S/8E-6N1	7/13/62	4.0 ± 3.7	8/17/62
3S/8E-9Cl	7/13/62	0.02 ± 3.7	8/17/62
3S/8E-2OJ	7/13/62	9.4 ± 3.8	8/17/62
3S/8E-23E1	8/15/62	6.0 ± 3.4	9/26/62
3S/9E - 6R	7/18/62	2•3 + 3•7	8/17/62
4s/7E-16E1	7/18/62	o ± 3.6	8/17/62
4s/7E-17Kl	7/18/62	o + 3.6	8/17/62
4S/7E-18A1	7/18/62	0 + 3.6	8/17/62
4S/7E-26R	7/24/62	1.6 ± 3.4	9/12/62
4S/7E-34J1	7/18/62	0.6 ± 3.4	9/12/62
4s/8E-5L	7/18/62	15.9 ± 3.9	8/17/62
4S/8E-24Al	8/16/62	9•5 * 3•5	10/22/62
4S/8E-27L1	8/27/62	22.3 + 3.7	10/22/62
4S/9E-20A1	8/16/62	7•2 * 3•5	10/22/62
4S/9E-25Al	8/24/62	1.2 + 3.2	10/30/62
4s/9E-30R1	8/27/62	28.7 ± 3.8	10/22/62
4S/11E-21D1	8/16/62	o ± 3.4	10/22/62
4S/11E-31E1	8/24/62	2.6 ± 3.2	10/30/62
5S/7E-9H1	7/18/62	0 + 3.0	9/11/62
5S/7E-23B	7/18/62	11.5 + 4.0	8/9/62

Stanislaus County (continued)

Well number	Date sampled	Gross activity ^a	Date analyzed
MDB&M			
5S/7E-35Al	7/24/62	2.8 ± 3.3	9/11/62
5s/8E-1R1	8/28/62	0.9 ± 3.2	10/30/62
5S/9E-9A1	8/28/62	13.2 + 3.6	10/11/62
5S/9E-13G1	8/22/62	14.3 - 3.6	10/22/62
5S/10E-4F1	8/24/62	4.6 - 3.3	10/30/62
5s/10E-2 3 E1	7/13/62	9•2 ± 3•7	8/20/62
5s/10E -2 8H1	8/20/62	1.1 + 3.2	10/30/62
5s/10E-30F1	8/22/62	21.3 - 3.7	10/22/62
5S/11E-7P1	8/20/62	2.3 + 3.5	10/22/62

1962

Merced County

Well number	Date sampled	Gross activity ^a	Date analyzed
MDB&M			
4S/14E-8J	7/10/62	0 ± 3.6	8/17/62
5S/11E-29F1	8/20/62	o ± 3.4	10/22/62
5S/14E-3P	7/10/62	o ± 3.6	8/17/62
6S/10E-2Hl	8/22/62	2.6 ± 3.2	10/30/62
6S/10E-9B1	8/22/62	26.4 ± 3.7	10/22/62
6S/10E-24L1	8/22/62	9.6 ± 3.4	10/30/62
6S/10E-28K1	8/20/62	6.4 ± 3.3	10/30/62
6S/11E/3B1	8/16/62	8.8 ± 3.5	10/22/62
6s/11E-9C1	8/24/62	10.4 = 3.4	10/30/62
6S/12E - 6L1	9/10/62	o ± 3.2	10/30/62
8S/10E-29D	7/11/62	o ± 3.6	8/20/62
9S/11E-7N1	7/11/62	o ± 3.6	8/20/62
9S/11E-26N1	7/11/62	0.9 ± 3.6	8/20/62
9S/12E - 17B	7/11/62	6.2 ± 3.4	9/12/62
9S/13E-8G	7/11/62	2.4 ± 3.7	8/17/62
9S/13E - 29L	7/11/62	4.3 ± 3.4	9/12/62
9S/14E-20B	7/11/62	3.4 ± 3.6	8/17/62

1962

Kings County

Well number	Date sampled	Gross activity ^a	Date analyzed
MDB&M			
17S/22E-2H	8/13/62	2.0 = 3.2	10/11/62
18S/19E-6G1	8/30/62	10.6 = 3.4	10/22/62
18S/19E-26Hl	8/15/62	17.4 + 3.6	10/11/62
18S/21E-14F1	8/29/62	1.2 + 3.3	10/20/62
19S/19E-15N1	8/15/62	2.6 ± 3.4	10/11/62
19S/19E-25L	8/24/62	6.5 ± 3.4	10/22/62
19S/20E-33A1	8/14/62	46.8 ± 3.9	10/22/62
19S/21E-3B1	8/14/62	11.8 + 3.5	10/22/62
19S/2 3 E-8H1	8/16/62	o ± 3.3	10/11/62
20S/20E-10L1	8/15/62	o ± 3.4	10/11/62
20S/21E-12A1	8/16/62	21.6 ± 3.6	10/11/62
20S/21E - 16D	8/14/62	o ± 3.3	10/22/62
20S/22E-1A1	8/16/62	1.4 ± 3.4	10/11/62
21S/18E-1D1	8/15/62	o ± 3.4	10/11/62
21S/18E-17M1	8/23/62	0 + 3.3	10/11/62
21S/21E-1A2	8/23/62	5.1 [±] 3.4	10/11:/62
21S/22E-13G1	8/20/62	o ± 3.3	10/30/62
21S/22E-22M2	8/20/62	o ± 3.2	10/30/62
22S/17E-15M2	8/23/62	0.4 ± 3.4	10/11/62
22S/19E-20N	8/20/62	o ± 3.3	10/11/62
22S/22E-10Al	8/20/62	o ± 3.2	10/30/62
23S/18E-29El	8/23/62	o ± 3.2	10/11/62

1962

Kings County (continued)

Well number	Date sampled	Gross activity ^a	Date analyzed
MDB&M			
23S/21E-18D1	8/20/62	0.7 + 3.2	10/11/62
24S/18E-19Q1	8/29/62	o ± 3.4	10/30/62
24S/19E-30N1	8/23/62	1.0 + 3.3	10/11/62
24S/22E-35N1	8/24/62	7.0 ± 3.4	10/22/62

1962

Tulare County

Well number	Date sampled	Gross activity ^a	Date analyzed
MD B&M			
16S/24E-3J1	7/26/02	0 ± 3.3	10/22/62
16S/25E-32N	8/1/62	4.8 + 3.4	10/22/62
17S/23E-8Hl	6/18/62	16.5 + 3.5	10/11/62
17S/24E-15A2	6/21/62	0 + 3.3	10/22/62
17S/25E-34P	7/3/62	5.0 + 3.4	10/22/62
18S/24E - 19M1	6/18/62	12.5 + 3.1	10/11/62
18s/26E-10N	7/24/62	5•9 ± 3•3	10/30/62
19S/23E-24G1	6/13/62	0.2 + 3.3	10/11/62
19S/24E-22Cl	6/21/62	0 + 3.4	10/30/62
19S/25E-31J1	6/13/62	1.3 + 3.3	10/22/62
19S/26E-3K1	6/18/62	0 + 3.3	10/22/62
19S/26E-26M1	6/18/62	0 + 3.4	10/22/62
20S/23E - 27R	7/214/62	1.3 + 3.3	10/30/62
20S/26E-3F1	8/14/62	2.8 + 3.4	9/26/62
20S/26E-5R1	7/,10/62	o ± 3.1	10/30/62
20S/26E-19F	6/25/62	0 + 3.4	10/22/62
20S/27E-13A1	9/12/62	0.7 + 3.3	10/22/62
20S/27E-31J1	8/14/62	0 + 3.4	10/8/62
21S/23E-22A	9/27/62	5•7 - 3•3	10/11/62
21S/24E-10N1	7/3/62	3•7 - 3•5	10/22/62
21S/27E-15P2	7/31/62	0 + 3.3	10/11/62
21S/27E-27F1	8/14/62	7•3 [±] 3•5	9/26/62
22S/23E-6Al	8/2/62	0 ± 3.3	10/30/62

1962

Thilare County (continued)

Well number	Date sampled	Gross activity ^a	Date analyzed
MDB&M			
22S/25E-22A	6/21/62	o ± 3.4	10/30/62
22S/26E-16M1	9/12/62	0 ± 3.2	10/30/62
22S/27E-11C1	7/31/62	3.1 + 3.4	10/11/62
23S/23E-32Nl	7/26/62	8.5 ± 3.4	10/22/62
23S/24E-32P	8/20/62	5.4 + 3.4	10/22/62
23S/25E-9F1	7/26/62	0.6 ± 3.3	10/22/62
23S/27E-21H	9/12/62	0 ± 3.2	10/30/62
23S/27E-27G1	9/12/62	1.8 ± 3.3	10/30/62
24S/23E-8D	7/26/62	o ± 3.3	10/22/62
24S/25E-23Hl	9/12/62	o ± 3.3	10/22/62
24S/26E-31L2	9/12/62	5.8 ± 3.3	10/30/62
24S/27E-32Pl	9/12/62	o ± 3.2	10/30/62

Well number	Date sampled	Gross activity ^a	Date analyzed		
	NORTH TAHOE	VALLEY 6-5.02			
14N/16E - 1C1	9-24-62		10-8-62		
·	•	0.0 ± 3.2			
-1K1	9-24-62	1.4 ± 3.6	10-11-62		
14N/17E-8N1	9-24-62	0.0 ± 3.5	10-11-62		
15N/16E-24A1	9-24-62	0.0 <u>+</u> 3.5	10-11-62		
-2501	9-24-62	0.0 ± 3.5	10-11-62		
15N/17E-6J1	9-24-62	0.0 ± 3.3	10-11-62		
-7E1	9-24-62	0.0 <u>+</u> 3.2	10-8-62		
16N/16E-28E1	9-25-62	0.0 <u>+</u> 3.2	10-8-62		
- 32D 1	9-25-62	0.0 <u>+</u> 3.2	10-8-62		
-32D2	9-25-62	0.0 ± 3.4	10-11-62		
16N/17E-13B1	9-24-62	0.0 <u>+</u> 3.2	10-11-62		
-1 4Bl	9-24-62	0.1 <u>+</u> 3.4	10-11-62		
-14Cl	9-24-62	0.0 <u>+</u> 3.4	10-11-62		
16N/18E-30B1	9-24-62	3.3 <u>+</u> 3.4	10-11-62		
TRUCKEE VALLEY 6-6.7					
17N/16E-7N1	9-25-62	1.1 ± 3.4	10-11-62		
_8 M	9-25-62	0.0 <u>+</u> 3.4	10-11-62		
-14F1	9-25-62	0.0 <u>+</u> 3.3	10-8-62		
-15G1	9-25-62	0.0 <u>+</u> 3.2	10-11-62		
-16L1	9-25-62	0.0 <u>+</u> 3.2	10-8-62		
-17F1	9-25-62	0.0 <u>+</u> 3.3	10-11-62		

INDEX OF MONITORED AREAS

```
NORTH COASTAL REGION (NO. 1)
                                                     5-11 MOHAWK VALLEY
1-1 SMITH RIVER PLAIN
                                                     5-12 SIERRA VALLEY
1-3 BUTTE VALLEY
1_4 SHASTA VALLEY
1_5 SCOTT RIVER VALLEY
1_6 HAYFORK VALLEY
1-8 MAD RIVER VALLEY
1_9 FUREKA PLAIN
1-11 ROUND VALLEY
1-18 SANTA ROSA VALLEY
  5AN FRANCISCO BAY REGION (NO. 2)
2-1 PETALUMA VALLEY
2-2 NAPA-SONOMA VALLEY
2-3 SUISUN-FAIRFIELO VALLEY
 7_4 PITTSBURG PLAIN
 2-5 CLAYTON VALLEY
 2-9 SANTA CLARA VALLEY
```

SOUTH BAY AREA CENTRAL COASTAL REGION (NO. 3)

EAST BAY AREA

3-2 PAJARO VALLEY 3-3 GILROY-HOLLISTER BASIN

2-10 LIVERMORE VALLEY

3-4 SALINAS VALLEY 3-7 CARMEL VALLEY

5-9 INDIAN VALLEY

CENTRAL VALLEY REGION (NO. 5) 5-1 GOOSE LAKE VALLEY 5-2 ALTURAS BASIN S-4 BIG VALLEY 5-S FALL RIVER VALLEY 5-6 REDDING BASIN

5-7 LAKE ALMANOR VALLEY

5_10 AMERICAN VALLEY S-13 UPPER LAKE VALLEY 5-15 KELSEYVILLE VALLEY 5-21 SACRAMENTO VALLEY TEHAMA COUNTY GLENN COUNTY BUTTE COUNTY COLUSA COUNTY SUTTER COUNTY YUBA COUNTY PLACER COUNTY YOLO COUNTY SACRAMENTO COUNTY SOLAND COUNTY 5-22 SAN JOAQUIN VALLEY SAN JOAQUIN COUNTY STANISLAUS COUNTY MERCEO COUNTY MADERA COUNTY FRESNO COUNTY KINGS COUNTY 5-23 PANOCHE VALLEY LAHONTAN REGION (NO. 6) 6-1 SURPRISE VALLEY 6-2 MADELINE PLAINS

6-7 TOPAZ VALLEY

6-8 BRIDGE PORT VALLEY

STATE OF CALIFORNIA

THE RESOURCES AGENCY OF CALIFORNIA
DEPARTMENT OF WATER RESOURCES
DIVISION OF RESOURCES PLANNING

QUALITY OF GROUND WATERS IN CALIFORNIA, 1962

SANTA CLARA VALLEY EAST BAY AREA

SCALE OF MILES

STATE OF CALIFORNIA

THE RESOURCES AGENCY OF CALIFORNIA
DEPARTMENT OF WATER RESOURCES
DIVISION OF RESOURCES PLANNING

QUALITY OF GROUND WATERS IN CALIFORNIA, 1962

SANTA CLARA VALLEY EAST BAY AREA

THIS BOOK IS DUE ON THE LAST DATE STAMPED BELOW

RENEWED BOOKS ARE SUBJECT TO IMMEDIATE RECALL

NOV 27 1967

MAR 3

MAR 9 DEC 1 4 1988

DEC 29 1988 REC'I UED LICKALY

RECEIVED

DUE DEC 4 1969 DEC 29 1988

NOV 25 REC'D PHYS SCI LIBRARY UCD LIBRARY

DUE SEP 29 1971

SEP 28 REC'D

FEB 19 1973

FEB 14 REC'D MAR 1 1 197

MARARY UNIVERSITY OF CALIFORNIA, DAVIS

Book Slip-50m-12,'64 (F772s4)458

381764

Calif. Dept. of Water Resources.
Bulletin.

TC824 C2 A2 no.66:62:1 c.2

PHYSICAL SCIENCES LIBRARY

> LIBRARY UNIVERSITY OF CALIFORNIA DAVIS

Call Number:

381764
Calif. Dept. of
Water Resources.
Bulletin.

TC824 C2 A2 no.66:

